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We have many genes and proteins..
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Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene transcriptional regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell
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Problem 1 : how to infer relationships between genes
from biological data?
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Problem 2 : how to use biological networks to help in
the analysis of genomic data?
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Outline

1 How to infer relationships between genes from biological data?

2 How to use biological networks to help in the analysis of genomic
data?
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Typical reverse engineering strategies

Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)
Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression
networks, ...)
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Does it work? Case of metabolic network

The known metabolic network of the yeast involves 769 proteins.
Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Does it work? Case of regulatory network
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Change of paradigm

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.
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Interlude : Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X1,X2)

Two solutions
Consider each pair (X1,X2) as a single data -> learning over pairs
Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs

Formulation and basic issue
A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Representing a pair

Concatenation?
A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

ψ(u, v) = u ⊕ v =

(
u
v

)
.

Problem: a linear function then becomes additive...

f (u, v) = w>ψ(u, v) = w>
1 u + w>v .

Jean-Philippe Vert (ParisTech) Inferring and using biological networks 18 / 46



Representing a pair

Concatenation?
A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

ψ(u, v) = u ⊕ v =

(
u
v

)
.

Problem: a linear function then becomes additive...

f (u, v) = w>ψ(u, v) = w>
1 u + w>v .

Jean-Philippe Vert (ParisTech) Inferring and using biological networks 18 / 46



Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

ψ(u, v) = (u ⊗ v) + (v ⊗ u) .

Intuition: a pair (A,B) is similar to a pair (C,D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Metric learning (V. et al, 2007)

ψ(u, v) = (u − v)⊗2 .

Intuition: a pair (A,B) is similar to a pair (C,D) if:
A− B is similar to C − D, or...
A− B is similar to D − C.
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Supervised inference with local models

The idea (Bleakley et al., 2007)
Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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A few remarks about the local approach

Weak hypothesis:
if A is connected to B,
if C is similar to B,
then A is likely to be connected to C.

Computationally: much faster to train N local models with N
training points each, than to train 1 model with N2 training points.
Caveats:

each local model may have very few training points
no sharing of information between different local models
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Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio of false positives

R
at

io
 o

f t
ru

e 
po

si
tiv

es

 

 

CLR
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction
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Applications: function annotation
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Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Outline

1 How to infer relationships between genes from biological data?

2 How to use biological networks to help in the analysis of genomic
data?
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Issue
20K+ genes but only <100
tumours
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Linear classifiers and signatures

The model
Each sample is represented by a vector x = (x1, . . . , xp)

Goal: estimate a linear function:

fβ(x) =

p∑
i=1

βixi + β0 .

Interpretability: the weight βi quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model
Minimize an empirical risk on the training samples:

min
β∈Rp+1

Remp(β) =
1
n

n∑
i=1

l(fβ(xi), yi) ,

... subject to some constraint on β, e.g.:

Ω(β) ≤ C .
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Classical penalties

Feature selection (NP-hard, many greedy variants exist):

ΩBest subset selection(β) = ‖β ‖0 =

p∑
i=1

1(βi > 0) .

Small weights (SVM, ridge regression, ...):

Ωridge(β) = ‖β ‖2
2 =

p∑
i=1

β2
i .

Sparsity-inducing convex priors (computationnally tractable +
feature selection):

ΩLASSO(β) = ‖β ‖1 =

p∑
i=1

|βi | .
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Why LASSO leads to sparse solutions
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How protein networks can help us

Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the signature should be “coherent” with respect to
this prior knowledge
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Example: smooth signature

Hypothesis: adjacent genes should have similar weights in the
signature
Penalty function (Rapaport et al., 2007):

Ωsmooth(β) =
∑
i∼j

(βi − βj)
2
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Equivalent formulation

1 Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

2 Learn a linear classifier on the smooth components with classical
ridge penalty.
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Illustration (yeast, high vs. low irradiation dosesRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Signatures
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Example: smooth and sparse signature

Hypothesis:
the signature should be sparse (gene selection)
connected genes should have the same weight

Penalty function (Rapaport et al., 2008):

Ωpiecewiseconstant(β) =
∑
i∼j

|βi − βj |+ λ
∑

i

|βi | .
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Example: sparse pathway signature

Hypothesis:
the signature should be sparse (gene selection)
selected genes should form dense connected components (without
any constraint of their relative weights)

Penalty function (Jacob et al., 2009):

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Graph LASSO leads to structured sparsity

Groups (1,2) and (2,3). Left: Ωintersection(β). Right: Ωunion(β). Vertical
axis is β2.
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Conclusion

A supervised machine learning formulation leads to promising
results on the problem of inferring unknown relationships between
genes and proteins.
Conversely, biological networks can help fighting the curse of
dimensionality for classification of high-dimensional genomic data
All this is progressing very quickly these days!

Jean-Philippe Vert (ParisTech) Inferring and using biological networks 45 / 46



People I need to thank

Graph inference : Yoshihiro Yamanishi, Minoru Kanehisa (Univ.
Kyoto), Jian Qian, Bill Noble (Univ. Washington), Kevin Bleakley,
Gerard Biau (Univ. Montpellier), Fantine Mordelet (ParisTech)
Using graphs : Franck Rapaport, Emmanuel Barillot, Andrei
Zinovyev (Institut Curie), Laurent Jacob (ParisTech), Guillaume
Obozinski (Berkeley / INRIA)

Jean-Philippe Vert (ParisTech) Inferring and using biological networks 46 / 46


	How to infer relationships between genes from biological data?
	How to use biological networks to help in the analysis of genomic data?

