
 

Kernel methods for virtual screening
and in silico chemogenomics

Jean-Philippe Vert
Curie Institute - INSERM U900 - Mines ParisTech

Computational Biology Research Center, Tokyo, Aug 7, 2009.



 

Outline

1. Kernel methods for QSAR and virtual
screening

2. 2D kernels
3. 3D kernels
4. Towards in silico chemogenomics



 

Kernel methods for QSAR and virtual
screening



 

From http://cactus.nci.nih.gov

Ligand-based virtual screening / QSAR



 

Represent each molecule as a vector…



 

…and discriminate with machine learning

-LDA
-PLS
-Neural network
-Decision trees
-Nearest neighbour
-SVM, …



 

Support Vector Machine (SVM)

- Large margin

- Nonlinear

- Need pairwise
distance / similarity
as input instead of
vectors / fingerprints



 

From fingerprints to similarities

Molecules

Representation Discrimination

Vectors / Fingerprints

Pairwise distance /
similarity

-Neural Net
-LDA
-Decision trees
-PLS, …

-SVM
-Kernel PLS
-Kernel LDA
-…

Tanimoto
Inner product

« Kernel »



 

2D kernels



 

2D fragment kernels (walks)

Kashima et al. (2003), Gärtner et al. (2003)



 

Properties of the 2D fragment kernel

• Corresponds to a fingerprint of infinite
size

• Solves the problem of clashes and
memory storage (fingerprints are not
computed explicitly)

• Can be computed efficiently in
O(|x|^3 |x’|^3) (much faster in practice)

Kashima et al. (2003), Gärtner et al. (2003)



 

Remark: walks vs paths

Gärtner et al. (2003)

Computing the path kernel is NP-hard



 

Extension 1: label enrichment

-Increases the expressiveness of the kernel
-Faster computation with more labels
-Other relabeling schemes are possible

Mahé et al. (2005)



 

Extension 2: removing tottering walks

-Tottering walks are irrelevant for many applications (noise)
-Focusing on non-tottering walks only is a way to get closer
to the path kernel (e.g., equivalent on trees)

Mahé et al. (2005)



 

Extension 3: subtree patterns

« All subtree patterns »

Mahé and V., Mach. Learn, 2009.

Ramon et al. (2004), Mahé & V. (2009)



 

2D subtree vs walk kernel

NCI 60 dataset
Mahé & V. (2009)



 

3D pharmacophore kernel



 

3-point pharmacophores

Mahé et al., J. Chem. Inf. Model., 2006.



 

3D fingerprint kernel



 

From the fingerprint kernel to the
pharmacophore kernel



 

Experiments

Mahé et al., J. Chem. Inf. Model., 2006.



 

Towards in silico chemogenomics



 

Chemogenomics

Target family

Chemical space



 

In silico Chemogenomics

Target family

Chemical space



 

Fingerprint for a (target,molecule) pair?

t= c =

-2D
-3D
-Pharmacophore
-MW, logP, …

=

-Sequence
-Structure
-Evolution
-Expression
-…

=

= ???



 

Fingerprint for a (target,molecule) pair?

T= c =

-2D
-3D
-Pharmacophore
-logP, …

=

-Sequence
-Structure
-Evolution
-Expression
-…

=

103 103106



 

Similarity for (target,molecule) pairs

t= c =

-2D
-3D
-Pharmacophore
-logP, …

=

-Sequence
-Structure
-Evolution
-Expression
-…

=



 

Summary: SVM for chemogenomics

1. Choose a kernel (similarity) for targets
2. Choose a kernel (similarity) for ligands
3. Train a SVM model with the product

kernel for (target/ligand) pairs



 

Important remark

• New methods are being actively
developed in machine learning for
learning over pairs

• « Collaborative filtering »,
« transfer learning »,
« multitask learning »,
« MMMF », « pairwise
SVM », etc…

37k registered teams from 180 countries!



 

Application: virtual screening of GPCR

Data: GLIDA database filtered for drug-like compounds
- 2446 ligands
- 80 GPCR
- 4051 interactions
- 4051 negative interactions generated randomly

Ligand similarity
-2D Tanimoto
-3D pharmacophore

Target similarities
-0/1 Dirac (no similarity)
-Multitask (uniform similarity)
-GLIDA’s hierarchy similarity
-Binding pocket similarity (31 AA)

(Jacob et al., BMC Bioinformatics, 2008)



 

Results (mean accuracy over GPCRs)

5-fold cross-validation

Orphan GPCRs setup

(Jacob et al., BMC Bioinformatics, 2008)



 

Influence of the number of known ligands

Number of ligands / GPCR

Performance improvement
(hierarchy vs Dirac)

(Jacob et al., BMC Bioinformatics, 2008)



 

Screening of enzymes, GPCRs, ion channels

Data: KEGG BRITE database, redundancy removed

Enzymes
-675 targets

-524 molecules
-1218 interactions
-1218 negatives

Ion channels
-114 targets

-462 molecules
-1165 interactions
-1165 negatives

GPCRs
-100 targets

-219 molecules
-399 interactions
-399 negatives

(Jacob and V., Bioinformatics, 2008)



 

Results (mean AUC)

10-fold CV

Orphan setting

(Jacob and V., Bioinformatics, 2008)



 

Influence of the number of known ligands

Enzymes Ion channelsGPCRs

Relative improvement : hierarchy vs Dirac
(Jacob and V., Bioinformatics, 2008)



 

Conclusion

• SVM offer state-of-the-art performance in chemo-
and bio-informatics

• Much work recently to define « kernels » for small
molecules and proteins

• Combining them provides a theoretically sound and
computationnally efficient framework for in silico
chemogenomics

• Promising results on several benchmarks for
important target families

• Many more methods for « collaborative filtering » are
being actively developed!
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