
Machine learning for cancer
informatics and drug discovery

Jean-Philippe.Vert@mines.org

Mines ParisTech / Institut Curie / INSERM U900

ENS Paris, October 13, 2010



Team’s goal
Develop new mathematical/computational models and

tools, in particular machine learning, to contribute to:

1. Diagnosis, prognosis and predictive models
2. Identification of important pathways and new drug

targets
3. Identification of new drugs



Example: DNA microarray to monitor the transcriptome



Question:
Diagnosis / Prognosis from genome / transcriptome

-What class of tumour is that?
-What is the risk of metastasis in 5 years?
-Will drug XXX have an effect?



Question:
Identification of new regulations / therapeutic targets

-Which genes are regulated by XXX ?
-Which proteins interact with YYY?



Questions:
Virtual screening and QSAR

-Can this small molecule inhibit XXX ?
-Is it toxic? Is it drug-like?



Today’s lectures

1. How to make an « intelligent » tool to
predict biological properties? We will
study the machine learning approach.

2. Then, we will survey several particular
applications in bioinformatics and drug
discovery



Part 1:
The machine learning approach



Apple or pear?



We need a classifier or predictor

PEAR

PEAR

APPLE



How to make a predictor?

APPLE/PEARIMAGE

1. Experiment-based
2. Knowledge-based, « intelligent design »
3. Data-based, « machine learning »



Experiment-based classification

• Design experiments to answer the question
• Carry out the experiment
• The best approach if possible
• However: not always possible, takes time

and money



Knowledge-based predictor

• Based on shape, texture, color, …
• Usually difficult to engineer
• Can not be used for other problems (eg,

discriminate strawberries vs grapes)



Data-based predictor = learning

PEAR



Another way to look at it



Some properties of data-based
predictors

• Needs a database of labeled
examples

• Does not always provide a
simple rule (« black-box »)

• The more data the better!
• The algorithm can be quite

generic



Ok, but there is no apple is
bioinformatics!

• Sure, but:
– There are many data
– Many problems can be formulated as that of

« learning a predictor from data »
– It is often difficult to design knowledge-based

predictors (no clear biological theory, noise,
large number of features…)



Example: diagnosis/prognosis
from microarray data

- Cancer type
- Future evolution



Example: virtual screening

-Activity
-Toxicity



Example: gene annotation

-Localization
-Function
-Structure

MAHSKMQN…



Other examples

• Predict function from structure
• Predict splicing sites
• Predict binding sites
• Predict regulated genes
• …



Summary

• Patterns X (image/sequence/structure/…)
• Label Y (binary here, but can be more general)
• We want to build a predictor Y=f(X)
• For this we need a training set of (X,Y) pairs
• We need an algorithm that estimates the predictor f from

the training set
• We can then use the predictor to make predictions on new

patterns X by f(Y)



My first machine learning
algorithm: nearest neighbour

• Define a similarity measure s(X,X’)
between patterns

• For a new pattern X, predict as label f(X)
the label of the most similar pattern in the
training set



Nearest neighbours

• Very simple to implement
• Good baseline method
• Simple extension: make a majority vote of

the k nearest neighbors (k-NN)



Other popular algorithms

• Decision trees, random forests
• Fisher linear discriminant
• Artificial neural networks (ANN)
• Logistic regression
• Boosting
• Support vector machines (SVM)



Linear classifier (simple case)



Which one is better?



Vapnik’s answer: margin



Vapnik’s answer: margin



Vapnik’s answer: margin



The best: largest margin



Support vectors



Implementation

• The problème of finding the largest margin
hyperplane is easy to solve (but not by
yourself!)

• Unique solution, no local optimum (convex
optimization problem)

• Only depends on the support vectors



New problem



Soft-margin SVM

• Find a trade-off between:
– Large margin
– Few misclassification

• Mathematically:

• Still easy to solve (for a good choice of
« error »). C is a parameter.



Some limitations

• What if the data are not vectors?
• What if instead I have a way to measure a

distance between patterns (e.g., alignment
of sequences, stuctures, …)



An interesting property

• To train a SVM we just need the matrix of
pairwise distances:

• The predictor has the form:



An interesting generalization

• Take a distance d(X,X’)
• Train a SVM from the matrix of pairwise

distances:

• The predictor now is:



Technical details

• This will work very well if the distance
d(X,X’) satisfies some mathematical
conditions (« conditionally positive
definiteness »)

• If not there still exist tricks to make it work



Example: nonlinear SVM

• Take a Gaussian distance:

• We can then learn nonlinear predictors:



The fundamental trade-off:
regularity (margin) vs error



C controls the trade-off

• Large C :
– makes few errors

• Small C :
– ensure a large margin

• Intermediate C:
– finds a trade-off



Why it is important to care about
the trade-off



Choosing C

• Split the annotated data in 2: training /
validation

• Train a predictor on the training set
• Evaluate the performance on the validation

set
• Choose C to minimize the validation error
• (you may repeat all this several times ->

cross-validation)



SVM: summary

• You need a training set of labeled patterns,
i.e., of (X,Y) pairs

• You need a distance d(X,X’) between
patterns

• You need to choose the parameter C (e.g.,
cross-validation)

• You plug this into any SVM
implementation to train a predictor



SVM in practice
(eg: libsvm with Python)



SVM summary

- Large margin

- Nonlinear

- Need pairwise
distance / similarity
as input instead of
vectors / fingerprints



Part 2
Applications of machine learning in
bioinformatics and drug discovery


