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Where I come from

A joint lab about “Cancer computational genomics, bioinformatics,
biostatistics and epidemiology”
Located in th Institut Curie, a major hospital and cancer research
institute in Europe
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”Statistical machine learning for cancer informatics”
team

Main topics
Towards better diagnosis, prognosis, and personalized medicine

Supervised classification of genomic, transcriptomic, proteomic
data; heterogeneous data integration

Towards new drug targets
Systems biology, reconstruction of gene networks, pathway
enrichment analysis, multidimensional phenotyping of cell
populations.

Towards new drugs
Ligand-based virtual screening, in silico chemogenomics.
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Outline

1 Supervised classification of genomic data

2 Virtual screening

3 Conclusion
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Motivation

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Linear classifiers

The model
Each sample is represented by a vector x = (x1, . . . , xp)

Goal: estimate a linear function:

fβ(x) =

p∑
i=1

βixi + β0 .

Interpretability: the weight βi quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model

fβ(x) =

p∑
i=1

βixi + β0 .

Minimize an empirical risk on the training samples:

min
β∈Rp+1

Remp(β) =
1
n

n∑
i=1

l(fβ(xi), yi) ,

... subject to some constraint on β, e.g.:

Ω(β) ≤ C .
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of β

Ωridge(β) = ‖β ‖2
2 =

p∑
i=1

β2
i ,

(ridge regression, support vector machines...)

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example : Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are sufficient for classification.

Greedy feature selection (T-tests, ...)
Contrain the norm of β: LASSO penalty (‖β ‖1 =

∑p
i=1 |βi |),

elastic net penalty (‖β ‖1 + ‖β ‖2), ... )

Pros
Good performance in
classification
Biomarker selection
Interpretability

Cons
The gene selection
process is usually not
robust
No use of prior biological
knowledge
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Why LASSO leads to sparse solutions
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Incorporating prior knowledge

The idea
If we have a specific prior knowledge about the “correct” weights,
it can be included in Ω in the contraint:

Minimize Remp(β) subject to Ω(β) ≤ C .

If we design a convex function Ω, then the algorithm boils down to
a convex optimization problem (usually easy to solve).
Similar to priors in Bayesian statistics
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Example: CGH array classification

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Example: CGH array classification

Prior knowledge
Let x be a CGH profile
We focus on linear classifiers, i.e., the sign of :

f (x) = x>β .

We expect β to be
sparse : only a few positions should be discriminative
piecewise constant : within a region, all probes should contribute
equally
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Example: CGH array classification

A solution (Rapaport et al., 2008)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.
More interpretable classifiers
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Example: finding discriminant modules in gene
networks

The problem
Classification of gene expression: too many genes
A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)
We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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Example: finding discriminant modules in gene
networksRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have non-zero weigths
(i.e., the support of β should be made of a few connected
components).

Two solutions?

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Example: finding discriminant modules in gene
networks

Groups (1, 2) and (2, 3). Left: Ωintersection(β). Right: Ωunion(β). Vertical
axis is β2.
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Outline

1 Supervised classification of genomic data

2 Virtual screening

3 Conclusion

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 21 / 51



Ligand-Based Virtual Screening

Objective
Build models to predict biochemical properties of small molecules from
their structures.

Structures

C15H14ClN3O3

Properties
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...
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Ligand-Based Virtual Screening and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Formalization

The problem
Given a set of training instances (x1, y1), . . . , (xn, yn), where xi ’s
are graphs and yi ’s are continuous or discrete variables of interest,
Estimate a function

y = f (x)

where x is any graph to be labeled.
This is a classical regression or pattern recognition problem over
the set of graphs.
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Classical approaches

Two steps
1 Map each molecule to a vector of fixed dimension using molecular

descriptors
Global properties of the molecules (mass, logP...)
2D and 3D descriptors (substructures, fragments, ....)

2 Apply an algorithm for regression or pattern recognition.
PLS, ANN, ...

Example: 2D structural keys
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Which descriptors?

O

N

O

O

OO

N N N

O O

O

Difficulties
Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)
But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
Let Φ(x) = (Φ1(x), . . . ,Φp(x)) be a vector representation of the
molecule x
The kernel between two molecules is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) =

p∑
i=1

Φi(x)Φi(x ′) .

φ
X H
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The kernel trick

φ
X H

K (x , x ′) = Φ(x)>Φ(x ′)

The trick
Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors
Computing the kernel is often more efficient than computing Φ(x),
especially in high or infinite dimensions!
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Expressiveness vs Complexity of graph kernels

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1, G2 ∈ X , dK (G1, G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Subgraph kernel

Definition
Let X be a set of graphs, and (λG)G∈X a set or nonnegative
real-valued weights
For any graph G, let

∀H ∈ X , ΦH(G) =
∣∣ {

G′ is a subgraph of G : G′ ' H
} ∣∣ .

The subgraph kernel between any two graphs G1 and G2 is
defined by:

Ksubgraph(G1, G2) =
∑
H∈X

λHΦH(G1)ΦH(G2) .
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard when:

X is the set of all graphs (all subgraph kernel)
X is the set of all linear graphs (path kernel)

Proof (sketch)
Computing these kernels allows to decide whether a graph has a
Hamiltonian path, which a NP-complete.
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Walks

Definition
A walk of a graph (V , E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . , n − 1.
We note Wn(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

etc...
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Paths and walks
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Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2) .
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Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1, G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph

Definition
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V , E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v ′2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 37 / 51



Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1, G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1, G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .
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Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt(vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt(v , v ′):

Kwalk (G1, G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt(vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt)
−1 1

Computation in O(|G1|3|G2|3)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices
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No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 2: Subtree kernels
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Example: Tree-like fragments of molecules

.

.

.

.

.

.

.

.

.
N

N

C

CO

C

.

.

. C

O

C

N

C

N O

C

N CN C C

N

N

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 45 / 51



Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt(v , v ′)T (v ′, n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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2D Subtree vs fragment kernels (Mahé and V, 2007)
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Outline

1 Supervised classification of genomic data

2 Virtual screening

3 Conclusion
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Conclusion

Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function.
Kernel methods (eg SVM) allow to manipulate complex objects
(eg molecules, biological sequences) as soon as kernels can be
defined and computed.

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 50 / 51



People I need to thank

Including prior knowledge in penalization
Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Laurent Jacob,
Kevin Bleakley...

Virtual screening, kernels etc..
Pierre Mahé, Laurent Jacob, Liva Ralaivola, Véronique Stoven

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics 51 / 51


	Supervised classification of genomic data
	Virtual screening
	Conclusion

