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"Statistical machine learning for cancer informatics”
team

@ Towards better diagnosis, prognosis, and personalized medicine

o Supervised classification of genomic, transcriptomic, proteomic
data; heterogeneous data integration

@ Towards new drug targets

e Systems biology, reconstruction of gene networks, pathway
enrichment analysis, multidimensional phenotyping of cell
populations.

@ Towards new drugs
e Ligand-based virtual screening, in silico chemogenomics.
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Towards personalized medicine:

Diagnosis/prognosis from genome/transcriptome
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From Golub et al., Science, 1999.
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Towards new drug targets:
Inference of biological networks
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From Mordelet and Vert, Bioinformatics, 2008.
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Towards new drugs:

Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges

@ High dimension
@ Few samples

@ Structured data
@ Prior knowledge

@ Fast and scalable
implementations
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0 Supervised classification of genomic data
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0 Supervised classification of genomic data

e Inference of biological networks
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0 Supervised classification of genomic data
e Inference of biological networks

@ Virtual screening and chemogenomics
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@ Supervised classification of genomic data
e Inference of biological networks
@ Virtual screening and chemogenomics

e Conclusion
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0 Supervised classification of genomic data
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Motivation

@ Design a classifier to
automatically assign a
class to future samples

T., o from their expression
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Linear classifiers

The model

@ Each sample is represented by a vector x = (xy, ..., Xp)
@ Goal: estimate a linear function:

p
o) = 3 Bixi + fo -

i=1

@ Interpretability: the weight g; quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model

p
f3(x) =Y Bixi + Bo -

i=1

@ Minimize an empirical risk on the training samples:

BERPH

. BN
min  Remp(3) = — > I(fa(xi), yi)
i=1

@ ... subject to some constraint on 3, e.g.:

Q(B) <C.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of

p
Qridge(ﬂ) = ” B ”g = Zﬂ/za

i=1

(ridge regression, support vector machines...)

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are sufficient for classification.

@ Greedy feature selection (T-tests, ...)

@ Contrain the norm of 3: LASSO penalty (|| 8 [l1 = Y5, | 8 ]),
elastic net penalty (|| 5 |l1 + || B1l2), --- )

Cons

@ The gene selection
process is usually not

@ Good performance in
classification

@ Biomarker selection robust
@ Interpretability @ No use of prior biological
knowledge

4
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T
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Incorporating prior knowledge

@ If we have a specific prior knowledge about the “correct” weights,
it can be included in € in the contraint:

Minimize Remp(3) subject to Q(53) < C.

@ If we design a convex function €, then the algorithm boils down to
a convex optimization problem (usually easy to solve).

@ Similar to priors in Bayesian statistics
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Example: CGH array classification

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?
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Jain et al. Genome research 2002 12:325-332
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Example: CGH array classification

Prior knowledge

@ Let x be a CGH profile
@ We focus on linear classifiers, i.e., the sign of :

fx)=x'4.

@ We expect 3 to be
@ sparse : only a few positions should be discriminative
@ piecewise constant : within a region, all probes should contribute
equally

Amplified segments

. Unaltered segment

Deleted segment
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Example: CGH array classification

A solution (Rapaport et al., 2008)
qused/asso(ﬁ) - Z ’6/‘ + Z ’5/ - ﬂj| .

i i~of

@ Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.

@ More interpretable classifiers
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Example: finding discriminant modules in gene
networks

The problem

@ Classification of gene expression: too many genes
@ A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)

@ We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification

W
A 15
Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics




Example: finding discriminant modules in gene

networks

Prior hypothesis
Genes near each other on the graph should have similar weigths.
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)
Qspectral(ﬁ) - Z(ﬁ/ - ﬁj)2 )

inf

Qgraphiusion(8) = > _ 18 — Bil + D 16l -

i~j i

\
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Example: finding discriminant modules in gene

networks
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).

Two solutions?

| \

Qintersection(8) = Z \/ 5,2 + /3'2 )

i~

Qunion(B) = sup a'f.

o 2 2
a€ERP:Vinj, || +a; <1

.
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Example: finding discriminant modules in gene

networks

05 05
0 0
05 0.5

> —~
05 \\ /{\1 05\ ///1

0 ° \\ — 0 o
-0.5 \\ //70 5 -0.5 \(/70‘5
-

Rl El

GrOUpS (1 3 2) and (27 3). Left.’ Qintersecﬁon(ﬂ). Right: Qunion(ﬁ). Vertical
axis is (.

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



e Inference of biological networks
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Biological networks
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@ Gene expression,
@ Gene sequence,
@ Protein localization, ...

@ Protein-protein interactions,

@ Metabolic pathways,
@ Signaling pathways, ...
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More precisely

“De novo” inference
@ Given data about individual genes and proteins

@ Infer the edges between genes and proteins
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More precisely

“De novo” inference

@ Given data about individual genes and proteins

@ Infer the edges between genes and proteins

v

“Supervised” inference

@ Given data about individual genes and proteins
@ and given some known interactions
@ infer unknown interactions
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!

1 4
2 [ ]
]
4 ®3
3 2@
Known graph Genomic data
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected

and non-connected pairs

@ However the genomic data characterize individual proteins; we

need to work with pairs of proteins instead!
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Machine learning in bioinformatics
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
o Ais similarto D and B is similar to C
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
o Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepk ((a, b), (c,d)) = K(a,c)K(b,d) + K(a,d)K(b,c) .
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
o Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepk ((a, b), (c,d)) = K(a,c)K(b,d) + K(a,d)K(b,c) .

@ If K is a positive definite kernel for individuals then Krppi is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a,b) — (a@b)d (bw a) .
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Metric learning pairwise SVM (V. et al, 2007)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
e A—Bissimilarto C — D, or...
e A— Bissimilarto D — C.
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Metric learning pairwise SVM (V. et al, 2007)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
e A—Bissimilarto C — D, or...
e A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

KuLex (@, b). (¢, d)) = (K(a,c) + K(b,d) — K(a,c) - K(b,d)) .
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Metric learning pairwise SVM (V. et al, 2007)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
e A—Bissimilarto C — D, or...
e A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

KuLex (@, b). (¢, d)) = (K(a,c) + K(b,d) — K(a,c) - K(b,d)) .

@ If K is a positive definite kernel for individuals then Ky px is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
difference:

(a,b) — (a— b)¥? .
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.

+1

O +1 \O?
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Results: protein-protein interaction (yeast)

1
1
—Direct
2 0.8 —kML
2 08 —KCCA
%]
806 em
o §06 —local
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E 04 —Direct § Pkernel
g : —KkML a 0.4
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®o.2 em 0.2
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—Pkernel 0 ‘
% 02 04 06 08 1 0 02 04 06 08 1
Ratio of false positives Recall

(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)

1,
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(from Bleakley et al., 2007)
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Results: regulatory network (E. coli)

CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:g 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0O 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Results: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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@ Virtual screening and chemogenomics
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Virtual screening

Objective

Build models to predict biochemical properties of small molecules from
their structures.

Structures
) 3
C15H14CIN3O3 % JIK o
C‘ TJ{T;‘\W
Properties

@ binding to a therapeutic target,

@ pharmacokinetics (ADME),
@ toxicity...

v
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Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Formalization

The problem

@ Given a set of training instances (x1, ¥1), ..., (Xa, ¥n), Where x;’s
are graphs and y;’s are continuous or discrete variables of interest,

@ Estimate a function

y = 1(x)
where x is any graph to be labeled.

@ This is a classical regression or pattern recognition problem over
the set of graphs.
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Classical approaches

Two steps

@ Map each molecule to a vector of fixed dimension using molecular
descriptors

o Global properties of the molecules (mass, logP...)

e 2D and 3D descriptors (substructures, fragments, ....)
© Apply an algorithm for regression or pattern recognition.

e PLS, ANN, ...

Example: 2D structural keys

@ ah /\\D O/\\o N O%NQC

NIV

| ENEEEEEENNEN EEEEEEE N

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



Which descriptors?

@ Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)

@ But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
@ Let d(x) = (P4(x),...,Pp(x)) be a vector representation of the
molecule x

@ The kernel between two molecules is defined by:

p
K(x,x') = o(x)To(x') = &;(x)P;(x").
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The kernel trick

@ Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors

@ Computing the kernel is often more efficient than computing ®(x),
especially in high or infinite dimensions!
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Example: 2D fragment kernel

=

[¢] (03 c—c O——N—-¢C c=—=c——c=—=c——c=—=c
e I e
’\/o N N—/—O N c—c N——7C—C——C——C——=C
|
@ ¢y(x) is the vector of counts of all fragments of length d:
o1(X)=( #©. 40,40, ...)"
do(x) = ( #(c-c), #(c=0), 4cm, ...)T efc...
@ The 2D fragment kernel is defined, for A < 1, by
Kfragment X X - Z f Tstd( )
d=1
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Example: 2D fragment kernel

(] C c—-c O——N—¢C c=—c——c=—c——c—c
mp o N0 === ——C==C *+ o
N/O Ny N—o ﬁ—i:g N— C—Cc—Cc—cCc—¢
|
In practice

@ Kiagment Can be computed efficiently (geometric kernel, random
walk kernel...) although the feature space has infinite dimension.

@ Increasing the specificity of atom labels improves performance

@ Selecting only “non-tottering” fragments can be done efficiently
and improves performance.
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Example: 2D subtree kernel
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Example: 3D pharmacophore kernel (Mahé et al.,
2005)

Kxoy)= >, Y. exp(—d(pxpy)) -

Px€P(x) pyeP(y)

Results (accuracy)

Kernel | BZR | COX | DHFR | ER
2D (Tanimoto) 712 1 63.0 | 769 |77.1
3D fingerprint 754 | 67.0 | 769 |78.6
3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Chemogenomics

The problem
@ Similar targets bind similar ligands

@ Instead of focusing on each target individually, can we screen the
biological space (target families) vs the chemical space (ligands)?

@ Mathematically, learn f(target, ligand) € {bind, notbind}

o ol g J
CEF (W n
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Chemogenomics with SVM

Tensor product SVM

@ Take the kernel:

K ((t.1),(t, 1) = Ke(t. YK (1, 1.

@ Equivalently, represent a pair (t, /) by the vector ¢:(t) @ ¢,(/)

@ Allows to use any kernel for proteins K; with any kernel for small
molecules K;

@ When K; is the Dirac kernel, we recover the classical paradigm:
each target is treated independently from the others.

@ Otherwise, information is shared across targets. The more similar
the targets, the more they share information.
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Example: MHC-I epitope prediction across different
alleles

The approach (Jacob and V., 2007)

@ take a kernel to compare different MHC-I alleles (e.g., based on
the amino-acids in the paptide recognition pocket)

@ take a kernel to compare different epitopes (9-mer peptides)
@ Combine them to learn the f(allele, epitope) function

@ State-of-the-art performance

@ Available at http://cbio.ensmp.fr/kiss
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Generalization: collaborative filtering with attributes

@ General problem: learn f(x, y) with a kernel K, for x and a kernel
Ky for y.

@ SVM with a tensor product kernel Ky ® K is a particular case of
something more general: estimating an operator with a specitral
regularization.

@ Other spectral regularization are possible (e.g., trace norm) and
lead to efficient algorithms

@ More details in Abernethy et al. (2008).

0
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e Conclusion
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Conclusion

@ Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function.

@ Inference of biological networks can be formulated in the
framework of pattern recognition.

@ Kernel methods (eg SVM) allow to manipulate complex objects
(eg molecules, biological sequences) as soon as kernels can be
defined and computed.
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