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Where I come from

A joint lab about “Cancer computational genomics, bioinformatics,
biostatistics and epidemiology”
Located in th Institut Curie, a major hospital and cancer research
institute in Europe
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”Statistical machine learning for cancer informatics”
team

Main topics
Towards better diagnosis, prognosis, and personalized medicine

Supervised classification of genomic, transcriptomic, proteomic
data; heterogeneous data integration

Towards new drug targets
Systems biology, reconstruction of gene networks, pathway
enrichment analysis, multidimensional phenotyping of cell
populations.

Towards new drugs
Ligand-based virtual screening, in silico chemogenomics.
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Towards personalized medicine:
Diagnosis/prognosis from genome/transcriptome

From Golub et al., Science, 1999.
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Towards new drug targets:
Inference of biological networks

From Mordelet and Vert, Bioinformatics, 2008.
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Towards new drugs:
Ligand-Based Virtual Screening and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Prior knowledge
Fast and scalable
implementations
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Outline

1 Supervised classification of genomic data

2 Inference of biological networks

3 Virtual screening and chemogenomics

4 Conclusion
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Motivation

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Linear classifiers

The model
Each sample is represented by a vector x = (x1, . . . , xp)

Goal: estimate a linear function:

fβ(x) =

p∑
i=1

βixi + β0 .

Interpretability: the weight βi quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model

fβ(x) =

p∑
i=1

βixi + β0 .

Minimize an empirical risk on the training samples:

min
β∈Rp+1

Remp(β) =
1
n

n∑
i=1

l(fβ(xi), yi) ,

... subject to some constraint on β, e.g.:

Ω(β) ≤ C .
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of β

Ωridge(β) = ‖β ‖2
2 =

p∑
i=1

β2
i ,

(ridge regression, support vector machines...)

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example : Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are sufficient for classification.

Greedy feature selection (T-tests, ...)
Contrain the norm of β: LASSO penalty (‖β ‖1 =

∑p
i=1 |βi |),

elastic net penalty (‖β ‖1 + ‖β ‖2), ... )

Pros
Good performance in
classification
Biomarker selection
Interpretability

Cons
The gene selection
process is usually not
robust
No use of prior biological
knowledge
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Why LASSO leads to sparse solutions
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Incorporating prior knowledge

The idea
If we have a specific prior knowledge about the “correct” weights,
it can be included in Ω in the contraint:

Minimize Remp(β) subject to Ω(β) ≤ C .

If we design a convex function Ω, then the algorithm boils down to
a convex optimization problem (usually easy to solve).
Similar to priors in Bayesian statistics
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Example: CGH array classification

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Example: CGH array classification

Prior knowledge
Let x be a CGH profile
We focus on linear classifiers, i.e., the sign of :

f (x) = x>β .

We expect β to be
sparse : only a few positions should be discriminative
piecewise constant : within a region, all probes should contribute
equally
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Example: CGH array classification

A solution (Rapaport et al., 2008)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.
More interpretable classifiers
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Example: finding discriminant modules in gene
networks

The problem
Classification of gene expression: too many genes
A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)
We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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Example: finding discriminant modules in gene
networksRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have non-zero weigths
(i.e., the support of β should be made of a few connected
components).

Two solutions?

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Example: finding discriminant modules in gene
networks

Groups (1, 2) and (2, 3). Left: Ωintersection(β). Right: Ωunion(β). Vertical
axis is β2.
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Outline

1 Supervised classification of genomic data

2 Inference of biological networks

3 Virtual screening and chemogenomics

4 Conclusion
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Biological networks
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Our goal

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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More precisely

“De novo” inference
Given data about individual genes and proteins
Infer the edges between genes and proteins

“Supervised” inference
Given data about individual genes and proteins
and given some known interactions
infer unknown interactions
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Supervised inference by pattern recognition

Formulation and basic issue
A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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4

Known graph Genomic data
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Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b) → (a⊗ b)⊕ (b ⊗ a) .

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 31 / 57



Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b) → (a⊗ b)⊕ (b ⊗ a) .

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 31 / 57



Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b) → (a⊗ b)⊕ (b ⊗ a) .

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 31 / 57



Metric learning pairwise SVM (V. et al, 2007)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A− B is similar to C − D, or...
A− B is similar to D − C.

Formally, define a similarity between pairs from a similarity
between individuals by

KMLPK ((a, b), (c, d)) = (K (a, c) + K (b, d)− K (a, c)− K (b, d))2 .

If K is a positive definite kernel for individuals then KMLPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
difference:

(a, b) → (a− b)⊗2 .
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Supervised inference with local models

The idea (Bleakley et al., 2007)
Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 36 / 57



Results: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Outline

1 Supervised classification of genomic data

2 Inference of biological networks

3 Virtual screening and chemogenomics

4 Conclusion
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Virtual screening

Objective
Build models to predict biochemical properties of small molecules from
their structures.

Structures

C15H14ClN3O3

Properties
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...
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Ligand-Based Virtual Screening and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 40 / 57



Formalization

The problem
Given a set of training instances (x1, y1), . . . , (xn, yn), where xi ’s
are graphs and yi ’s are continuous or discrete variables of interest,
Estimate a function

y = f (x)

where x is any graph to be labeled.
This is a classical regression or pattern recognition problem over
the set of graphs.
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Classical approaches

Two steps
1 Map each molecule to a vector of fixed dimension using molecular

descriptors
Global properties of the molecules (mass, logP...)
2D and 3D descriptors (substructures, fragments, ....)

2 Apply an algorithm for regression or pattern recognition.
PLS, ANN, ...

Example: 2D structural keys
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Which descriptors?

O

N
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O

OO

N N N

O O

O

Difficulties
Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)
But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
Let Φ(x) = (Φ1(x), . . . ,Φp(x)) be a vector representation of the
molecule x
The kernel between two molecules is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) =

p∑
i=1

Φi(x)Φi(x ′) .

φ
X H
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The kernel trick

φ
X H

K (x , x ′) = Φ(x)>Φ(x ′)

The trick
Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors
Computing the kernel is often more efficient than computing Φ(x),
especially in high or infinite dimensions!

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 45 / 57



Example: 2D fragment kernel

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

φd(x) is the vector of counts of all fragments of length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

The 2D fragment kernel is defined, for λ < 1, by

Kfragment(x , x ′) =
∞∑

d=1

r(λ)φd(x)>φd(x ′) .
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Example: 2D fragment kernel

. . . . . .C N
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C
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In practice
Kfragment can be computed efficiently (geometric kernel, random
walk kernel...) although the feature space has infinite dimension.
Increasing the specificity of atom labels improves performance
Selecting only “non-tottering” fragments can be done efficiently
and improves performance.
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Example: 2D subtree kernel
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2D Subtree vs fragment kernels (Mahé and V, 2007)
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Example: 3D pharmacophore kernel (Mahé et al.,
2005)

O

O

2

d1

d3

d

O

O

2

d1

d3

d

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

exp (−γd (px , py )) .

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Chemogenomics

The problem
Similar targets bind similar ligands
Instead of focusing on each target individually, can we screen the
biological space (target families) vs the chemical space (ligands)?
Mathematically, learn f (target , ligand) ∈ {bind , notbind}

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 51 / 57



Chemogenomics with SVM

Tensor product SVM
Take the kernel:

K
(
(t , l), (t ′, l ′)

)
= Kt(t , t ′)Kl(l , l ′) .

Equivalently, represent a pair (t , l) by the vector φt(t)⊗ φl(l)
Allows to use any kernel for proteins Kt with any kernel for small
molecules Kl

When Kt is the Dirac kernel, we recover the classical paradigm:
each target is treated independently from the others.
Otherwise, information is shared across targets. The more similar
the targets, the more they share information.
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Example: MHC-I epitope prediction across different
alleles

The approach (Jacob and V., 2007)
take a kernel to compare different MHC-I alleles (e.g., based on
the amino-acids in the paptide recognition pocket)
take a kernel to compare different epitopes (9-mer peptides)
Combine them to learn the f (allele, epitope) function
State-of-the-art performance
Available at http://cbio.ensmp.fr/kiss
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Generalization: collaborative filtering with attributes

General problem: learn f (x , y) with a kernel Kx for x and a kernel
Ky for y .
SVM with a tensor product kernel Kx ⊗ Ky is a particular case of
something more general: estimating an operator with a spectral
regularization.
Other spectral regularization are possible (e.g., trace norm) and
lead to efficient algorithms
More details in Abernethy et al. (2008).
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Outline

1 Supervised classification of genomic data

2 Inference of biological networks

3 Virtual screening and chemogenomics

4 Conclusion
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Conclusion

Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function.
Inference of biological networks can be formulated in the
framework of pattern recognition.
Kernel methods (eg SVM) allow to manipulate complex objects
(eg molecules, biological sequences) as soon as kernels can be
defined and computed.
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