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From http://cactus.nci.nih.gov

Ligand-based virtual screening / QSAR



 

Represent each molecule as a vector…



 

…and discriminate with machine learning

-LDA
-PLS
-Neural network
-Nearest neighbour
-SVM, …



 

Support Vector Machine (SVM)

- Large margin

- Nonlinear

- Need pairwise
distance / similarity
as input instead of
vectors / fingerprints



 

From fingerprints to similarities

Molecules

Representation Discrimination

Vectors / Fingerprints

Pairwise distance /
similarity

-Neural Net
-LDA
-Decision trees
-PLS, …

-SVM
-Kernel PLS
-Kernel LDA
-…

Tanimoto
Inner product

« Kernel »



 

Example : 2D fragment kernel

« All linear fragments »

« All subtree patterns »

Mahé and V., Mach. Learn, 2009.

Mahé et al., J. Chem. Inf. Model., 2005.



 

Example: 3D pharmacophore kernel

Mahé et al., J. Chem. Inf. Model., 2006.



 

Summary so far…

• SVM is an algorithm for supervised
classification

• SVM can be used with any « classical »
vector or fingerprint description (often giving
state-of-the-art performance)

• SVM can also be used with more general
measures of similarity (like many related
kernel methods)

• Much effort recently to define such kernels in
bio- and chemo-informatics



 

Chemogenomics

Target family

Chemical space



 

In silico Chemogenomics

Target family

Chemical space



 

Fingerprint for a (target,molecule) pair?

t= c =

-2D
-3D
-Pharmacophore
-logP, …

=

-Sequence
-Structure
-Evolution
-Expression
-…

=

= ???



 

Fingerprint for a (target,molecule) pair?

T= c =

-2D
-3D
-Pharmacophore
-logP, …

=

-Sequence
-Structure
-Evolution
-Expression
-…

=

103 103106



 

Similarity for (target,molecule) pairs

t= c =

-2D
-3D
-Pharmacophore
-logP, …

=

-Sequence
-Structure
-Evolution
-Expression
-…

=



 

Summary: SVM for chemogenomics

1. Choose a kernel (similarity) for targets
2. Choose a kernel (similarity) for ligands
3. Train a SVM model with the product

kernel for (target/ligand) pairs



 

Application: virtual screening of GPCR

Data: GLIDA database filtered for drug-like compounds
- 2446 ligands
- 80 GPCR
- 4051 interactions
- 4051 negative interactions generated randomly

Ligand similarity
-2D Tanimoto
-3D pharmacophore

Target similarities
-0/1 Dirac (no similarity)
-Multitask (uniform similarity)
-GLIDA’s hierarchy similarity
-Binding pocket similarity (31 AA)

(Jacob et al., BMC Bioinformatics, 2008)



 

Results (mean accuracy over GPCRs)

5-fold cross-validation

Orphan GPCRs setup

(Jacob et al., BMC Bioinformatics, 2008)



 

Influence of the number of known ligands

Number of ligands / GPCR

Performance improvement
(hierarchy vs Dirac)

(Jacob et al., BMC Bioinformatics, 2008)



 

Screening of enzymes, GPCRs, ion channels

Data: KEGG BRITE database, redundancy removed

Enzymes
-675 targets
-524 molecules
-1218 interactions
-1218 negatives

Ion channels
-114 targets
-462 molecules
-1165 interactions
-1165 negatives

GPCRs
-100 targets
-219 molecules
-399 interactions
-399 negatives

(Jacob and V., Bioinformatics, 2008)



 

Results (mean AUC)

10-fold CV

Orphan setting

(Jacob and V., Bioinformatics, 2008)



 

Influence of the number of known ligands

Enzymes Ion channelsGPCRs

Relative improvement : hierarchy vs Dirac
(Jacob and V., Bioinformatics, 2008)



 

Conclusion

• SVM offer state-of-the-art performance in
chemo- and bio-informatics

• Much work recently to define « kernels » for
small molecules and proteins

• Combining them provides a theoretically
sound and computationnally efficient
framework for in silico  chemogenomics

• Promising results on several benchmarks for
important target families
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