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Tissue classification from microarray data
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@ Design a classifier to
automatically assign a
class to future samples
from their expression
profile

@ Interpret biologically the

differences between the
classes
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Supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQORQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.
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Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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0 Pattern recognition and regression
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0 Pattern recognition and regression

e Support vector machines
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© Classification of CGH data
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0 Pattern recognition and regression
e Support vector machines

© Classification of CGH data

e Classification of expression data

e Classification of biological sequences
@ Virtual screening and QSAR

ﬂ Conclusion
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0 Pattern recognition and regression
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Pattern recognition, aka supervised classification
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Regression

From Hastie et al. (2001) The elements of statistical learning
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Formalization

@ X the space of patterns (typically, X = RP)
@ ) the space of response or labels

@ Regression: Y =R

e Pattern recognition : Y = {—1,1}

@ S={(x1,%1),-..,(Xn, yn)} atraining set in (X x Y)"

@ Afunction 7 : X — ) to predict the output associated to any new
pattern x € X by f(x)
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@ Least-square regression
@ Nearest neighbors
@ Decision trees

@ Neural networks
@ Logistic regression
@ PLS
e SVM
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0 Pattern recognition and regression
@ Empirical risk minimization
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Probabilistic formalism

@ P an (unknown) distribution on X x ).

@ Observation: S, = (X;, Y);_1__,i.i.d. random variables according
to P.

@ Loss function ¢(f (x),y) € R small when f(x) is a good predictor
for y

o Risk: R(f) = EI(f(X), Y).
@ Estimator ?,, X — ).
@ Goal: small risk R (?,,).

.....
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Loss for regression

@ Square loss : £(f(x),y) = (f(x) —y)?
@ c-insensitive loss : £(f(x),y) = (| f(X) —y[—¢),
@ Huber loss : mixed quadratic/linear

4 —square
—e—insensitive
—Huber

3
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Loss for pattern recognition

Large margin classifiers

@ For pattern recognition ) = {—1,1}

@ Estimate a function f : & — R.

@ The margin of the function f for a pair (x,y) is: yf (x).

@ The loss function is usually a decreasing function of the margin :

C(f(x),y) = ¢ (yf(x)),

5 :
— 0-1
4 — hinge
square
— logisti
3 ogistic
2
1
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Empirical risk minimization (ERM)

ERM estimator

@ F aclass of candidate functions (e.g., linear functions)
@ The empirical risk is:

@ The ERM estimator on the functional class F is the solution (when
it exists) of: A
f, = argminR"(f) .
fer
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Example: least squares linear regression

@ X=RP,Y=R
@ X the n x p matrix of patterns, y the n x 1 vector of outputs
@ Linear estimator:

p
fa(X) = Bo+ > _ Xil3i

i=1
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Example: least squares linear regression

@ X=RP,Y=R
@ X the n x p matrix of patterns, y the n x 1 vector of outputs
@ Linear estimator:

p
fa(X) = Bo+ > _ Xil3i
i=1
@ ERM estimator for the square loss:
n
min R"(f3) = f5 (X;) — ¥i)?
SERPH (,6’) ;(ﬂ( I) y/) (1)
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Example: least squares linear regression

@ X=RP,Y=R
@ X the n x p matrix of patterns, y the n x 1 vector of outputs
@ Linear estimator:

p
fa(X) = Bo+ > _ Xil3i
i=1
@ ERM estimator for the square loss:
n
min R"(f3) = f5 (X;) — ¥i)?
SERPH (,6’) ;(ﬂ( I) y/) (1)

=(y—XB)" (y — XB)

@ Explicit solution:

3= (XTX)_1 XTy.
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Example: pattern recognition with the hinge loss

o X¥=RP,Y={-1,1}
@ Linear estimator:
f3(x) = sign(x" 3)
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Example: pattern recognition with the hinge loss

o X¥=RP,Y={-1,1}
@ Linear estimator:
f3(x) = sign(x" 3)

@ ERM estimator for the hinge loss:

min R"(f3) = Zmax(o 1 —yif(x;)

BERP
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Example: pattern recognition with the hinge loss

o X¥=RP,Y={-1,1}
@ Linear estimator:
f3(x) = sign(x" 3)

@ ERM estimator for the hinge loss:

min R"(f3) = Zmax(o 1 —yif(x;))

BERP
@ Equivalent to the linear program

n
min ) ¢
i—1

subjectto & >0, >1—yx/ 3
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Other ERM methods : convex optimization

@ For other losses, there is generally no explicit analytical formula
for the solution

@ However, if the loss function is convex in f, then we end up with a
convex optimization problem that can usually be solved efficiently
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Limits of ERM

Unfortunately, the ERM estimator can be:

@ ill-posed

@ not statistically consistent (i.e., bad accuracy)
This is particularly the case in high dimension...
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ERM is ill-posed in high dimension

@ Suppose n< p

@ Then X T X is not invertible, so the least-square estimatore
(XTX) " XTy is not defined.

@ More precisely, there are an infinite number of solution that
minimize the empirical risk to 0.
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ERM is not consistent

@ From the law of large numbers, for any f € F, the empirical risk
converges to the true risk when the sample size increases:
vfe F, R"(f) — R(f)

n—oo
@ This suggest that minimizing R"(f) should give a good estimator
of the minimizer of A(f), but...

@ Unfortunately it is not so simple! Vapnik in particular showed that
this is only true if the "capacity" of F is not too large
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Solution

Restrict the space of hypothesis

@ A solution to work in high dimension is to restrict the space of
functions F over which ERM is applied:

in R"(f
AT

@ We will focus on linear functions f(x) = x" 3, and put various
constraints on 3
o Restrict the number of non-zero components (feature selection)
o Restrict the size of 3, for some norm (shrinkage methods)
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The bias / variance trade-off

@ When F is small, the ERM principle is efficient to find a good
solution among F, i.e.:

R(f) ~ inf A(f)

We say that the variance is small.

@ When F is large, then the best solution in F is close to the best
solution possible:
inf R(f) ~ inf R(f
f'ef (1) d (7)
We say that the bias is small.
@ A good estimator should have a small bias and small variance

@ Therefore it is important to put prior knowledge on the design of
F, to make it as small as possible (small variance) but make sure
it contains good functions (small bias)

v
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0 Pattern recognition and regression

@ Feature selection
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@ In feature selection, we look for a linear function f(x) = x 3,
where only a limited number of coefficients in 5 are non-zero.
@ Motivations
e Accuracy: by restricting F, we increase the bias but decrease the

variance. This should be helpful in particular in high dimension,
where bias is low and variance is large.

o Interpretation: with a large number of predictors, we often would
like to determine a smaller subset that exhibit the strongest effects.

@ Of course, this is particularly relevant if we believe that there exist
good predictors which are sparse (prior knowledge).
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Best subset selection

@ In best subset selection, we must solve the problem:
min R(f3) st ||Bllo <k

fork=1,...,p.

@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ This is usually a NP-hard problem, feasible for p as large as 30 or
40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

@ Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

@ Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop

@ Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
@ Many scores / criteria can be used
o Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUC, ...)
e Information theoretical criteria (mutual information...)
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@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
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v

Simple, scalable, good empirical success
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
@ Many scores / criteria can be used
o Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success

@ Selection of redundant features
@ Some variables useless alone can become useful together
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Wrapper methods

@ A greedy approach to
min R"(fs) st. [[Bllo <k

@ For a given set of seleted features, we know how to minimize
R"(f)

@ We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)
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Two flavors of wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit
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Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

\

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 30/166



Two flavors of wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

| A\

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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0 Pattern recognition and regression

@ Shrinkage methods
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@ The following problem is NP-hard:
min R(f3) st ||Bllo <k
@ As a proxy we can consider the more general problem:

min R(fz) s.t. Q(B) <~

where Q(3) is a penalty function.

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 32/166



@ Accuracy: as for feature selection, we reduce F, hence reduce
variance

@ Inclusion of prior knowledge: Q(5) is the place to put your prior
knowledge to reduce the bias

@ Computational efficiency: if R(f) and Q(3) are convex, then we
obtain a convex optimization problem that can often be solved
exactly and efficiently. It is then equivalent to:

min R(f3) + A\Q(5)
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Ridge regression

® Take Q(8) = 337 67 = || B 13-
@ Constrained least-square:

min R"(f3) = Z(fg (xi) — Vi) +/\ZBI

IQGRP-H

= (y— XB)" (v — XB) +AﬂTﬁ.
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Ridge regression

® Take Q(8) = 337 67 = || B 13-
@ Constrained least-square:

min R"(f3) = Z(fg (xi) — Vi) +/\ZBI

,BGRP‘H
= (y - XB)" (y — XB) + AﬂTﬁ.

@ Explicit solution:

B= <XTX+)\I> S
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Ridge regression example

BMI
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|
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LASSO regression

® Take Q(8) = X0 |6 = | 811
@ Constrained least-square:

n

)
min R(fg) = > (f3(x) —yi)> + XD _ |5l 4)
p

p+1
AER i1
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LASSO regression

® Take Q(53) = X016 =111
@ Constrained least-square:

n

)
min R(fg) = > (f3(x) —yi)> + XD _ |5l 4)
p

p+1
peR i1

@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all X’s simultaneously (regularization path)

v
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LASSO regression example
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0 1000 2000 3000
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 38/166



@ ERM is a popular induction principle, which underlies many
algorithms for regression and pattern recognition

@ In high dimension we must be careful
@ Constrained ERM provides a coherent and nice framework

mfin R(f) st Q(f) <~

@ A strong constraint (v small) reduces the variance but increases
the bias

@ The key idea to learn in high dimension is to use prior knowledge
to design Q(f) to ensure a small bias.
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e Support vector machines
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@ SVM is just a particular constrained ERM algorithm

@ |t became extremely popular in many applied fields over the last
10 years

@ It allows to extend considerably the hypothesis space F beyond
linear functions, thanks to the use of positive definite kernels (

@ It also allows to extend most linear methods to structured objects,
e.g., strings and graphs.

Kernel Methods
in Computational Biology

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 41/166



Linear SVM for pattern recognition

1(f(x),y)

yi(x)

@ X =RPY={-11}
@ Linear classifiers:
fa(x)=x"0.

@ The loss function is the hinge loss:

ifu>1,

0
. =max (1 —-u,0) =
Phinge (U) X ( u,0) {1 — u otherwise.
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Linear SVM for pattern recognition

@ SVM solve the problem:

1 5
g]elg]f " ; Phinge (Vifs (X)) st [[Bz <~.
@ Equivalently

fg ceF

1
min {n >~ dninge (¥ifs (X)) + Al 8 HS} :
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Dual problem

@ This is a convex optimization problem. It is equivalent to the
following dual problem (good exercice to derive it):

n n
-
max 22 oy — Z ajoX; X,
i=1

OcRd =
i,j=1

subject to:
1 .
<Yyioai < — =1,...,n.
O_y,a,_z)\n, fori=1,...,n

@ If a solves this problem, we recover the solution of the primal
problem by:

n
fs(X) =D ax/X.
i=

v
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Support vectors

Consequence of KKT conditions

@ The training points with «; # 0 are called support vectors.
@ Only support vectors are important for the classification of new

points:
VX e X, Za,x foa,x X,
ieSV

where SV is the set of support vectors.

Consequences

@ The solution is sparse in a, leading to fast algorithms for training
(use of decomposition methods).

@ The classification of a new point only involves kernel evaluations
with support vectors (fast).

v
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An important remark

@ Training a SVM means finding a € R" which solves:

n n
max ZZaiy,- — Z ajoyX; X; ,
i—1

acRd =
ij=1
subject to:
1
< Vo < — fori=1,...,n.
O_y,Oé,_ 2An7 9 9

@ The prediction for a new point x is the sign of
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Kernels

@ Let the kernel function:

K (x,x') =x"x.

@ Training a SVM means finding o € R" which solves:

n n
max ZZa;y,- = Z OéiajK(xivxj) )
=1

acRd =
ij=1

subject to:

0 <yja; < fori=1,...,n.

e
2 \n’
@ The prediction for a new point x is the sign of
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Extension

@ Let X be any set, and
b X —>H

an embedding in a Hilbert space (H = RP with p finite or infinite)
@ Then we can train and use a SVM implicitly in H if we are able to
compute the kernel:

K (x,X') = ¢(x) " d(x').
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Example: polynomial kernel

@ ° O
) (e]e]
° O °® [ ) o o0 X22
0]
O

For x = (x1,x2) " € R?, let ®(x) = (x2,V2x1x0, x2) € R:

/ 12
K(X7X ) = X1 X1 +2X1X2X1X2 +X2X2

= (x1x] + xzxé)2

~ ()’
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Positive Definite (p.d.) Kernels

Definition

A positive definite (p.d.) kernel on the set X is a function
K: X x X — R symmetric:
V(x,x) € X%, K (x,x)=K(x,x),

and which satisfies, for all N € N, (x4, Xo, ..

L, Xy) € XN et
(ay,a,...,an) € RN:

=

Za,a, (x;,%;) > 0.
1 j=1
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Characterization of inner products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
'H and a mapping

¢ X —H,
such that, for any x,x" in X':

Jean-Philippe Vert (ParisTech)
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Classical kernels for vectors (X = RP) include:

@ The linear kernel

Kiin (x,X') =x"x".

@ The polynomial kernel
d
Kpoly (X,X) = (xTx’ + a) .

@ The Gaussian RBF kernel:

X — X% 2
KGaussian (X, X/) = exp (_H202H>
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@ Kernels allow to apply linear methods in a much larger space (F
increases, bias decreases) without changing the algorithm

@ This can be generalized to any ERM constrained by the Euclidean
norm (kernel ridge regression ...)

@ Allows to infer nonlinear functions
@ Allows to work with non-vector space (see later: strings, graphs,

o)

@ Include prior knowledge in the kernel
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© Classification of CGH data
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@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?

e ™N |
# copies du BAC(x) test| *

3 Log, :
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Jain et al. Genome research 2002 12:325-332
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Prior knowledge

@ Let x be a CGH profile
@ We focus on linear classifiers, i.e., the sign of :

fx)=x'4.

@ We expect (5 to be
@ sparse : only a few positions should be discriminative
@ piecewise constant : within a region, all probes should contribute
equally

Amplified segments

kg, rat

. Unaltered segment

Deleted segment

157 158 159 16 161 162 163 164 165 166 167
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Example: CGH array classification

A solution (Rapaport et al., 2008)
qused/asso(ﬁ) - Z ’6/‘ + Z ’5/ - ﬂj| .

i i~of

@ Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.

@ More interpretable classifiers
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e Classification of expression data
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e Classification of expression data
@ Motivation
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Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray;

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

C-myb (U22376)
Trocasome ol (X55417)
MB-1 ¢
Cyclin D3 92287y
Myosin light chain (M31211)
RbAPS (X74262)

INF2 (D26150

TR (X150

TRIIER (X63469)

Acyl-Cocnzyme A dehydrogenase (M91432)
SNF2 (U29175)

(CiztATPuC Z69831)

Du)(y!lymmm \ynllnu (U26266)
Op 18 (3130
Febopti> (V08612)
Heerochomatnproi 25 (U35451)
ILT e

Aot de st (M13792)

Fumarylacetoacetate (M55150)
Zyxin (X¢

CyP3 (M80254)
MCLI (L0S246)
ATPasc (M62762)
IL8 (M28130)
Cathepsin D (M63138)

@ Design a classifier to
automatically assign a
class to future samples
from their expression
profile

@ Interpret biologically the

differences between the
classes
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Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy,..., Xp) where
p > 10° is the number of probes

@ Classification: given the set of labeled sample, learn a linear
decision function:

p
f3(x) =>_ BiXi+ Po ,
i=1
that is positive for one class, negative for the other

@ Interpretation: the weight g; quantifies the influence of gene i for
the classification

@ We must use prior knowledge for this small n large p problem.
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e Classification of expression data

@ Using gene networks as prior knowledge
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Gene networks
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Gene network interpretation

@ Basic biological functions usually involve the coordinated action of
several proteins:
e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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microarray smooth component high-frequency component

@ Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

@ Learn a linear classifier on the smooth components
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1. 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Properties of the Laplacian

Lemma

Let L = D — A be the Laplacian of the graph:
@ Foranyf: X — R,

e =" (F(x) — £ (x;))?

inf

@ L is a symmetric positive semi-definite matrix

@ 0 is an eigenvalue with multiplicity equal to the number of
connected components.
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Proof: link between Q(f) and L

> () = £ (x) = D7 (FO0)? + 7 (%)% = 2F (x) 7 (x;) )

i~f i~f
m
= " Df ()2 =2 f(x;)f (x))
i=1 i~
— ' Df — fTAf
= fILf
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Proof: eigenstructure of L

@ L is symmetric because A and D are symmetric.
@ Forany f e R™, fTLf > 0, therefore the (real-valued) eigenvalues
of Lare > 0 : L is therefore positive semi-definite.
@ fis an eigenvector associated to eigenvalue 0
iff FTLF=0 )
iff 525 (F(xi) — £ (x;))" =0,
iff £ (x;) = f (x;) when i ~ j,
iff f is constant (because the graph is connected).
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Fourier basis

@ The eigenvectors ey, ..., e, of L with eigenvalues
0=X <...< \,form a basis called Fourier basis

@ Forany f: V — R, the Fourier transform of f is the vector feRrn
defined by: A
f=f'e, i=1,...,n

@ Obviously the inverse Fourier formula holds:

n
f= Z?,-e,-.
i=1
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Fourier basis

A=0 A=0.5 A=1

A=23 A=4.2
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Smoothing operator

@ Let ¢ : Rt — R™ be non-increasing.
@ A smoothing operator Sy transform a function f: V — R into a
smoothed version:

Ss(f) =>_Tig(\)ei.
i=1
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Smoothing operators

@ Identity operator (S,(f) = f):

p(N) =1, VA

v
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Smoothing operators

@ Identity operator (S,(f) = f):

@ Low-pass filter:

¢(A):{1 if A< \*,

0 otherwise.

v
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Smoothing operators

@ Identity operator (S,(f) = f):

p(N) =1, VA

@ Low-pass filter:

¢(A):{1 if A< \*,

0 otherwise.

@ Attenuation of high frequencies:

6()) = exp(—BA).

v
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Supervised classification and regression

Working with smoothed profiles

@ Classical methods for linear classification and regression with a
ridge penalty solve:

min Z 1(B7Hyi) +2878.

BERP N

@ Applying these algorithms on the smooth profiles means solving:

min — Z I (6T8¢ y,-) +2373.

BERP N
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Smooth solution

Lemma

This is equivalent to:

52&@52’( y')“qu

hence the linear classifier v is smooth.
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Smooth solution

Lemma

This is equivalent to:

NS () S
\Q%Ln; (vTtin) + ;qﬁ(x,)’

hence the linear classifier v is smooth.

@ Letv=>",0(\)ee3, then

n

BTSs(f)=p8" Z?ﬂb()\i)ei =flv.

i=1

o A Ta_yn _¥
@ Then v, =¢(\)Band 3" =>4 O
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Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K(f,g) = Ss(f)" S4(9)

n
= " fgip(\)
i=1

n
=1 (Z ¢()\i)29ie;T> ]
i=1
= TK,g,
with

n
K(/) = Z gb()\,')Ze,'e,-T -
i=1
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@ For ¢(X\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .
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@ For ¢(X\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .

@ For ¢(\) = 1/+/1+ A, we obtain
Ke=(L+N7",

and the penalization is:

n ~D
Vi
E _v L+Nv=]v +§ Vi — V)

INj
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e Classification of expression data

@ Application
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Expression

@ Study the effect of low irradiation doses on the yeast
@ 12 non irradiated vs 6 irradiated

@ Which pathways are involved in the response at the transcriptomic
level?

o KEGG database of metabolic pathways

@ Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).

@ 737 genes, 4694 vertices.
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Classification performance
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Classifier
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e Classification of biological sequences
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e Classification of biological sequences
@ Motivation
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Proteins

Aming Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine
E : Acide glutamique K': Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
seqguencing programs)

@ Need for algorithms to compare, classify, analyze these
sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification
Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQORQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.

v
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Supervised classification with vector embedding

The idea
@ Map each string x € X to a vector ®(x) € RP.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)
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Example: support vector machine

SVM algorithm
f(x) = sign <Z Ozi}’id)(Xi)Tq’(X)) ;

i=1

where a4, ..., ap solve, under the constraints 0 < «; < C:

moi{n< ZZa,ajy,yjd)(x,) d(x;) — Za,) .

i=1 i=1
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Explicit vector embedding

@ How to define the mapping ¢ : X — RP ?
@ No obvious vector embedding for strings in general.

@ How to include prior knowledge about the strings (grammar,
probabilistic model...)?
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Implicit vector embedding with kernels

The kernel trick

@ Many algorithms just require inner products of the embeddings
@ We call it a kernel between strings:

1>

K(x,x') = &(x) " d(x))
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Implicit vector embedding with kernels

The kernel trick

@ Many algorithms just require inner products of the embeddings
@ We call it a kernel between strings:

K(x,x') = &(x) " d(x))

Kernels for protein sequences

@ Kernel methods have been widely investigated since Jaakkola et
al’s seminal paper (1998).
@ What is a good kernel?

e it should be mathematically valid (symmetric, p.d. or c.p.d.)
o fast to compute
e adapted to the problem (give good performances)

v
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
e Marginalized kernel
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
e Marginalized kernel
@ Derive a kernel from a similarity measure
@ Local alignment kernel
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e Classification of biological sequences

@ Feature space approach
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € RP. How to perform this embedding?
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Vector embedding for strings

Represent each sequence x by a fixed-length numerical vector
® (x) € RP. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence

@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

o Fourier transforms (Wang et al., 2004)
e Autocorrelation functions (Zhang et al., 2003)

1 M
= 7/’7—] 2 hihi+j

v
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (X)) yeax
where ¢, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel

@ The 3-spectrum of
X = CGGSLIAMMWEGV
is:
(CGG, GGS, GSL, SLI, LIA, IAM, AMM, MMW, MWF, WFG, FGV) .

@ Let ¢, (x) denote the number of occurrences of uin x. The
k-spectrum kernel is:

K(x,X) = > &y (x) 0y (X) .

uc Ak

@ This is formally a sum over | A|¥ terms, but at most | x| — k + 1
terms are non-zero in ¢ (x)
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Substring indexation in practice

@ Implementation in O(|x| + |x/[) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

@ Implementation in O(|x| x [x’|) in memory and time for the
substring kernels

@ The feature space has high dimension (|.4|%), so learning requires
regularized methods (such as SVM)

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 101/166



Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (X) = (S (X, X;))y.cp
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (X) = (S (X, X;))y.cp

Examples
This includes:
@ Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
@ Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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e Classification of biological sequences

@ Using generative models
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel

designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Py,0 € © C R™} C M7 (X)

Jean-Philippe Vert (ParisTech)
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Fisher kernel

@ Fix a parameter ¢y € © (e.g., by maximum likelihood over a
training set of sequences)

@ For each sequence x, compute the Fisher score vector:
CD@O (X) =Vy Iog PQ(X)‘@ZQO 5
@ Form the kernel (Jaakkola et al., 1998):

K (x,X') = ®g,(x) " 1(60) " @y (X') ,

where /(69) = Eg, [®g,(X)Pg,(x) "] is the Fisher information matrix.

v
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Fisher kernel properties

@ The Fisher score describes how each parameter contributes to
the process of generating a particular example

@ The Fisher kernel is invariant under change of parametrization of
the model

@ A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (under several assumptions).
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Fisher kernel in practice

@ ®y (x) can be computed explicitly for many models (e.g., HMMs)
@ /(o) is often replaced by the identity matrix

@ Several different models (i.e., different 6y) can be trained and
combined

@ Feature vectors are explicitly computed
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Mutual information kernels

Definition
@ Chose a prior w(df) on the measurable set ©
@ Form the kernel (Seeger, 2002):

K (x,x') = Po(X)Py(x")w(d8) .
9cO
@ No explicit computation of a finite-dimensional feature vector
® K(X,X') =< ¢(X),d(X') >1,w) With

¢ (%) = (Po (X))geo -

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 108/ 166



Example: coin toss

@ Let Py(X =1)=20and Py(X =0) =1 — 6 amodel for random
coin toss, with 6 € [0, 1].

@ Let df be the Lebesgue measure on [0, 1]
@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =06(1-10)7,
Py(X') =62(1-0),
_aa_

1
K(x,x’)_/003(1—9)4d9 ST = 580 °
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Context-tree model

A context-tree model is a variable-memory Markov chain:

n
Ppo(X) = Ppo(x1-..xp) [[ Poo(XilXip.. X1)
i=D+1

@ D is a suffix tree
@ 0 € P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0a5(A)04(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)

@ For particular choices of priors, the context-tree kernel:

K (x,x') = Z/o - Pp o(X)Pp o(X")w(d6|D)m(D)
D Joe

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.
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Machine learning in post-genomics

SFDS 2008 112/ 166



Marginalized kernels

@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability
Px (dy).

@ Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Kin et al., 2002):

Ky (X, X') := Ep,(dy)x P, (ay) Kz (2,2')

= [ [ Ke (x9). (025) Pr(a) P ()

Jean-Philippe Vert (ParisTech) Machine learning in post-genomics SFDS 2008 113/166



Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore there exists a Hilbert space H and
¢z : Z — H such that:

Kz(ZZ)—<¢Z ¢Z( )>H
@ Marginalizing therefore gives:
Ky (%,X) = Epy(ay)xp, (ay) Kz (2 Z')

= Ep(ay)xPy(ay) (P2 (2), 9z (Z)),,
= (Epy(dy)®z (2) , Ep(ay) Pz (2 )>H ,

therefore Ky isp.d. on . O
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Example: HMM for normal/biased coin toss

@ @ Normal (N) and biased (B)
coins (not observed)

0.5 ‘3’ 0.05
0.85"'b

@ Observed output are 0/1 with probabilities:
m(0|N) =1 —=(1|N) = 0.5,
7©(0|B) =1 —=(1|B) =0.8.

@ Example of realization (complete data):

NNNNNBBBBBBEBBBNNNNNNNNNNNBBEBBEBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

@ If both x € A* and y € S* were observed, we might rather use the
1-spectrum kernel on the complete data z = (X, y):

Kz (2,2) = Z Nas (Z) Nas (2)

(a,5)eAxS

where nz s (x,y) fora= 0,1 and s = N, B is the number of
occurrences of s in y which emit ain x.

@ Example:

Z2=1001011101111010010111001111011,
Z'=0011010110011111011010111101100101,

Kz (z,2') =no(2)no () + no (2) no (Z') + ny (2) ny (Z') + ny (2) 4 (2
=7x154+49%x124+13x6+4+2x1=293.
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1-spectrum marginalized kernel on observed data

@ The marginalized kernel for observed data is:

Ke (x,X) = Y Kz((x.y),(xy))P(yx) P (yIX)

y,y'eS*
= Z ¢a7s (X) ¢a7s (X/) 5
(a,s)eAXS
with
Dys (X Z P(y|x) nas(X,y)

yes*
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Computation of the 1-spectrum marginalized kernel

Pas (X ZP (YIx) nas (X, y)
yesS*

=" P(ylx) {25()(/,3)5(}//73)}
i=1

yeS*

= Zd(x,-,a) { Z P(VX)5(yi,S)}
i=1

yes*
n
= d(x,a)P(y=slx).
i=1

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand
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HMM example (protein)

N times
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SCFG for RNA sequences

Marginalized kernel (Kin et al., 2002)
@ Feature: number of occurrences of each (base,state) combination
@ Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

@ Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

@ Kernels for RNA sequences based on SCFG (Kin et al., 2002)

@ Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

@ Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2
A set of 74 human tRNA
T sequences is analyzed using
jﬁ’l a kernel for sequences (the
o o O* + second-order marginalized
o o ° kernel based on SCFG). This
P o, .
set of tRNAs contains three
e o PC1

oo classes, called Ala-AGC

° ° S o (white circles), Asn-GTT
8 8850 (black circles) and Cys-GCA
o 3 (plus symbols) (from Tsuda
o et al., 2003).
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e Classification of biological sequences

@ Derive from a similarity measure
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Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWEGV
Xo = CLIVMMNRLMWE GV

Find a good alignment:

CGGSLIAMM-——-WEGV

R N P R R
C---LIVMMNRLMWEGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RA*A
@ agap penalty functiong: N — R

Any alignment is then scored as follows

CGGSLIAMM-——-WEGV

I
C---LIVMMNRLMWEGV

Ss¢(m) = S(C, C) + S(L, L) + S(I, 1) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ) erpj%gy) Ss,g().

@ It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ) Grg%}y) Ss,g().

@ It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

| A\

K (x,y) = Y exp(Bssg(x,y. 7)),
men(x,y)

is symmetric positive definite (Vert et al., 2004).

A\
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LA kernel is p.d.: proof

@ If Ky and K5 are p.d. kernels for strings, then their convolution
defined by:

Ki x Ko(x,y) == Z Ki(x1,Y1)Ka(X2,Y2)
X1 Xo=X,y1Y2=Y

is also p.d. (Haussler, 1999).

@ LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

- (=D
K =D Kox (K < k)T 5 k) o
n=0

where Ky, K5 and Ky are three basic p.d. kernels (Vert et al.,
2004).
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LA kernel in practice

@ Implementation by dynamic programming in O(|x| x [x'|)
0:0/1

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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e Classification of biological sequences

@ Application: remote homology detection
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Remote homology

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison
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SCOP database

SCOP
/

Fold
Super family

& P
Family \@@ Cg #\OC\D OC/DED é)

Renot e honol ogs Cl ose honol ogs
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A benchmark experiment

@ Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.
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Difference in performance

vv T T T

SVM-LA ——
SVM-pairwise ---x---
SVM-Mismatch ------

[0}
% 50 SVM-Fisher —&— 7]
£
2 ¥
gaorty
c H
g | %
230
B
1]
o
= 20 }
8
G
gtor R
B ’%é ]
BB o
0 1 1 1 1 ‘X¥%
0 0.2 0.4 0.6 0.8 1

ROC50

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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@ Virtual screening and QSAR
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e Virtual screening and QSAR
@ Motivation
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Ligand-Based Virtual Screening and QSAR

inactive jeul.

active O "
§ W
1]
g o

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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More formally...

Objective

Build models to predict biochemical properties Y of small molecules
from their structures X, using a training set of (X, Y) pairs.

Structures X

A

C15H14CIN3O3 JIL((W
’ f‘\f

Properties Y
@ binding to a therapeutic target,
@ pharmacokinetics (ADME),
@ toxicity...
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Classical approaches

@ Map each molecule to a vector of fixed dimension using molecular

descriptors
o Global properties of the molecules (mass, logP...)
e 2D and 3D descriptors (substructures, fragments, ....)
© Apply an algorithm for regression or pattern recognition.
e PLS, ANN, ...

Example: 2D structural keys

<::> g%g ah //Q§D O/Akb N oééNch

NIV

| ENENEEEENNEN EEEEEEN B
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Which descriptors?

@ Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)

@ But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
@ Let d(x) = (P4(x),...,Pp(x)) be a vector representation of the
molecule x

@ The kernel between two molecules is defined by:

p
K(x,x') = o(x)To(x') = &;(x)P;(x").
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Making kernels for molecules

@ Strategy 1: use well-known molecular descriptors to represent
molecules m as vectors ®(m), and then use kernels for vectors,
e.g.:

K(m1 5 m2) = <D(m1 )Td>(m2).

@ Strategy 2: invent new kernels to do things you can not do with
strategy 1, such as using an infinite number of descriptors. We will

now see two examples of this strategy, extending 2D and 3D
molecular descriptors.
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The problem
@ Regression and pattern recognition over molecules

@ Classical vector representation is both statistically and
computationally challenging
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The problem

@ Regression and pattern recognition over molecules

@ Classical vector representation is both statistically and
computationally challenging

The kernel approach

By defining a kernel for molecules we can work implicitly in large
(potentially infinite!) dimensions:

@ Allows to consider a large number of potentially important
features.

| A

@ No need to store explicitly the vectors (no problem of memory
storage or hash clashes) thanks to the kernel trick

@ Use of regularized statistical algorithm (SVM, kernel PLS, kernel
perceptron...)to handle the statistical problem of large dimension

v
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e Virtual screening and QSAR

@ 2D Kernel
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

=

© c c—¢C =0 c=——c———c=—=c———c—c¢

C—N ,, ,o—c—FC . .. N e e
» 0 c¢—c¢ = = a o—N——c—c——c—c¢

N——C—C—Cc——Cc—¢C
N/O N Y @ N——C——¢C

(e]
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

° © c c o 0 c ———t———=—C
» (¢] 2:2' T 070 © 00000 O——N— C=——C—C=——=C **+
N——o0 c—¢ © N——C———C=—=Cc———C—=C
N/o N N——Cc—cC
(0]

@ Many features @ Too many features?
@ Easy to detect @ Hashing = clashes
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SVM approach

© ¢ c——c O——N—-C c=—c——c=—c——c=—c¢
—_— "
» o g 2‘ ...0 c—C. ..., F——{——e=——E———(@=—=@ c o noo0
N—o0 < © © N—C———Cc=—=c—c—=c
N/O N N———C——¢C

Let ®(x) the vector of fragment counts:

@ Long fragments lead to large dimensions :
SVM can learn in high dimension

@ ®(x) is too long to be stored, and hashes induce clashes:
SVM do not need ®(x), they just need the kernel

K(x,x') = ¢(x) "o(x) .
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2D fingerprint kernel

@ For any d > 0 let ¢4(x) be the vector of counts of all fragments of
length d:

p1(x)=( #©, 4, ¢, ...)"

do(X) = ( #(c—c),#(c=0),#(cN), )T

etc...

@ The 2D fingerprint kernel is defined, for A < 1, by

Kap(X, X') ZA% x) ¢a(X') .

@ This is an inner product in the space of 2D fingerprints of infinite
length.
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2D kernel computation

The 2D fingerprint kernel between two molecules x and x’ can be
computed with a worst-case complexity O ((| x| x| x 1)3) (much faster
in practice).
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2D kernel computation

The 2D fingerprint kernel between two molecules x and x’ can be
computed with a worst-case complexity O ((\ x| x| x 1)3) (much faster
in practice).

@ The complexity is not related to the length of the fragments
considered (although faster computations are possible if the
length is limited).

@ Solves the problem of clashes and memory storage.

@ Allows to work with infinite-length fingerprints without computing
them!
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2D kernel computation trick

@ Rephrase the kernel computation as that as counting the number
of walks on a graph (the product graph)

Seob e

@ The infinite counting can be factorized

MA+XAR LA L. =(I-2A) 1.
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
1 o1l 2 o1l 4 03
No Morgan Indices ﬁ)l Order 1 indices (H)l Order 2 indices (H)S

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible.

@ Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = vy ... v, with v; = v;.» for some i.

@ (O —@ von-tottering
(OO0 @

@ (@ rTtottering

@ Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et

al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

o) /@‘:_ @\
H C —_— @\ /H/@

Cl @&@\
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Extensions 3: tree-like fragments

N— N—C—C—C
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MUTAG dataset

@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compouunds: 125 +/ 63 -

| A\

Results
10-fold cross-validation accuracy

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%
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Subtree kernels

BRANCH-BASED, NO-TOTTERING

781
7r
76 . . . . . . . . . )
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
lambda

AUC as a functio

(from Mahé et al.

n of the branching factors for different tree depths
, 2007).
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e Virtual screening and QSAR

@ 3D Pharmacophore Kernel
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Space of pharmacophore

3-points pharmacophores

A set of 3 atoms, and 3 inter-atom distances:

7 ={((x1, X2, X3) , (dy, 0>, d3)) , x; € {atom types}; d; € R}
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3D fingerprint kernel

Pharmacophore fingerprint

@ Discretize the space of pharmacophores 7 (e.g., 6 atoms or
groups of atoms, 6-7 distance bins) into a finite set 74

© Count the number of occurrences ¢;(x) of each pharmacophore
bin t in a given molecule x, to form a pharmacophore fingerprint.

A simple 3D kernel is the inner product of pharmacophore fingerprints:

K(x,x) =D ¢r(x)n(x') .

teTy
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Discretization of the pharmacophore space

Common issues

@ If the bins are too large, then they are not specific enough
@ If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

Vel
— d(x1,X3) < d(x1, X2)

BUT bin(xy) = bin(xz) # bin(xs)

Jean-Philippe Vert (ParisTech)
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Kernels between pharmacophores

A small trick

K(x,y) = Y oi(X)e(y)
te7y
= ) (Y 1bin(p) =1)( Y 1(bin(py) = 1))
teT, PxEP(X) PyEP(Y)
= > Y 1(bin(px) = bin(py))
PxEP(X) pyeP(y)

v

General pharmacophore kernel

Ky = 3 3 Kelpony)

PxEP(x) pyeP(Y)
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New pharmacophore kernels

@ Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

Ke(p1. p2) = 1 (bin(px) = bin(py))

@ For general kernels, there is no need for discretization!

@ For example, is d(py, p2) is a Euclidean distance between
pharmacophores, take:

Kp (p1,p2) = exp (—vd (p1,p2)) -
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Experiments

4 public datasets

@ BZR: ligands for the benzodiazepine receptor
@ COX: cyclooxygenase-2 inhibitors

@ DHFR: dihydrofolate reductase inhibitors

@ ER: estrogen receptor ligands

TRAIN TEST
Pos | Neg | Pos | Neg
BZR 94 | 87 | 63 | 62
COX 87 | 91 61 64
DHFR | 84 | 149 | 42 | 118
ER 110 | 156 | 70 | 110
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Results (accuracy)

Kernel | BZR | COX | DHFR | ER
2D (Tanimoto) 712 1 63.0 | 769 |77.1
3D fingerprint 754|670 | 769 | 78.6

3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Outline

ﬂ Conclusion
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@ Genomic data are often high-dimensional and structured

@ Inference is possible with the constrained ERM principle
@ Prior knowledge can be included in the contraint, e.g.:
@ Sparsity-inducing priors
o Euclidean balls with kernels
@ The final performance depends a lot on the prior constraint when
few examples are availabe — it is a good place to put some
effort
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