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Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification
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From Harchaoui and Bach (2007).
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Cancer diagnosis
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Cancer prognosis
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Pattern recognition, aka supervised classification

BEE
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges

@ High dimension

@ Few samples
Structured data
Heterogeneous data
Prior knowledge

Fast and scalable
implementations

Interpretable models

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 7/114



Formalization

The problem

@ Given a set of training instances (x1, y1), ..., (Xa, ¥n), Where
X; € X are data and y; € ) are continuous or discrete variables of
interest,

@ Estimate a function
y =f(x)
where x is any new data to be labeled.
@ f should be accurate and intepretable.
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Linear classifiers

The model

@ Each sample x € X is represented by a vector of features (or
descriptors, or patterns):

O(x) = (®1(x), ..., Pp(X))

@ Based on the training set we estimate a linear function:

p
fa(x) = Bidi(x) = BT ().
i=1
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Linear classifiers

The model

@ Each sample x € X is represented by a vector of features (or
descriptors, or patterns):

O(x) = (®1(x), .., Dp(x))

@ Based on the training set we estimate a linear function:

p
fa(x) = Bidi(x) = BT ().
i=1

Two (related) questions
@ How to design the features ®(x)?
@ How to estimate the model 5?
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ﬂ Explicit computation of features : the case of graph features

e Using kernels
@ Introduction to kernels
@ Graph kernels
@ Kernels for gene expression data using gene networks

e Using sparsity-inducing shrinkage estimators
@ Feature selection for all subgraph indexation
@ Classification of array CGH data with piecewise-linear models
@ Structured gene selection for microarray classification

e Conclusion
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ﬂ Explicit computation of features : the case of graph features
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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The approach
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The approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
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The approach

@ Represent explicitly each graph x by a vector of fixed dimension

d(x) € RP.

© Use an algorithm for regression or pattern recognition in RP.
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Example

2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

@/\/\/\\ N NN N
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@ Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

AN

@ Expressiveness: they should retain as much information as
possible from the graph

@ Computation : they should be fast to compute

@ Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures
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@ Often we believe that the presence substructures are important
predictive patterns

@ Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures

@ However, detecting the presence of particular substructures may
be computationally challenging...

v
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Subgraphs

Definition

A subgraph of a graph (V, E) is a connected graph (V’, E’) with
V' cVand E' C E.

<] 23392
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Indexing by all subgraphs?
(0,...,0,1,0,...,O,l,O,...)
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Indexing by all subgraphs?
(0,...,0,1,0,...,O,l,O,...)

®
046

Computing all subgraph occurrences is NP-hard. \
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Indexing by all subgraphs?
(O,...,O,l,O,...,O,l,O,...)

®
046

Computing all subgraph occurrences is NP-hard.

@ The linear graph of size nis a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Ol

v
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Definition

@ A path of a graph (V, E) is sequence of distinct vertices
Vi,...,Vp€ V(i #] = Vv; # vj) such that (v;,vi11) € E for
i=1,....n—1.

@ Equivalently the paths are the linear subgraphs.
: | NONON
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Indexing by all paths?

B—A
(0,...,0,1,0,...,0,1,0,...)
@‘Q ® t t
(—a) (6—6e—06)
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Indexing by all paths?

B—A
(0,...,0,1,0,...,0,1,0,...)
@‘Q ® t t
(—a) (6—6e—06)

Computing all path occurrences is NP-hard. \
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Indexing by all paths?

Q‘Q ® (0.....0,1,0,...,0,1,0...)
BF—®A ! !

Computing all path occurrences is NP-hard. \

Same as for subgraphs.
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Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all path up to length k (Openeye fingerprint, Nicholls 2005)

@ all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

@ all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

G—E—6E—3—0 |

[
¢
B—®
(0,...,0,2,0,...,0,1,0,...)
@‘@ ® t t
(>—®] (&—r—nr—6)
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Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

OlO 0,1,0

s

GO
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Example : Indexing by all subgraphs up to k vertices

(®(0,..., 0,1,0,..., 0,1,0 )
76 ;
(@&®) ®
D

Properties (Shervashidze et al., 2009)

@ Naive enumeration scales as O(n%).

@ Enumeration of connected graphlets in O(nd*~1) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.
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@ Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)

@ Several ideas to reduce the set of substructures considered

@ In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered. )
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e Using kernels
@ Introduction to kernels
@ Graph kernels
@ Kernels for gene expression data using gene networks
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e Using kernels
@ Introduction to kernels
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Positive definite kernels

Definition
@ Let ¢(x) be a vector representation of the data x
@ The kernel between two graphs is defined by:

K(x,x') = &(x) " d(x').
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The kernel trick

The trick

@ Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors

@ Computing the kernel is often more efficient than computing ®(x),
especially in high or infinite dimensions!

@ Perhaps we can consider more features with kernels than with
explicit feature computation?
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Learning linear classifiers with kernels

Training the model

@ Minimize an empirical risk on the training samples:

min  Remp(8) = %Z/(ﬁTd’(Xi)’Jﬁ),
i=1

BERPH

@ ... subject to a constraint on :

I8l < C.
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Making kernels

Two important strategies (not the only ones!)
@ Feature design :
K(x,x') = o(x)Td(x)).
We illustrate this idea with graph kernels.

@ Regularization design :
18]l < C.

We illustrate this idea with kernels for microarray data.
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e Using kernels

@ Graph kernels
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@ Represent implicitly each graph x by a vector ®(x) € H through
the kernel
K(x,x) = &(x)To(x').

__->0
| >@
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@ Represent implicitly each graph x by a vector ®(x) € H through

the kernel

K(x,x) = &(x)To(x').

@ Use a kernel method for classification in 7.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VG1,GQ€X, dK(G1,GQ):O — 61262.

Equivalently, #(Gy) # ®(Gy) if Gy and G, are not isomorphic.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VG1,GQ€X, dK(G1,Gg):O:> 61262.

Equivalently, #(Gy) # ®(Gy) if Gy and G, are not isomorphic.

v

Expressiveness vs Complexity trade-off

@ If a graph kernel is not complete, then there is no hope to learn all
possible functions over X': the kernel is not expressive enough.

@ On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.

@ Can we define tractable and expressive graph kernels?

v
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Complexity of complete kernels

Proposition (Gértner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Complexity of complete kernels

Proposition (Gértner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

v

Proof

@ For any kernel K the complexity of computing dk is the same as
the complexity of computing K, because:

dk(G1, G2)? = K(G1, Gi) + K(Gz, Go) — 2K(Gy, Go) -

@ If Kiis a complete graph kernel, then computing dx solves the
graph isomorphism problem (dk(Gy, G2) =0 iff Gy ~ Gp). O
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Subgraph kernel

@ Let (\g)s. 1 @ setor nonnegative real-valued weights
@ For any graph G € X, let

VHe X, &uy(G)=|{G isasubgraphof G: G'~ H}|.

@ The subgraph kernel between any two graphs G; and G, € X' is

defined by:
Ksubgraph(Git, G2) = Y An®p(Gi)op(Gz)
Hex
[? ,;)E (0,...,0,1,0,...,0,1,0,...)

s

OaY)
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Subgraph kernel complexity

Proposition (Géartner et al., 2003)
Computing the subgraph kernel is NP-hard.
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Subgraph kernel complexity

Proposition (Géartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
@ Let P, be the path graph with n vertices.
@ Subgraphs of P, are path graphs:

®(Py) = nep, +(n—1)ep, + ...+ ep,.

@ The vectors ®(Py),...,d(Py,) are linearly independent, therefore:
n
epn = Z Oc,'q)(P,') ;
i=1

where the coefficients «; can be found in polynomial time (solving
a n x ntriangular system).

v

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 36/114



Subgraph kernel complexity

Proposition (Géartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)

@ If Gis a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if $(G) e, > 0,
i.e.,

¢(G)T <Z a,'d)(P,-)) = ZaiKsubgraph(G, Pi) >0.
i=1

i=1

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete. O
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Path kernel

B—®
(0,...,0,1,0,...,0,1,0,...)

@‘@ = t t
(—a) (6—6e—06)

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Koatn(G1, G2) = > Aq®(Gr)PH(Ge)
Hep

where P C X is the set of path graphs.
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Path kernel

@‘@ ® (0....0,1,0,...,0,1,0...)
BF—®A ! !

The path kernel is the subgraph kernel restricted to paths, i.e.,

Koatn(G1, G2) = > Aq®(Gr)PH(Ge)
Hep

where P C X is the set of path graphs.

Proposition (Géartner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off

@ ltis intractable to compute complete graph kernels.
@ ltis intractable to compute the subgraph kernels.

@ Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

@ One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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aks

Definition

@ A walk of a graph (V, E) is sequence of vy, ..., Vn € V such that
(Vi,Vig1) e Efori=1,..., n—1.

@ We note W,,(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
Lo o dods Lo

o e 60 fed’o s o
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Walks # paths
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Aa(w)1(sis the label sequence of w) .
weW(G)

v
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Aa(w)1(sis the label sequence of w) .
weW(G)

@ A walk kernel is a graph kernel defined by:

Kuak(G1, Go) = Y ©5(Gy)®

seS

v
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with A\g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 43/114



Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with \g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = pength(w) for 8 > 0. In that case the feature space is of

infinite dimension (Gértner et al., 2003).
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph
Definition

Let Gy = (V4, Ey) and G = (V», E>) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

Q V={(vy,) e Vi x Vs
Q E=

{((vi, ), (v{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

. vy and v» have the same label} ,

1 a b 1b 2a 1d
o—O O
2 c 3c 3e
la 2b : 2d :
3 4 d e
4c 4e
Gl (€7 Gl x &
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wa € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wi(Gy x Go).
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wa € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wi(Gy x Go).

Corollary

Kuak(Gr, Go) = Y _ 05(Gy)®s(Gz)

SES

= > e, (W), (Wa)1(/(wy) = I(w2))

(w1, w2)EW(G1) xW(Gy)

= ) Agxaw).

WEW(G1 X Gz)

i
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Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have \g, «g,(w) = 1 if the length
of w is n, 0 otherwise.

@ Therefore:

Knth—order (Gh GZ) = Z 1.
WEWn(G1 X Gg)

@ Let A be the adjacency matrix of Gy x G,. Then we get:
Knth—order (G1, G2) = Z [An],-yj =1"A"M.
i,

@ Computation in O(n|Gy||Gz|d;d>), where d; is the maximum
degree of G;.
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Computation of random and geometric walk kernels

@ In both cases \g(w) for awalk w = v; ... v, can be decomposed
as:

n
Aa(vi .. vi) = X(vy) [T M Vi1, ).
i=2

@ Let A; be the vector of \'(v) and A; be the matrix of A{(v, v/):

n

Kwaik(G1, Go) Z > N [[Mvier,w)

n=1 WeWn(Gi x Gz) i=2
o0

= NAFT
n=0

=N (I—N)"1

@ Computation in O(|G1[3|Gz[?)

v
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
1 o1l 2 o1l 4 03
No Morgan Indices  O1 Order 1 indices o1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible (graph coloring).

@ Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = vy ... v, with v; = v;.» for some i.

@ (O —@ von-tottering
(OO0 @

@ (@ rTtottering

@ Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 50/114



Computation of the non-tottering walk kernel (Mahé et

al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

o) /@‘:_ @\
H C —_— @\ /H/@

cl @)
~
©

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 51/114



N
)
c
-
o)

x
o)
d)

=

e
>

w

™

tension

Ex



Example: Tree-like fragments of molecules

N— N—C—C—C
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Computation of the subtree kernel

@ Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.

@ Recursion: if 7(v, n) denotes the weighted number of subtrees of
depth nrooted at the vertex v, then:

T(v,n+1)= Y ] Mv.V)T(V,n),

RCN(v) v'eR

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compouunds: 125 +/ 63 -

10-fold cross-validation accuracy

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

Performance comparison on Corel14

- Toest irror
]
T}
H_ T}

H w ™ wTW
Kernels
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Summary: graph kernels

@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns

@ They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick

@ However: using kernels makes it difficult to come back to patterns
after the learning stage
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e Using kernels

@ Kernels for gene expression data using gene networks

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 59/114



Microarrays measure gene expression

Make cDNA reverse transcript
Label cDNAs with flucrescent dyes

Principle of cDNA microarray
assay for gene expression

%"sg% i: hg (after Gibson & Muse 2002)

Red = "up-regulation”
Green = "down-regulation”

Black = constitutive
expression
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Cancer classification from microarray data
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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microarray smooth component high-frequency component

@ Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

@ Learn a linear classifier on the smooth components
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1. 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Fourier basis

@ L is positive semidefinite

@ The eigenvectors ey, ..., e, of L with eigenvalues
0= <...< \,form a basis called Fourier basis

@ Forany f: V — R, the Fourier transform of f is the vector f € R”
defined by:

@ The inverse Fourier formula holds:

n
f= Z?,-e,-.
i=1
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Fourier basis

A=0 A=0.5 A=1

A=23 A=4.2
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Smoothing operator

@ Let ¢ : Rt — R™ be non-increasing.
@ A smoothing operator S, transform a function f : V — Rinto a
smoothed version:

Ss(f) =>_Tig(\)ei.
i=1
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Smoothing operators

@ Identity operator (S,(f) = f):

p(N) =1, VA

v
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Smoothing operators

@ Identity operator (S,(f) = f):

@ Low-pass filter:

¢(A):{1 if A< \*,

0 otherwise.

v
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Smoothing operators
@ Identity operator (S,(f) = f):

p(N) =1, VA

@ Low-pass filter:

¢(A):{1 if A< \*,

0 otherwise.

@ Attenuation of high frequencies:

6()) = exp(—BA).

v
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Supervised classification and regression

Working with smoothed profiles

@ Classical methods for linear classification and regression with a
ridge penalty solve:

min Z 1(B7Hyi) +2878.

BERP N

@ Applying these algorithms on the smooth profiles means solving:

min — Z I (6T8¢ y,-) +2373.

BERP N
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Link with shrinkage estimator

Lemma

This is equivalent to:

NS () S
Qh@n; (V) + ;qﬁ(m’

hence the linear classifier v is smooth.
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Link with shrinkage estimator

Lemma

This is equivalent to:

1 P02
in—=> I(v f,y)+2A '
\Q%Ln; (V) + ;qﬁ(x,)’
hence the linear classifier v is smooth.

@ Letv=>",0(\)ee3, then

n

BTSs(f)=p8" Z?ﬂb()\i)ei =flv.

i=1

A~ P Tn_ n VIZ
@ Then v =¢(N\)piand '8 =>"_, 007 -

v
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Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K(f,g) = Ss(f)" S4(9)

n
= " fgip(\)
i=1

n
=fT (Z ¢()\,-)2e,-e,-T> g
i=1
=fTKyg,
with

n
K(/) = Z gb()\,')Ze,'e,-T -
i=1
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@ For ¢(X\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .
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@ For ¢(X\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .

@ For ¢(\) = 1/+/1+ A, we obtain
Ke=(L+N7",

and the penalization is:

n ~D
Vi
E _v L+Nv=]v +§ Vi — V)

INj

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 74 /114



Expression

@ Study the effect of low irradiation doses on the yeast
@ 12 non irradiated vs 6 irradiated

@ Which pathways are involved in the response at the transcriptomic
level?

o KEGG database of metabolic pathways

@ Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).

@ 737 genes, 4694 vertices.
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Classification performance
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Classifier
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Classifier

SLYcoLYsS

EE
o L

i
“sm’

£o
o mum:imm gy

g T e Y

PR Y
Emsogi,

e

i
(ki O— (TG >0
[ S BT s

B

o T

L bosmiess )

B o)

E——
)
B ey

wno amen a) oo zmoa b)

The Analysis of Patter 78 /114

Jean-Philippe Vert (P



@ With kernels we are able to soft constrain the shape of the
classifier through regularization, e.g.:

2
i
i

p
min Remp(v) + A; 500

@ This is related to priors in Bayesian learning

@ The resulting classifier is interpretable, even without selection of a
specific list of features.
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e Using sparsity-inducing shrinkage estimators
@ Feature selection for all subgraph indexation
@ Classification of array CGH data with piecewise-linear models
@ Structured gene selection for microarray classification
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Linear classifiers

Training the model

@ Minimize an empirical risk on the training samples:

. 1¢
min  Remp(3) = - > I(fs(xi), i)
i—1

@ ... subject to some constraint on 3, e.g.:

Qp)<C.

v
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Linear classifiers

Training the model

@ Minimize an empirical risk on the training samples:

. 1 &
52;@'/511 Remp(ﬂ) = n ;/(fﬁ(xi)dli)a

@ ... subject to some constraint on 3, e.g.:

Qp)<C.

v
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of

p
Qridge(ﬂ) = ” B ”g = Zﬂ/za

i=1

(ridge regression, support vector machines, kernel methods...)

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes whose
expression are sufficient for classification.

p
QBest subset selection(3) = || Blo = Z 1(8i > 0).

i=1

This is usually a NP-hard problem, many greedy variants have been
proposed (filter methods, wrapper methods)

@ Good performance

@ NP-hard

@ Biomarker selection
@ Interpretability

@ Gene selection not robust
@ No use of prior knowledge
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Example : Sparsity inducing convex priors

The approach

Constrain most weights to be 0 through a convex non-differentiable
penalty:

p
Quasso(B) = 1811 =D 186
e

@ Several variants exist, e.g., elastic net penalty (|| 3|1 + || 3]2), ... )

@ Gene selection not robust

@ Good performance
@ Biomarker selection
@ Interpretability

@ No use of prior knowledge
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T
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Efficienty computation of the regularization path

n

p
min R(fs) = (fs (%) —y)° + A D_ | 6 (2)
i=1

p+1
BER i—1

@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all \'s simultaneously (regularization path)
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Incorporating prior knowledge

@ If we have a specific prior knowledge about the “correct” weights,
it can be included in € in the contraint:

Minimize Remp(3) subject to Q(53) < C.

@ If we design a convex function €, then the algorithm boils down to
a convex optimization problem (usually easy to solve).

@ Similar to priors in Bayesian statistics
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e Using sparsity-inducing shrinkage estimators
@ Feature selection for all subgraph indexation
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Motivation
O
(®(0,...,0,1,0,...,0,1,0,...)

e‘g

@ Indexing by all subgraphs is appealing but intractable in practice
(both explicitly and with the kernel trick)

@ Can we work implicitly with this representation using sparse
learning, e.g., LASSO regression or boosting?

@ This may lead to both accurate predictive model and the
identification of discriminative patterns.

@ The iterations of LARS or boosting amount to an optimization
problem over subgraphs, which may be solved efficiently using
graph mining technique...

v
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Boosting over subgraph indexation (Kudo et al., 2004)

@ Weak learner = decision stump indexed by subgraph H and
o= =+1:
ho,1(G) = a®K(G)

@ Boosting: at each iteration, for a given distribution
di + ...+ dp = 1 over the training points (Gj, yi), select a weak
learner (subgraph H) which maximizes the gain

n
gain(H,a) = yiha H(Gi).
i—

@ This can be done "efficiently" by branch-and-bound over a DFS
code tree (Yan and Han, 2002).
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Graph LASSO regularization path (Tsuda, 2007)

0.15
0.1

0.05

-0.05
-0.1

©
©
@
<
&

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 92/114



@ Sparse learning is practically feasible in the space of graphs
indexed by all subgraphs
@ Leads to subgraph selection
@ Several extensions
o LASSO regularization path (Tsuda, 2007)
@ gboost (Saigo et al., 2009)
@ A beautiful and promising marriage between machine learning
and data mining
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e Using sparsity-inducing shrinkage estimators

@ Classification of array CGH data with piecewise-linear models
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?

12

e ™N |
# copies du BAC(x) test| *

3 Log, .

as EI/ # copies du BAC(x) ref | .
N Tl

2 Y 4 &

o
F¥

200 400 600 "800 1000 1200 1400 1600
ordre sur le génome

Jain et al. Genome research 2002 12:325-332
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Aggressive vs non-aggressive melanoma
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Classification of array CGH

Prior knowledge

@ Let x be a CGH profile
@ We focus on linear classifiers, i.e., the sign of :

fx)=x'4.

@ We expect 3 to be
@ sparse : only a few positions should be discriminative
@ piecewise constant : within a region, all probes should contribute
equally

Amplified segments

. Unaltered segment

Deleted segment
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)
Qtusediasso(8) = Z |8l + Z 18i = Bil -

inof

@ First term leads to sparse solutions
@ Second term leads to piecewise constant solutions

@ Combined with a hinge loss leads to a fused SVM (Rapaport et
al., 2008);
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Application: metastasis prognosis in melanoma
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e Using sparsity-inducing shrinkage estimators

@ Structured gene selection for microarray classification
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How to select jointly genes belonging to the same

pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /2-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wo, W) = |[(wy, wa)||l2+[|wal|2
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What if a gene belongs to several groups?

Issue of using the group-lasso
@ Qgroup(W) = >4 [ Wgl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
G1 O
Cell
cycle
= §
G2 G2
IGF, lwg llo=[IWgzll2=0 -
%%
Qoo\q\o\\ /”5,;"% G3 O
S o“s 7
? o,
%

Removal of any group
containing a gene = the
weight of the gene is 0.
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Overlap norm (Jacob et al., 2009)

Introduce latent variables vg:

mij(WHAZgHVgHz a0
ge .
w =[]+ +
W=> geg Vo | |
. B
supp (vg) € 9- | ol @

@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.

@ Setting one vy to 0 doesn’t necessarily set to 0 all its variables in
w.

-—
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A new norm

Overlap norm

mln L(w) + A |Ivgll

geg
=min L(w) + \Q w
W = ZQGQ Vg W ( ) over/ap( )
supp (vg) € g. |
with v Z [ vgll2
A 9€6g
Qover/ap(W) =Y w= 3 o Vg (*)
g9

supp (vg) C g.

Property

@ Qoveriap(W) is a norm of w.

@ Quvenap(.) associates to w a specific (not necessarily unique)
decomposition (vg)geg Which is the argmin of (x).
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Overlap and group unity balls

Balls for QY

Sroup () (middle) and QF

overlap

(+) (right) for the groups
G = {{1,2},{2,3}} where w; is represented as the vertical coordinate. Left:
group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vg and Q7 cap (W) = 3 [[Vgll2-
@ Consider the regularized empirical risk minimization problem
Lw) + 29 . (w).

overlap

v

Jean-Philippe Vert (ParisTech) The Analysis of Patterns 108/114



Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that

W= Zg Vg and Qoverlap ( ) Z ” Vg||2
@ Consider the regularized empirical risk minimization problem

(W) + )‘Qoverlap (W)
Then
@ under appropriate mutual incoherence conditions on X,
@ as n — oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWg7£0}:{geg]Vg7£0}.

v
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

10

I -
. —overlapping|
z lasso
x

RMSE
o v o » o o

1 15 2
10g,(%) log,(A) log, ()

80

Frequency of selection of each variable with the lasso (left) and Qogver,ap ()

(middle), comparison of the RMSE of both methods (right).
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Extension : Graph lasso

Graph lasso

@ Consider groups that are subgraphs whose union would give such
connected components (e.g., edges E).

@ Qgraph(W) = minycy, ZeeE Vel s.t. ZeeE Ve = W, supp (Ve) = e.)
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Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z \ Wi2 + Wj2 :
i~j
constrains the sparsity, not the values

@ Graph kernel

Qgraph kernel(W) = Z(Wi - WI)2

i~f

constrains the values (smoothness), not the sparsity
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Results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 2 Q erne ()
ERROR 0.38 £ 0.04 0.36 = 0.03
ff PATH. 148,58,183 6,5,78

PROP. PATH. 0.32,0.14,0.41 0.01,0.01,0.17

@ Graph on the genes.

METHOD 2 Qgrapn(-)
ERROR 0.39+0.04 0.36+0.01
Av. sizEc.c. 1.1,1,1.0 1.3,1.4,1.2
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e Conclusion
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Conclusion

@ Machine learning with complex and structured data becomes the
rule
@ We surveyed several ideas

o Feature construction
e Learning with kernels
e Learning with sparsity

@ Performance and interpretability are both important

@ Many promising bridges between machine learning and data
mining!
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