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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes
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Supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Ligand-Based Virtual Screening and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Outline

1 Pattern recognition and regression

2 Support vector machines

3 Classification of CGH data

4 Classification of expression data

5 Classification of biological sequences

6 Virtual screening and QSAR

7 Conclusion
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Pattern recognition, aka supervised classification
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Regression

From Hastie et al. (2001) The elements of statistical learning
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Formalization

Input
X the space of patterns (typically, X = Rp)
Y the space of response or labels

Regression : Y = R
Pattern recognition : Y = {−1, 1}

S = {(x1, y1) , . . . , (xn, yn)} a training set in (X × Y)n

Output
A function f : X → Y to predict the output associated to any new
pattern x ∈ X by f (x)
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Examples

Least-square regression
Nearest neighbors
Decision trees
Neural networks
Logistic regression
PLS
SVM
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Outline

1 Pattern recognition and regression
Empirical risk minimization
Feature selection
Shrinkage methods

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 11 / 166



Probabilistic formalism

Risk
P an (unknown) distribution on X × Y.
Observation: Sn = (Xi , Yi)i=1,...,n i.i.d. random variables according
to P.
Loss function ` (f (x) , y) ∈ R small when f (x) is a good predictor
for y
Risk: R(f ) = El (f (X ) , Y ).
Estimator f̂n : X → Y.

Goal: small risk R
(

f̂n
)

.
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Loss for regression

Square loss : ` (f (x) , y) = (f (x)− y)2

ε-insensitive loss : ` (f (x) , y) = (| f (x)− y | − ε)+
Huber loss : mixed quadratic/linear
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Loss for pattern recognition

Large margin classifiers
For pattern recognition Y = {−1, 1}
Estimate a function f : X → R.
The margin of the function f for a pair (x, y) is: yf (x).
The loss function is usually a decreasing function of the margin :
` (f (x) , y) = φ (yf (x)),
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Empirical risk minimization (ERM)

ERM estimator
F a class of candidate functions (e.g., linear functions)
The empirical risk is:

Rn(f ) =
1
n

n∑
i=1

` (f (Xi) , Yi) .

The ERM estimator on the functional class F is the solution (when
it exists) of:

f̂n = arg min
f∈F

Rn(f ) .
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Example: least squares linear regression

X = Rp , Y = R
X the n × p matrix of patterns, y the n × 1 vector of outputs
Linear estimator:

fβ(x) = β0 +

p∑
i=1

xiβi

ERM estimator for the square loss:

min
β∈Rp+1

Rn(fβ) =
n∑

i=1

(fβ (xi)− yi)
2

= (y − Xβ)> (y − Xβ)

(1)

Explicit solution:

β̂ =
(

X>X
)−1

X>y .

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 16 / 166



Example: least squares linear regression

X = Rp , Y = R
X the n × p matrix of patterns, y the n × 1 vector of outputs
Linear estimator:

fβ(x) = β0 +

p∑
i=1

xiβi

ERM estimator for the square loss:

min
β∈Rp+1

Rn(fβ) =
n∑

i=1

(fβ (xi)− yi)
2

= (y − Xβ)> (y − Xβ)

(1)

Explicit solution:

β̂ =
(

X>X
)−1

X>y .

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 16 / 166



Example: least squares linear regression

X = Rp , Y = R
X the n × p matrix of patterns, y the n × 1 vector of outputs
Linear estimator:

fβ(x) = β0 +

p∑
i=1

xiβi

ERM estimator for the square loss:

min
β∈Rp+1

Rn(fβ) =
n∑

i=1

(fβ (xi)− yi)
2

= (y − Xβ)> (y − Xβ)

(1)

Explicit solution:

β̂ =
(

X>X
)−1

X>y .

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 16 / 166



Example: pattern recognition with the hinge loss

X = Rp , Y = {−1, 1}
Linear estimator:

fβ(x) = sign(x>β)

ERM estimator for the hinge loss:

min
β∈Rp

Rn(fβ) =
n∑

i=1

max (0, 1− yi f (xi))

Equivalent to the linear program

min
n∑

i=1

ξi

subject to ξi ≥ 0, ξi ≥ 1− yix>i β

(2)
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Other ERM methods : convex optimization

For other losses, there is generally no explicit analytical formula
for the solution
However, if the loss function is convex in f , then we end up with a
convex optimization problem that can usually be solved efficiently
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Limits of ERM

Unfortunately, the ERM estimator can be:
ill-posed
not statistically consistent (i.e., bad accuracy)

This is particularly the case in high dimension...
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ERM is ill-posed in high dimension

Suppose n < p
Then X>X is not invertible, so the least-square estimatore(
X>X

)−1 X>y is not defined.
More precisely, there are an infinite number of solution that
minimize the empirical risk to 0.
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ERM is not consistent

From the law of large numbers, for any f ∈ F , the empirical risk
converges to the true risk when the sample size increases:

∀f ∈ F , Rn(f ) →
n→∞

R(f )

This suggest that minimizing Rn(f ) should give a good estimator
of the minimizer of R(f ), but...
Unfortunately it is not so simple! Vapnik in particular showed that
this is only true if the "capacity" of F is not too large
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Solution

Restrict the space of hypothesis
A solution to work in high dimension is to restrict the space of
functions F over which ERM is applied:

min
f∈F

Rn(f )

We will focus on linear functions f (x) = x>β, and put various
constraints on β

Restrict the number of non-zero components (feature selection)
Restrict the size of β, for some norm (shrinkage methods)
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The bias / variance trade-off

When F is small, the ERM principle is efficient to find a good
solution among F , i.e.:

R(f̂ ) ∼ inf
f∈F

R(f )

We say that the variance is small.
When F is large, then the best solution in F is close to the best
solution possible:

inf
f∈F

R(f ) ∼ inf
f

R(f )

We say that the bias is small.
A good estimator should have a small bias and small variance
Therefore it is important to put prior knowledge on the design of
F , to make it as small as possible (small variance) but make sure
it contains good functions (small bias)
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Outline

1 Pattern recognition and regression
Empirical risk minimization
Feature selection
Shrinkage methods
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Motivation

In feature selection, we look for a linear function f (x) = x>β,
where only a limited number of coefficients in β are non-zero.
Motivations

Accuracy: by restricting F , we increase the bias but decrease the
variance. This should be helpful in particular in high dimension,
where bias is low and variance is large.
Interpretation: with a large number of predictors, we often would
like to determine a smaller subset that exhibit the strongest effects.

Of course, this is particularly relevant if we believe that there exist
good predictors which are sparse (prior knowledge).
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Best subset selection

In best subset selection, we must solve the problem:

min R(fβ) s.t. ‖β ‖0 ≤ k

for k = 1, . . . , p.
The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).
This is usually a NP-hard problem, feasible for p as large as 30 or
40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.
Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop
Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).
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Filter methods

Associate a score S(i) to each feature i , then rank the features by
decreasing score.
Many scores / criteria can be used

Loss of the ERM trained on a single feature
Statistical tests (Fisher, T-test)
Other performance criteria of the ERM restricted to a single feature
(AUC, ...)
Information theoretical criteria (mutual information...)

Pros
Simple, scalable, good empirical success

Cons
Selection of redundant features
Some variables useless alone can become useful together
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Wrapper methods

The idea
A greedy approach to

min Rn(fβ) s.t. ‖β ‖0 ≤ k

For a given set of seleted features, we know how to minimize
Rn(f )
We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)
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Two flavors of wrapper methods

Forward stepwise selection
Start from no features
Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
Start from all features
Sequentially removes from the model the feature that least
degrades the fit

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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Outline

1 Pattern recognition and regression
Empirical risk minimization
Feature selection
Shrinkage methods
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The idea

The following problem is NP-hard:

min R(fβ) s.t. ‖β ‖0 ≤ k

As a proxy we can consider the more general problem:

min R(fβ) s.t. Ω(β) ≤ γ

where Ω(β) is a penalty function.
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Motivation

Accuracy: as for feature selection, we reduce F , hence reduce
variance
Inclusion of prior knowledge: Ω(β) is the place to put your prior
knowledge to reduce the bias
Computational efficiency: if R(f ) and Ω(β) are convex, then we
obtain a convex optimization problem that can often be solved
exactly and efficiently. It is then equivalent to:

min R(fβ) + λΩ(β)
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Ridge regression

Take Ω(β) =
∑p

i=1 β2
i = ‖β ‖2

2.
Constrained least-square:

min
β∈Rp+1

Rn(fβ) =
n∑

i=1

(fβ (xi)− yi)
2 + λ

p∑
i=1

β2
i

= (y − Xβ)> (y − Xβ) + λβ>β .

(3)

Explicit solution:

β̂ =
(

X>X + λI
)−1

X>y .
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Ridge regression example
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LASSO regression

Take Ω(β) =
∑p

i=1 |βi | = ‖β ‖1.
Constrained least-square:

min
β∈Rp+1

Rn(fβ) =
n∑

i=1

(fβ (xi)− yi)
2 + λ

p∑
i=1

|βi | (4)

No explicit solution, but this is just a quadratic program.
LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all λ’s simultaneously (regularization path)
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LASSO regression example
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Why LASSO leads to sparse solutions
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Summary

ERM is a popular induction principle, which underlies many
algorithms for regression and pattern recognition
In high dimension we must be careful
Constrained ERM provides a coherent and nice framework

min
f

Rn(f ) s.t. Ω(f ) < γ

A strong constraint (γ small) reduces the variance but increases
the bias
The key idea to learn in high dimension is to use prior knowledge
to design Ω(f ) to ensure a small bias.

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 39 / 166



Outline

1 Pattern recognition and regression

2 Support vector machines

3 Classification of CGH data

4 Classification of expression data

5 Classification of biological sequences

6 Virtual screening and QSAR

7 Conclusion

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 40 / 166



Motivation

SVM is just a particular constrained ERM algorithm
It became extremely popular in many applied fields over the last
10 years
It allows to extend considerably the hypothesis space F beyond
linear functions, thanks to the use of positive definite kernels (
It also allows to extend most linear methods to structured objects,
e.g., strings and graphs.
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Linear SVM for pattern recognition

yf(x)

l(f(x),y)

1

X = Rp,Y = {−1, 1}
Linear classifiers:

fβ (x) = x>β .

The loss function is the hinge loss:

φhinge(u) = max (1− u, 0) =

{
0 if u ≥ 1,

1− u otherwise.

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 42 / 166



Linear SVM for pattern recognition

SVM solve the problem:

min
fβ∈F

1
n

n∑
i=1

φhinge (yi fβ (xi)) s.t. ‖β ‖2
2 ≤ γ .

Equivalently

min
fβ∈F

{
1
n

n∑
i=1

φhinge (yi fβ (xi)) + λ‖β ‖2
2

}
.
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Dual problem

This is a convex optimization problem. It is equivalent to the
following dual problem (good exercice to derive it):

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjx>i xj ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . , n .

If α solves this problem, we recover the solution of the primal
problem by:

fβ (x) =
n∑

i=1

αix>i x .
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fβ (x) =
∑n

i=1 αix>i x
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fβ (x) =
∑n

i=1 αix>i x

f(x
)=

−1

f(x
)=

+1

f(x
)=

0
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fβ (x) =
∑n

i=1 αix>i x

0<α

α=0

y<1/2n

αy=1/2nλ

λ
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Support vectors

Consequence of KKT conditions
The training points with αi 6= 0 are called support vectors.
Only support vectors are important for the classification of new
points:

∀x ∈ X , f (x) =
n∑

i=1

αix>i x =
∑
i∈SV

αix>i x ,

where SV is the set of support vectors.

Consequences
The solution is sparse in α, leading to fast algorithms for training
(use of decomposition methods).
The classification of a new point only involves kernel evaluations
with support vectors (fast).

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 46 / 166



An important remark

Training a SVM means finding α ∈ Rn which solves:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjx>i xj ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . , n .

The prediction for a new point x is the sign of

f (x) =
n∑

i=1

αix>i x .
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Kernels

Let the kernel function:

K
(
x, x′

)
= x>x′ .

Training a SVM means finding α ∈ Rn which solves:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjK (xi , xj) ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . , n .

The prediction for a new point x is the sign of

f (x) =
n∑

i=1

αiK (xi , x) .
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Extension

Let X be any set, and
Φ : X → H

an embedding in a Hilbert space (H = Rp with p finite or infinite)
Then we can train and use a SVM implicitly in H if we are able to
compute the kernel:

K
(
x, x′

)
= φ(x)>Φ(x′) .
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Example: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)
> ∈ R2, let Φ(x) = (x2

1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (x , x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(

x>x ′
)2

.
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0.
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Characterization of inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F
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Examples

Classical kernels for vectors (X = Rp) include:
The linear kernel

Klin
(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=
(

x>x′ + a
)d

.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 53 / 166



Summary

Kernels allow to apply linear methods in a much larger space (F
increases, bias decreases) without changing the algorithm
This can be generalized to any ERM constrained by the Euclidean
norm (kernel ridge regression ...)
Allows to infer nonlinear functions
Allows to work with non-vector space (see later: strings, graphs,
...)
Include prior knowledge in the kernel
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Outline

1 Pattern recognition and regression

2 Support vector machines

3 Classification of CGH data

4 Classification of expression data

5 Classification of biological sequences

6 Virtual screening and QSAR

7 Conclusion
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Motivation

Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?
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Prior knowledge

Let x be a CGH profile
We focus on linear classifiers, i.e., the sign of :

f (x) = x>β .

We expect β to be
sparse : only a few positions should be discriminative
piecewise constant : within a region, all probes should contribute
equally
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Example: CGH array classification

A solution (Rapaport et al., 2008)

Ωfusedlasso(β) =
∑

i

|βi |+
∑
i∼j

|βi − βj | .

Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.
More interpretable classifiers
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Outline

1 Pattern recognition and regression

2 Support vector machines

3 Classification of CGH data
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Outline

4 Classification of expression data
Motivation
Using gene networks as prior knowledge
Application
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

fβ(x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of gene i for
the classification
We must use prior knowledge for this small n large p problem.
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Outline

4 Classification of expression data
Motivation
Using gene networks as prior knowledge
Application
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Gene networks
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Gene network interpretation

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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The idea

1 Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

2 Learn a linear classifier on the smooth components
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Notations

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1


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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1


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Properties of the Laplacian

Lemma
Let L = D − A be the Laplacian of the graph:

For any f : X → R,

f>Lf =
∑
i∼j

(
f (xi)− f

(
xj
))2

L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity equal to the number of
connected components.
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Proof: link between Ω(f ) and L

∑
i∼j

(
f (xi)− f

(
xj
))2

=
∑
i∼j

(
f (xi)

2 + f
(
xj
)2 − 2f (xi) f

(
xj
))

=
m∑

i=1

Di,i f (xi)
2 − 2

∑
i∼j

f (xi) f
(
xj
)

= f>Df − f>Af

= f>Lf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.
For any f ∈ Rm, f>Lf ≥ 0, therefore the (real-valued) eigenvalues
of L are ≥ 0 : L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0
iff f>Lf = 0
iff
∑

i∼j
(
f (xi)− f

(
xj
))2

= 0 ,
iff f (xi) = f

(
xj
)

when i ∼ j ,
iff f is constant (because the graph is connected).
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Fourier basis

Definition
The eigenvectors e1, . . . , en of L with eigenvalues
0 = λ1 ≤ . . . ≤ λn form a basis called Fourier basis
For any f : V → R, the Fourier transform of f is the vector f̂ ∈ Rn

defined by:
f̂i = f>ei , i = 1, . . . , n.

Obviously the inverse Fourier formula holds:

f =
n∑

i=1

f̂iei .
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Fourier basis

λ= 4.2

λ=0 λ= 0.5 λ= 1

λ= 2.3
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Fourier basis
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Smoothing operator

Definition
Let φ : R+ → R+ be non-increasing.
A smoothing operator Sφ transform a function f : V → R into a
smoothed version:

Sφ(f ) =
n∑

i=1

f̂iφ(λi)ei .
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Smoothing operators

Examples
Identity operator (Sφ(f ) = f ):

φ(λ) = 1 , ∀λ

Low-pass filter:

φ(λ) =

{
1 if λ ≤ λ∗ ,

0 otherwise.

Attenuation of high frequencies:

φ(λ) = exp(−βλ) .
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Supervised classification and regression

Working with smoothed profiles
Classical methods for linear classification and regression with a
ridge penalty solve:

min
β∈Rp

1
n

n∑
i=1

l
(
β>fi , yi

)
+ λβ>β .

Applying these algorithms on the smooth profiles means solving:

min
β∈Rp

1
n

n∑
i=1

l
(
β>Sφ(fi), yi

)
+ λβ>β .
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Smooth solution

Lemma
This is equivalent to:

min
v∈Rp

1
n

n∑
i=1

l
(

v>fi , yi

)
+ λ

p∑
i=1

v̂2
i

φ(λi)
,

hence the linear classifier v is smooth.

Proof

Let v =
∑n

i=1 φ(λi)eie>i β, then

β>Sφ(fi) = β>
n∑

i=1

f̂iφ(λi)ei = f>v .

Then v̂i = φ(λi)β̂i and β>β =
∑n

i=1
v̂2

i
φ(λi )2 .
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Kernel methods

Smoothing kernel
Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K (f , g) = Sφ(f )>Sφ(g)

=
n∑

i=1

f̂i ĝiφ(λi)
2

= f>
(

n∑
i=1

φ(λi)
2eie>i

)
g

= f>Kφg ,

(5)

with

Kφ =
n∑

i=1

φ(λi)
2eie>i .
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Examples

For φ(λ) = exp(−tλ), we recover the diffusion kernel:

Kφ = expM(−2tL) .

For φ(λ) = 1/
√

1 + λ, we obtain

Kφ = (L + I)−1 ,

and the penalization is:

n∑
i=1

v̂2
i

φ(λi)
= v> (L + I) v = ‖ v ‖2

2 +
∑
i∼j

(vi − vj)
2 .
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Outline

4 Classification of expression data
Motivation
Using gene networks as prior knowledge
Application

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 82 / 166



Data

Expression
Study the effect of low irradiation doses on the yeast
12 non irradiated vs 6 irradiated
Which pathways are involved in the response at the transcriptomic
level?

Graph
KEGG database of metabolic pathways
Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).
737 genes, 4694 vertices.
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Classification performance

Spectral analysis of gene expression profiles using gene networks

a)

 

PC1 

pyruvate metabolism 
glucose metabolism 
carbohydrate metabolism 
ergosterol biosynthesis 

PC2 

trehalose biosynthesis 
carboxylic acid metabolism 

PC3 

KEGG glycolysis 

b)

 

PC1 

protein kinases cluster 
RNA and DNA polymerase subunits 

 

PC2 

Glycolysis/Gluconeogenesis 
Citrate cycle (TCA cycle) 
CO2 fixation 

PC3 

N-Glycan biosynthesis 
Glycerophospholipid metabolism 
Alanine and aspartate metabolism 
riboflavin metabolism 

 

Fig. 2. PCA plots of the initial expression profiles (a) and the transformed profiles using network topology (80% of the eigenvalues removed)

(b). The green squares are non-irradiated samples and the red rhombuses are irradiated samples. Individual sample labels are shown together

with GO and KEGG annotations associated with each principal component.
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Fig. 3. Performance of the supervised classification when changing the metric with the function φexp(λ) = exp(−βλ) for different values
of β (left picture), or the function φthres(λ) = 1(λ < λ0) for different values of λ0 (i.e., keeping only a fraction of the smallest eigenvalues,

right picture). The performance is estimated from the number of misclassifications in a leave-one-out error.

shift). The reconstruction of this from our data with no prior

input of this knowledge strongly confirms the relevance of our

analysis method. It also shows that analysing expression in

terms of the global up- or down-regulation of entire pathways

as defined, for example, by KEGG, could mislead as there are

many antagonist processes that take place inside pathways.

Representing KEGG as a large network helps keep the bio-

chemical relationships between genes without the constraints

of pathway limits.

7
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ClassifierRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Outline

5 Classification of biological sequences
Motivation
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection
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Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ Rp.
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...
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Example: support vector machine

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

SVM algorithm

f (x) = sign

(
n∑

i=1

αiyiΦ(xi)
>Φ(x)

)
,

where α1, . . . , αn solve, under the constraints 0 ≤ αi ≤ C:

min
α

(
1
2

n∑
i=1

n∑
i=1

αiαjyiyjΦ(xi)
>Φ(xj)−

n∑
i=1

αi

)
.

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 93 / 166



Explicit vector embedding

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

Difficulties
How to define the mapping Φ : X → Rp ?
No obvious vector embedding for strings in general.
How to include prior knowledge about the strings (grammar,
probabilistic model...)?
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Implicit vector embedding with kernels

The kernel trick
Many algorithms just require inner products of the embeddings
We call it a kernel between strings:

K (x , x ′) ∆
= Φ(x)>Φ(x ′)

Kernels for protein sequences
Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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5 Classification of biological sequences
Motivation
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rp. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel

The 3-spectrum of
x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x, x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)

.

This is formally a sum over |A|k terms, but at most |x | − k + 1
terms are non-zero in Φ (x)
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Substring indexation in practice

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)
Implementation in O(|x| × |x′|) in memory and time for the
substring kernels
The feature space has high dimension (|A|k ), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)
Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Outline

5 Classification of biological sequences
Motivation
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x, x′

)
= Φθ0(x)>I(θ0)

−1Φθ0(x
′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.
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Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (under several assumptions).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed
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Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x, x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .
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Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0, 1].
Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Kin et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′
)

.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) , EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x, y) for a = 0, 1 and s = N, B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0
(
z′
)

+ n1 (z) n1
(
z′
)

+ n1 (z) n1
(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑
y,y′∈S∗

KZ ((x, y) , (x, y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s
(
x′
)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x, y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x, y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)

∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi , a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)
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HMM example (protein)
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SCFG for RNA sequences

SFCG rules
S → SS
S → aSa
S → aS
S → a

Marginalized kernel (Kin et al., 2002)
Feature: number of occurrences of each (base,state) combination
Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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Outline

5 Classification of biological sequences
Motivation
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N → R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C, C) + S(L, L) + S(I, I) + S(A, V ) + 2S(M, M)

+ S(W , W ) + S(F , F ) + S(G, G) + S(V , V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x, y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x, y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x, y, π)

)
,

is symmetric positive definite (Vert et al., 2004).
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LA kernel is p.d.: proof

If K1 and K2 are p.d. kernels for strings, then their convolution
defined by:

K1 ? K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)

is also p.d. (Haussler, 1999).
LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

where K0, Ka and Kg are three basic p.d. kernels (Vert et al.,
2004).
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LA kernel in practice

Implementation by dynamic programming in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h
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olo

gs

Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.
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Difference in performance
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SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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Outline

1 Pattern recognition and regression

2 Support vector machines

3 Classification of CGH data

4 Classification of expression data

5 Classification of biological sequences

6 Virtual screening and QSAR

7 Conclusion
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Outline

6 Virtual screening and QSAR
Motivation
2D Kernel
3D Pharmacophore Kernel
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Ligand-Based Virtual Screening and QSAR

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 137 / 166



More formally...

Objective
Build models to predict biochemical properties Y of small molecules
from their structures X , using a training set of (X , Y ) pairs.

Structures X

C15H14ClN3O3

Properties Y
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...
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Classical approaches

Two steps
1 Map each molecule to a vector of fixed dimension using molecular

descriptors
Global properties of the molecules (mass, logP...)
2D and 3D descriptors (substructures, fragments, ....)

2 Apply an algorithm for regression or pattern recognition.
PLS, ANN, ...

Example: 2D structural keys

O

N

O

O

OO

N N N

O O

O
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Which descriptors?

O

N

O

O

OO

N N N

O O

O

Difficulties
Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)
But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
Let Φ(x) = (Φ1(x), . . . ,Φp(x)) be a vector representation of the
molecule x
The kernel between two molecules is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) =

p∑
i=1

Φi(x)Φi(x ′) .

φ
X H
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Making kernels for molecules

Strategy 1: use well-known molecular descriptors to represent
molecules m as vectors Φ(m), and then use kernels for vectors,
e.g.:

K (m1, m2) = Φ(m1)
>Φ(m2).

Strategy 2: invent new kernels to do things you can not do with
strategy 1, such as using an infinite number of descriptors. We will
now see two examples of this strategy, extending 2D and 3D
molecular descriptors.

φ
X H
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Summary

The problem
Regression and pattern recognition over molecules
Classical vector representation is both statistically and
computationally challenging

The kernel approach
By defining a kernel for molecules we can work implicitly in large
(potentially infinite!) dimensions:

Allows to consider a large number of potentially important
features.
No need to store explicitly the vectors (no problem of memory
storage or hash clashes) thanks to the kernel trick
Use of regularized statistical algorithm (SVM, kernel PLS, kernel
perceptron...)to handle the statistical problem of large dimension
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 145 / 166



Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 145 / 166



SVM approach

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Let Φ(x) the vector of fragment counts:
Long fragments lead to large dimensions :

SVM can learn in high dimension
Φ(x) is too long to be stored, and hashes induce clashes:

SVM do not need Φ(x), they just need the kernel

K (x , x ′) = φ(x)>φ(x ′) .
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2D fingerprint kernel

Definition
For any d > 0 let φd(x) be the vector of counts of all fragments of
length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

The 2D fingerprint kernel is defined, for λ < 1, by

K2D(x , x ′) =
∞∑

d=1

λdφd(x)>φd(x ′) .

This is an inner product in the space of 2D fingerprints of infinite
length.
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2D kernel computation

Theorem
The 2D fingerprint kernel between two molecules x and x ′ can be
computed with a worst-case complexity O

(
(| x | × | x ′ |)3

)
(much faster

in practice).

Remarks
The complexity is not related to the length of the fragments
considered (although faster computations are possible if the
length is limited).
Solves the problem of clashes and memory storage.
Allows to work with infinite-length fingerprints without computing
them!
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2D kernel computation trick

Rephrase the kernel computation as that as counting the number
of walks on a graph (the product graph)

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

The infinite counting can be factorized

λA + λ2A2 + λ3A3 + . . . = (I − λA)−1 − I .
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible.
Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extensions 3: tree-like fragments

.
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Experiments

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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Subtree kernels
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AUC as a function of the branching factors for different tree depths
(from Mahé et al., 2007).
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2D Subtree vs walk kernels
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Screening of inhibitors for 60 cancer cell lines.
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Space of pharmacophore

3-points pharmacophores

O

O

2

d1

d3

d

O

O

2

d1

d3

d

A set of 3 atoms, and 3 inter-atom distances:

T = {((x1, x2, x3) , (d1, d2, d3)) , xi ∈ {atom types}; di ∈ R}
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3D fingerprint kernel

Pharmacophore fingerprint
1 Discretize the space of pharmacophores T (e.g., 6 atoms or

groups of atoms, 6-7 distance bins) into a finite set Td

2 Count the number of occurrences φt(x) of each pharmacophore
bin t in a given molecule x , to form a pharmacophore fingerprint.

3D kernel
A simple 3D kernel is the inner product of pharmacophore fingerprints:

K (x , x ′) =
∑
t∈Td

φt(x)φt(x ′) .
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Discretization of the pharmacophore space

Common issues
1 If the bins are too large, then they are not specific enough
2 If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

x2

→ d(x1, x3) < d(x1, x2)
BUT bin(x1) = bin(x2) 6= bin(x3)
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Kernels between pharmacophores

A small trick

K (x , y) =
∑
t∈Td

φt(x)φt(y)

=
∑
t∈Td

(
X

px∈P(x)

1(bin(px) = t))(
X

py∈P(y)

1(bin(py) = t))

=
∑

px∈P(x)

∑
py∈P(y)

1(bin(px) = bin(py))

General pharmacophore kernel

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

KP(px , py )
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New pharmacophore kernels

Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

KP(p1, p2) = 1 (bin(px) = bin(py))

For general kernels, there is no need for discretization!
For example, is d(p1, p2) is a Euclidean distance between
pharmacophores, take:

KP (p1, p2) = exp (−γd (p1, p2)) .
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Experiments

4 public datasets
BZR: ligands for the benzodiazepine receptor
COX: cyclooxygenase-2 inhibitors
DHFR: dihydrofolate reductase inhibitors
ER: estrogen receptor ligands

TRAIN TEST
Pos Neg Pos Neg

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110
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Experiments

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Summary

Genomic data are often high-dimensional and structured
Inference is possible with the constrained ERM principle
Prior knowledge can be included in the contraint, e.g.:

Sparsity-inducing priors
Euclidean balls with kernels

The final performance depends a lot on the prior constraint when
few examples are availabe =⇒ it is a good place to put some
effort
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