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We have many genes and proteins..
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Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene transcriptional regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell
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Problem 1 : how to infer relationships between genes
from biological data?
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Problem 2 : how to use biological networks to help in
the analysis of genomic data?
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0 How to infer relationships between genes from biological data?

e How to use biological networks to help in the analysis of genomic
data?
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0 How to infer relationships between genes from biological data?
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Typical reverse engineering strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression
networks, ...)

Inferring and using biological networks
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Does it work? Case of metabolic network

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Does it work? Case of regulatory network

OPEN @ ACCESS Freely available online PLOS sioLosy

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete'®, Joshua T. Thaden®, llaria Mogno®*, Jamey Wierzbowski>%, Guillaume Cottarel*®,
Simon Kasif'"2, James J. Collins™2, Timothy S. Gardner"?"

number of known interactions inferred

0 64 129 193 257 322 386 450
100,
+ CLR operon
90 * CLR
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80} - * Relevance Networks
70| . + linear regression network
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Change of paradigm

In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method

@ Given genomic data and
the currently known
network...

@ Infer missing edges
between current nodes and
additional nodes.

Jean-Philippe Vert (ParisTech) Inferring and using biological networks



Interlude : Pattern recognition
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference
Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)

Two solutions
@ Consider each pair (X1, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Known graph Genomic data
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!

(1,2
! e 4 ® 05 ¢2¥
2 ° [ \ o ®
3 2@ " e 6
Known graph Genomic data ’

Jean-Philippe Vert (ParisTech) Inferring and using biological networks



Representing a pair

Concatenation?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u7v)_u@v_<u>.

4
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Representing a pair

Concatenation?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u7v)_u@v_<u>.

4

@ Problem: a linear function then becomes additive...

flu,v) =w'(u,v) =wju+w'v.
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

Y(u,v) = (U V) +(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and B is similar to C
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

Y(u,v)=(uev)+(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and Bis similarto C

Metric learning (V. et al, 2007)

¢(U7 V) - (U — V)®2 :
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bissimilarto C — D, or...
@ A— Bissimilarto D — C.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
+1 O
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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A few remarks about the local approach

@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
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A few remarks about the local approach

@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.
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A few remarks about the local approach

@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.
@ Caveats:

e each local model may have very few training points
@ no sharing of information between different local models
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:% 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0 0.2 0.4 0.6 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi®, Hisaaki Miharaz, Motoharu Osakiz, Hisashi Muramatsuaj Nobuyoshi Esakiz,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto' and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Sciencs, Osaka University, Japan

Gene Location
Predicted Gene Network

+
Phylogenetic Profile

Gene1(101000101110)
Gene2(101000101110)
Gene3(101000101110)
Gene4 (101000101110)
Gene5(000000101110)
Gene6(111111111110)
Gene7(101001111111)
Gene8(101000000010)
Gene9(101000000010) PATHWAY Database
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto'*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET*

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.
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Application: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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e How to use biological networks to help in the analysis of genomic
data?
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Tissue classification from microarray data
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@ Design a classifier to
automatically assign a
class to future samples
from their expression
profile

@ Interpret biologically the

differences between the
classes

Issue

20K+ genes but only <100
tumours
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Linear classifiers and signatures

The model

@ Each sample is represented by a vector x = (xy, ..., Xp)
@ Goal: estimate a linear function:

o)
fa(X) = > BiXi + fo -

i=1

@ Interpretability: the weight g; quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model

@ Minimize an empirical risk on the training samples:

. 1<
mMin_ Remp(3) = " Z/(fﬁ(xi)’}/i):
i—1

BERPH

@ ... subject to some constraint on 3, e.g.:

Qp)<C.
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Classical penalties

@ Feature selection (NP-hard, many greedy variants exist):

p
QBest subset selection(8) = || Bllo = Z 1(8i > 0).

i=1
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Classical penalties

@ Feature selection (NP-hard, many greedy variants exist):

p
QBest subset selection(8) = || Bllo = Z 1(8i > 0).

i=1

@ Small weights (SVM, ridge regression, ...):

p
Qrigge(8) = 1815 =D _ 57

i=1
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Classical penalties

@ Feature selection (NP-hard, many greedy variants exist):

P
QBest subset selection(3) = || B [lo = Z 1(8i > 0).

i=1

@ Small weights (SVM, ridge regression, ...):

p
Qrigge(8) = 1815 =D _ 57

i=1

@ Sparsity-inducing convex priors (computationnally tractable +
feature selection):

p
Qasso(B) = | Bll1 = Zlﬁi| :
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2
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How protein networks can help us

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
@ Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the signature should be “coherent” with respect to
this prior knowledge
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Example: smooth signature

@ Hypothesis: adjacent genes should have similar weights in the
signature

@ Penalty function (Rapaport et al., 2007):

Qsmootn(3) = Z(ﬁ/ - 5/)2

inf
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Equivalent formulation

reception lowfrequency componert high-frequency component
(signal) (noise)

e
3 v L .
o) B v -
- -8 ¢ o
s e A et H o i
> 7Y . v
i * X\
N\
microamay smooth component high-frequency component

@ Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

© Learn a linear classifier on the smooth components with classical
ridge penalty.
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lllustration (yeast, high vs. low irradiation doses
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Signatures
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Example: smooth and sparse signature

@ Hypothesis:

o the signature should be sparse (gene selection)
e connected genes should have the same weight

@ Penalty function (Rapaport et al., 2008):

Qpiecewiseconstant(ﬁ) = Z |18 — »3/| + A Z |Bil -

i~ i

Geometric interpretation with p = 2
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Example: sparse pathway signature

@ Hypothesis:

e the signature should be sparse (gene selection)
o selected genes should form dense connected components (without
any constraint of their relative weights)

@ Penalty function (Jacob et al., 2009):

Qim‘ersection(ﬁ) - Z /7)}2 + [312 s

inf

Qunion(B) = sup OfTﬁ~

iroi a2
aG]RP.VINj,HaI-+aj||§1

Jean-Philippe Vert (ParisTech) Inferring and using biological networks



Graph LASSO leads to structured sparsity

GrOUpS (1 3 2) and (2, 3). Left.. Qintersection(ﬁ). Right.‘ Qunion(ﬁ). Vertical
axis is (.

Jean-Philippe Vert (ParisTech) Inferring and using biological networks



Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 2 Q erne ()
ERROR 0.38 £ 0.04 0.36 = 0.03
ff PATH. 148,58,183 6,5,78

PROP. PATH. 0.32,0.14,0.41 0.01,0.01,0.17

@ Graph on the genes.

METHOD 2 Qgrapn(-)
ERROR 0.39+0.04 0.36+0.01
Av. sizEc.c. 1.1,1,1.0 1.3,1.4,1.2
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Conclusion

@ A supervised machine learning formulation leads to promising
results on the problem of inferring unknown relationships between
genes and proteins.

@ Conversely, biological networks can help fighting the curse of
dimensionality for classification of high-dimensional genomic data

@ All this is progressing very quickly these days!
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