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@ Located in th Institut Curie, a major hospital and cancer research
institute in Europe
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"Statistical machine learning for cancer informatics”
team

@ Towards better diagnosis, prognosis, and personalized medicine

o Supervised classification of genomic, transcriptomic, proteomic
data; heterogeneous data integration

@ Towards new drug targets

e Systems biology, reconstruction of gene networks, pathway
enrichment analysis, multidimensional phenotyping of cell
populations.

@ Towards new drugs
e Ligand-based virtual screening, in silico chemogenomics.
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ﬂ Supervised classification of genomic data
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ﬂ Supervised classification of genomic data

e Virtual screening
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ﬂ Supervised classification of genomic data
e Virtual screening
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ﬂ Supervised classification of genomic data
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Motivation

@ Design a classifier to
automatically assign a
class to future samples
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Linear classifiers

The model

@ Each sample is represented by a vector x = (xy, ..., Xp)
@ Goal: estimate a linear function:

p
o) = 3 Bixi + fo -

i=1

@ Interpretability: the weight g; quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model

p
f3(x) =Y Bixi + Bo -

i=1

@ Minimize an empirical risk on the training samples:

BERPH

. BN
min  Remp(3) = — > I(fa(xi), yi)
i=1

@ ... subject to some constraint on 3, e.g.:

Q(B) <C.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of

p
Qridge(ﬂ) = ” B ”g = Zﬂ/za

i=1

(ridge regression, support vector machines...)

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are sufficient for classification.

@ Greedy feature selection (T-tests, ...)

@ Contrain the norm of 3: LASSO penalty (|| 8 [l1 = Y5, | 8 ]),
elastic net penalty (|| 5 |l1 + || B1l2), --- )

Cons

@ The gene selection
process is usually not

@ Good performance in
classification

@ Biomarker selection robust
@ Interpretability @ No use of prior biological
knowledge

4
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T
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Incorporating prior knowledge

@ If we have a specific prior knowledge about the “correct” weights,
it can be included in € in the contraint:

Minimize Remp(3) subject to Q(53) < C.

@ If we design a convex function €, then the algorithm boils down to
a convex optimization problem (usually easy to solve).

@ Similar to priors in Bayesian statistics
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Example: CGH array classification

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?

12
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Jain et al. Genome research 2002 12:325-332
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Example: CGH array classification

Prior knowledge

@ Let x be a CGH profile
@ We focus on linear classifiers, i.e., the sign of :

fx)=x'4.

@ We expect 3 to be
@ sparse : only a few positions should be discriminative
@ piecewise constant : within a region, all probes should contribute
equally

Amplified segments

. Unaltered segment

Deleted segment
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Example: CGH array classification

A solution (Rapaport et al., 2008)
qused/asso(ﬁ) - Z ’6/‘ + Z ’5/ - ﬂj| .

i i~of

@ Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.

@ More interpretable classifiers
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Example: finding discriminant modules in gene
networks

The problem

@ Classification of gene expression: too many genes
@ A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)

@ We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification

W
A 15
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Example: finding discriminant modules in gene

networks

Prior hypothesis
Genes near each other on the graph should have similar weigths.
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Example: finding discriminant modules in gene
networks

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)
Qspectral(ﬁ) - Z(ﬁ/ - ﬁj)2 )

inf

Qgraphiusion(8) = > _ 18 — Bil + D 16l -

i~j i

\

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



Example: finding discriminant modules in gene

networks
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).

Two solutions?

| \

Qintersection(8) = Z \/ 5,2 + /3'2 )

i~

Qunion(B) = sup a'f.

o 2 2
a€ERP:Vinj, || +a; <1

.
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Example: finding discriminant modules in gene

networks
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e Virtual screening
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Ligand-Based Virtual Screening

Objective
Build models to predict biochemical properties of small molecules from
their structures.

v

Structures
) 3
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Properties

@ binding to a therapeutic target,
@ pharmacokinetics (ADME),
@ toxicity...
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Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Formalization

The problem

@ Given a set of training instances (x1, ¥1), ..., (Xa, ¥n), Where x;’s
are graphs and y;’s are continuous or discrete variables of interest,

@ Estimate a function

y = 1(x)
where x is any graph to be labeled.

@ This is a classical regression or pattern recognition problem over
the set of graphs.
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Classical approaches

Two steps

@ Map each molecule to a vector of fixed dimension using molecular
descriptors

o Global properties of the molecules (mass, logP...)

e 2D and 3D descriptors (substructures, fragments, ....)
© Apply an algorithm for regression or pattern recognition.

e PLS, ANN, ...

Example: 2D structural keys

@ ah /\\D O/\\o N O%NQC

NIV

| ENEEEEEENNEN EEEEEEE N
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Which descriptors?

@ Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)

@ But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
@ Let d(x) = (P4(x),...,Pp(x)) be a vector representation of the
molecule x

@ The kernel between two molecules is defined by:

p
K(x,x') = o(x)To(x') = &;(x)P;(x").
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The kernel trick

@ Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors

@ Computing the kernel is often more efficient than computing ®(x),
especially in high or infinite dimensions!

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



Expressiveness vs Complexity of graph kernels

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VGy, Go € X, dK(G1,Gz):O — G~ Gs.

Equivalently, #(Gy) # ®(Gy) if Gy and G, are not isomorphic.
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Expressiveness vs Complexity of graph kernels

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VGy, Go € X, dK(G1,Gz):O — G~ Gs.

Equivalently, #(Gy) # ®(Gy) if Gy and G, are not isomorphic.

Proposition (Gértner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Subgraph kernel

@ Let X' be a set of graphs, and (A\g) . a set or nonnegative
real-valued weights

@ For any graph G, let
VHe X, o4(G)=|{G isasubgraphof G: G'~ H}|.
@ The subgraph kernel between any two graphs G; and G is
defined by:

Ksubgraph(Gh GQ) = Z /\H¢H(G1)¢H(G2) 0
Hex
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Subgraph kernel complexity

Proposition (Géartner et al., 2003)

Computing the subgraph kernel is NP-hard when:
@ X is the set of all graphs (all subgraph kernel)
@ X is the set of all linear graphs (path kernel)

Proof (sketch)

Computing these kernels allows to decide whether a graph has a
Hamiltonian path, which a NP-complete.
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aks

Definition

@ A walk of a graph (V, E) is sequence of vy, ..., Vn € V such that
(Vi,Vig1) e Efori=1,..., n—1.

@ We note W,,(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
Lo o dods Lo
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Paths and walks
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Aa(w)1(sis the label sequence of w) .
weW(G)
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w € W(G).

@ Let the feature vector ®(G) = (®s(G))s. 5 be defined by:

= ) Aa(w)1(sis the label sequence of w) .
weW(G)

@ A walk kernel is a graph kernel defined by:

Kuak(G1, Go) = Y ©5(Gy)®

seS
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with A\g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with \g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = pength(w) for 8 > 0. In that case the feature space is of

infinite dimension (Gértner et al., 2003).

Machine learning in bioinformatics
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph
Definition

Let Gy = (V4, Ey) and G = (V», E>) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

Q V={(vy,) e Vi x Vs
Q E=

{((vi, ), (v{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

. vy and v» have the same label} ,

1 a b 1b 2a 1d
o—O O
2 c 3c 3e
la 2b : 2d :
3 4 d e
4c 4e
Gl (€7 Gl x &
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wa € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wi(Gy x Go).
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Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wa € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wi(Gy x Go).

Corollary

Kuak(Gr, Go) = Y _ 05(Gy)®s(Gz)

SES

= > e, (W), (Wa)1(/(wy) = I(w2))

(w1, w2)EW(G1) xW(Gy)

= ) Agxaw).

WEW(G1 X Gz)
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Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have \g, «g,(w) = 1 if the length
of w is n, 0 otherwise.

@ Therefore:

Knth—order (Gh GZ) = Z 1.
WEWn(G1 X Gg)

@ Let A be the adjacency matrix of Gy x G,. Then we get:

Knth order G17 GZ Z [An],j = 1TAn1
7./

@ Computation in O(n|Gy||Gz|d;d>), where d; is the maximum
degree of G;.
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Computation of random and geometric walk kernels

@ In both cases \g(w) for awalk w = v; ... v, can be decomposed
as:

n
Aa(vi .. vi) = X(vy) [T M Vi1, ).
i=2

@ Let A; be the vector of \'(v) and A; be the matrix of A{(v, v/):

n
Kwaik(G1, Go) Z > Nw) [N, w)
n=1 weWn(Gi xGy) =2
= NAFT
n=0
=N (I-N) "1

@ Computation in O(|G1[3|Gz[?)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
1 o1l 2 o1l 4 03
No Morgan Indices  O1 Order 1 indices o1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible (graph coloring).

@ Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = vy ... v, with v; = v;.» for some i.

@ (O —@ von-tottering
(OO0 @

@ (@ rTtottering

@ Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et

al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

o) /@‘:_ @\
H C —_— @\ /H/@

Cl @&@
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Example: Tree-like fragments of molecules
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Computation of the subtree kernel

@ Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.

@ Recursion: if 7(v, n) denotes the weighted number of subtrees of
depth nrooted at the vertex v, then:

T(v,n+1)= Y ] Mv.V)T(V,n),

RCN(v) v'eR

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application (Mahé et al., 2004)

MUTAG dataset

@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compouunds: 125 +/ 63 -

| A\

Results
10-fold cross-validation accuracy

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%
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e Conclusion

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



Conclusion

@ Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function.

@ Kernel methods (eg SVM) allow to manipulate complex objects

(eg molecules, biological sequences) as soon as kernels can be
defined and computed.
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