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Proteins
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Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. ’
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Our goal
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More precisely

Formalization
e V=1{1,...,N} vertices (e.g., genes, proteins)
@ D=(xy,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V.
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Typical reverse-engineering strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models).
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© Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)
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Typical reverse-engineering strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean

networks, state-space models).

© Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

@ Excellent approach if the
model is correct and
enough data are available

@ Interpretability of the model

@ Inclusion of prior
knowledge

@ Specific to particular data
and networks

@ Needs a correct model!

@ Difficult integration of
heterogeneous data

@ Often needs a lot of data
and long computation time

’
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Does it work? Metabolic network...

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Does it work? Regulatory network...

OPEN @ ACCESS Freely available online PLOS sioLosy

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete'®, Joshua T. Thaden®, llaria Mogno®*, Jamey Wierzbowski>%, Guillaume Cottarel*®,
Simon Kasif'"2, James J. Collins™2, Timothy S. Gardner"?"
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Supervised methods

In actual applications,

@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

——— O Supervised method

@ Given genomic data and

- the currently known
A ~O network...
- .
N @ Infer missing edges
N between current nodes and
______ O additional nodes.
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Pattern recognition
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)

Two solutions
@ Consider each pair (X1, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ We must represent a pair of proteins (u, v) by a vector
Y¥(u, v) € R in order to estimate a linear classifier

@ Question: how build ¢(u, v) from v and v?
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Representing a pair

Direct sum

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

4

¢(u,v):u@v:<u>.
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Representing a pair

Direct sum

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

4

¢(u,v):u@v:<u>.

@ Problem: a linear function then becomes additive...

fu,v) =wy(u,v)=wu+w'v.
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Representing a pair

Direct product

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
Vi

P(u,v)=uv
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Representing a pair

Direct product

@ Alternatively, make the direct product, i.e., the p?>-dimensional

vector whose entries are all products of entries of u by entries of
Vi

v(u,v)=uv

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:

(i1 @wr)" (U2 @ vp) = (U1TU2) X (Vrvz) :

which is good for algorithms that use only inner products (SVM...)

v
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

Y(u,v) = (U V) +(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and B is similar to C
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

Y(u,v)=(uev)+(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and Bis similarto C

Metric learning (V. et al, 2007)

¢(U7 V) - (U — V)®2 :
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bissimilarto C — D, or...
@ A— Bissimilarto D — C.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model

+1 O

O +1.
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The LOCAL model
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Properties of the local model

@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
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Properties of the local model

@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.
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Properties of the local model

@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.
@ Caveats:

e each local model may have very few training points
@ no sharing of information between different local models
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:% 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0 0.2 0.4 0.6 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi®, Hisaaki Miharaz, Motoharu Osakiz, Hisashi Muramatsuaj Nobuyoshi Esakiz,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto' and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Sciencs, Osaka University, Japan

Gene Location
Predicted Gene Network

+
Phylogenetic Profile

Gene1(101000101110)
Gene2(101000101110)
Gene3(101000101110)
Gene4 (101000101110)
Gene5(000000101110)
Gene6(111111111110)
Gene7(101001111111)
Gene8(101000000010)
Gene9(101000000010) PATHWAY Database
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Applications: missing enzyme prediction

dihydrolipoamide

(8)-3-Hydroxy-
butznoyl-CaA

Acetoacctyl-

2319

Aceryl-CoA.

Q'_‘nmc cycle

Penicillins and cephalos-
porins hiosynthesis

21,5-Diamino-
hexancate

L-Pipecolate

1.5.99.3

153,

S-Glutaryl-

Glitaryt -
CoA

Al-Fiperideine-
& 6 carboxylete

o

-2~ A\mno- i
adipte Gsemialdehyde

1-Fipesideine ?-—| ;

5-Amino
pentanoate
—ce—{i.z120} 10O T
Glutarate Glutarate
semiglidehyde

o
5-Acetanmido-
pentancate

O S-Galactosyloxy-lysine

Inference of b

. 3,5-Diamino-
L-f-Lysine hexanoate

5433

Néi-Acety] N6

N6-Hydroxy-
hydrony-lysine

lysine

L-Lysine

o
o-1-Carboxy - o._m_//' ?

ethyl)-i-lysine

Cadaverine _ - L- —= = ={ Lysinc biosynthesis
1118 I
g D

S-Amino-
pentanamide

1.13.122

23.1-

2613880 N-Acetyllysine
6-Acetanmido-
2-oxohexanoate

M- Hydroxy-
trimethyllysine

4-Trimethyl-
ammonichutanoate

ammoniobutanal

0
2-Amino-5-
oxohexancate

5-Amino-3-
oxohexanoaie
0

Aerobactin

o)
3-Dehydroxy-
camiting

27/32



Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto'*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Jean-Philippe Vert (ParisTech) Inference of biological networks 28/32



Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET*

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.
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Application: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Conclusion

@ When the network is known in part, supervised methods can be
more adapted than unsupervised ones.

@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

e work for any network

e work with any data

e can integrate heterogeneous data, which strongly improves
performance

@ Current research: infer edges simultaneously with global
constraints on the graph?
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