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Proteins
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Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. ’
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Our goal

e, sl s cong g e . oo
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More precisely

Formalization

e V={1,...,N} vertices (e.g., genes, proteins)
@ D= (xq,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predictedges £ C V x V.
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“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £
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More precisely

Formalization
e V={1,...,N} vertices (e.g., genes, proteins)
@ D=(xy,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V.

“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £

“Supervised” inference
@ Given data about individual genes and proteins D, ...

@ ... and given some known interactions Eyain C &, ...
@ ... infer unknown interactions Eiest = £\ Eirain
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0 De novo methods
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Evaluation on regulatory network reconstruction

OPEN @ ACCESS Freely available online PLOS sioLosy

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete'®, Joshua T. Thaden®, llaria Mogno®*, Jamey Wierzbowski>%, Guillaume Cottarel*®,
Simon Kasif'"2, James J. Collins™2, Timothy S. Gardner"?"
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e Supervised methods
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Supervised methods

In actual applications,

@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

——— O Supervised method

@ Given genomic data and

- the currently known
A ~O network...
- .
N @ Infer missing edges
N between current nodes and
______ O additional nodes.
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Pattern recognition
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)

Two solutions
@ Consider each pair (X1, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ We must represent a pair of proteins (u, v) by a vector
Y¥(u, v) € R in order to estimate a linear classifier

@ Question: how build ¢(u, v) from v and v?
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Representing a pair

Direct sum

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

4

¢(u,v):u@v:<u>.
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Representing a pair

Direct sum

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

4

¢(u,v):u@v:<u>.

@ Problem: a linear function then becomes additive...

fu,v) =wy(u,v)=wu+w'v.
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Representing a pair

Direct product

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
Vi

P(u,v)=uv
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Representing a pair

Direct product

@ Alternatively, make the direct product, i.e., the p?>-dimensional

vector whose entries are all products of entries of u by entries of
Vi

v(u,v)=uv

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:

(i1 @wr)" (U2 @ vp) = (U1TU2) X (Vrvz) :

which is good for algorithms that use only inner products (SVM...)

v
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

Y(u,v) = (U V) +(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and B is similar to C
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Other representations for pairs

Symmetric tensor product (Ben-Hur and Noble, 2006)

Y(u,v)=(uev)+(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and Bis similarto C

Metric learning (V. et al, 2007)

¢(U7 V) - (U — V)®2 :
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bissimilarto C — D, or...
@ A— Bissimilarto D — C.

Jean-Philippe Vert (ParisTech) Inference of biological networks 21/57



Link with metric learning

Metric learning

For two vectors u, v € H let the metric:

dy(u,v) = (u—v) " Mu—v).
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Link with metric learning

Metric learning
For two vectors u, v € H let the metric:
du(u,v) = (u—v) " M(u—v).

Consider the problem:

. 2
I\Tg(]) ‘ I(ui, vi, ¥i) + MIM||Eropenius
i

where [ is a hinge loss to enforce:

ENORY <1—~ if(u;,v;)is connected,
M > 1+~ otherwise.
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Link with metric learning

Theorem (V. et al., 2007)
@ A SVM with the representation

Y(u,v) = (u-v)*

solves this metric learning problem without the constraint M > 0.

@ Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

Kupx (U1, v1), (Uz, v2)) = ¥(ur, vi) "o (U2, vo)
= [K(uy, tp) — K(us, v2) — K(v1, ) + K(U, v2)I? .
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model
+1 O
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The LOCAL model
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The LOCAL model
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The LOCAL model
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@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
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@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.
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@ Weak hypothesis:
o if Ais connected to B,
o if Cis similar to B,
o then A is likely to be connected to C.
@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.
@ Caveats:

e each local model may have very few training points
@ no sharing of information between different local models
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:% 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0 0.2 0.4 0.6 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi®, Hisaaki Miharaz, Motoharu Osakiz, Hisashi Muramatsuaj Nobuyoshi Esakiz,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto' and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Sciencs, Osaka University, Japan
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto'*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET*

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.
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Application: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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@ Extension: collaborative filtering with attributes
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Graph learning = learning over pairs of vertices
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Extension (not symmetric)

Chemogenomics
@ Given a family of proteins of therapeutic interest (e.g., GPCR’s)
@ Given all known small molecules that bind to these proteins
@ Can we predict unknown interactions?

N Y g, P
as T

/f* C
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Collaborative Filtering (CF)

@ Given a set of ny “movies” x € X and a set of ny, “customers”
yey
@ predict the “rating” z(x,y) € Z of customer y for movie x

@ Training data: large ny x ny incomplete matrix Z that describes
the known ratings of some customers for some movies

@ Goal: complete the matrix.

m
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CF by low-rank matrix approximation

@ A common strategy for CF

@ Z has rank less than k < U e Rk |y ¢ Rvxk

@ Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
@ Numerical and statistical efficiency

\Y,

\ i\\ [ |
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

@ Relax the (non-convex) rank of Z into the (convex) trace norm of
Z: if 0;(Z) are the singular values of Z,

rankZ = Z 1512)>0 1Z]]« = ZUI(Z)-
i

i
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

@ Relax the (non-convex) rank of Z into the (convex) trace norm of
Z: if 0;(Z) are the singular values of Z,

akZ =3 1ozm0 121 = 0i2)
i i

@ nobservations z, corresponding to X;,y and yj), u=1,...,m
min Uzy,Z )+ AIZ]|«,
ZeR™X XMy Z ! 121l

where /(z, Z') is a convex loss function.
@ This is an SDP if 7 is SDP-representable
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Remark

@ ny movies and ny customers

@ The known rating z(x;, y;) of customer y; for movie x; is stored in
the (i, j)-th entry of a matrix M (of size ny x ny).

@ M represents a linear application / bilinear form:
M:R™ — R™

defined by:
e,T/\/If/ = M,’ﬂj

@ Rank/trace norm are spectral properties of the linear application
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Reformulation

@ Represent the /i-th movie x; € X (resp. j-th customer y; € )) by
the i-th basis vector e; € R (resp. f; € R™):

ox(xi) =6, oy(y)=1.

@ Approximate the rating function by a bilinear form:

V(X;,¥) € X XY,  Gu(Xi,Y)) = ox(Xi) Moy(y)),

by constraining a spectral property of M : R"x — Rx,
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Reformulation

@ Represent the /i-th movie x; € X (resp. j-th customer y; € )) by
the i-th basis vector e; € R (resp. f; € R™):

ox(xi) =6, oy(y)=1.

@ Approximate the rating function by a bilinear form:

V(Xi,¥) € X XY, Gu(X;,Y)) = ox(Xi) Moy(y)),

by constraining a spectral property of M : R"x — Rx,

If we have additional attributes about movies / customer, why not
include them in ¢x(x) and ¢y(y)?
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@ Movies: points in a Hilbert space X
@ Customers: points in a Hilbert space )

@ We model the preference of customer y for a movie x by a bilinear
form:
f(xvy) = <X, Fy>)(‘ )

where F € By (Y, X) is a compact linear operator (i.e., a “matrix”).

v
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Spectra of compact operators

Classical results

@ For (x,y) in X x ) the tensor product x @y is the operator

VheY, (x®y)h=(y h),x.
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Spectra of compact operators

Classical results

@ For (x,y) in X x ) the tensor product x @y is the operator

VheY, (x®y)h=(y h),x.

@ Any compact operator F : Y — X admits a spectral
decomposition:

0o
[F= ZJ,‘U,‘@V,‘.
=1l

where the o; > 0 are the singular values and (u;);cy and (V;);cy
are orthonormal families in X and ).
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Spectra of compact operators

Classical results

@ For (x,y) in X x ) the tensor product x @y is the operator

VheY, (x®y)h=(y h),x.

@ Any compact operator F : Y — X admits a spectral
decomposition:

0o
[F= za,-u,-®v,-.
=1l

where the o; > 0 are the singular values and (U;);cy and (V;);cy
are orthonormal families in X and ).

@ The spectrum of F is the set of singular values sorted in
decreasing order: o1(F) > 0o(F) > ... > 0.

@ This is the natural generalization of singular values for matrices.

v
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Useful classes for operators

Operators of finite rank

@ The rank of an operator is the number of strictly positive singular
values.

@ Hence operators of rank smaller or equal to k are characterized
by:

ok+1(F)=0.
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Useful classes for operators

Operators of finite rank

@ The rank of an operator is the number of strictly positive singular
values.

@ Hence operators of rank smaller or equal to k are characterized
by:
ok+1(F)=0.

Trace-class operators

The trace-class operators are the compact operators F that satisfy:

o0

I Flle =" 0i(F) < o0.

i=1

|| F ||« is a norm over the trace-class operators, called the trace norm.

v
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Useful classes for operators (cont.)

Hilbert-Schmidt operators

@ The Hilbert-Schmidt operators are compact operators F that
satisfy:

| FlEo =D oi(F)? <co.
i=1

@ They form a Hilbert space with inner product:

<x Y, X ® y/>X®y = <x, x/>x <y7y/>y o

Jean-Philippe Vert (ParisTech) Inference of biological networks 46 /57



Spectral penalty function

Definition
A function Q : By (Y, X) — RU {+o0} is called a spectral penalty
function if it can be written as:

QF) =3 s (i(F)) ,
i=1

where for any i > 1,s; : RT — R* U {+00} is a non-decreasing
penalty function satisfying s;(0) = 0.
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Spectral penalty function

@ Rank constraint: take sx4.1(0) = 0 and sx1(u) = 400 for u > 0,
and s; = 0 for i > k. Then

Q(F) — {o if rank(F) < k

+oo if rank(F) > k.
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Spectral penalty function

@ Rank constraint: take sx4.1(0) = 0 and sx1(u) = 400 for u > 0,
and s; = 0 for i > k. Then

Q(F) — {o if rank(F) < k

+oo if rank(F) > k.
@ Trace norm: take s;(u) = u for all i, then:

Q(F) = Fll-

@ Hilbert-Schmidt norm: take s;(u) = u? for all i, then

QF) = || F I
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Learning operator with spectral regularization

@ Training set: (X;,Yi, t,-),-:h__,N a set of (movie,customer,preference).
@ Loss function /(t, t') : cost of predicting preference t instead of t'.
@ Empirical risk of an operator F:

N
RN(F) = 3 S 100 Fyid )

i=1
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Learning operator with spectral regularization

@ Training set: (X;,Yi, t,-),-:h__,,v a set of (movie,customer,preference).
@ Loss function /(t, t') : cost of predicting preference t instead of t'.
@ Empirical risk of an operator F:

N

Learning an operator

min Ry(F) + \Q(F)} .
FeBo(y,X)l, Q(F)<oo{ N(F) +A2(F)}
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Questions

Is it a "good" algorithm in theory?
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@ To be investigated...

@ See Srebro et al. (2004), Bach (2007) for preliminary results with
the trace norm
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Questions

Is it a "good" algorithm in theory?
@ To be investigated...

@ See Srebro et al. (2004), Bach (2007) for preliminary results with
the trace norm

Practice

Can we implement it? Does it work on real data?

@ Optimization problem in the space of compact operators... but we
show later that it boils down to a finite-dimensional optimization
problem

@ Promising results on real data
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A generalized representer theorem

For any spectral penalty function Q : By (Y, X) — R, let the
optimization problem:

min RBn(F) + A\Q(F)} .
FGBo(y,X),Q(F)<oc{ N(F) +AQUF)}
If the set of solutions is not empty, then there is a solution F in

Xn ® Yy, i.e., there exists o € RMx XMy gych that:

Mmy My

FZZZO&UU;@V],

i=1 j=1

where (u1,...,Um,) and (vq,...,Vp,) form orthonormal bases of Xy
and Yy, respectively.
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We obtain various algorithms by choosing:

@ A loss function (depends on the application)

© A spectral regularization (that is amenable to optimization)
© Two Gram matrices (aka kernel matrices)

Both kernels and spectral regularization can be used to constrain the
solution
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A family of kernels

Taken Ky = K x G with

{K _ nK;\(ttribute + (1 - n)Kgiram
G= CKXttribute +(1- C)Kf‘)/irac’

for0<n<tand0< (<1

n
A o '
multi—taskq prediction from attributes
?
matrix 1 _C

completion O :
P multi—task
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Movies

@ MovielLens 100k database, ratings with attributes

@ Experiments with 943 movies and 1,642 customers, 100,000
rankings in {1,...,5}

@ Train on a subset of the ratings, test on the rest

@ error measured with MSE (best constant prediction: 1.26)

1.04
1.02
1
’ 0.98
) 0.96
- 0.04
- 0.92
X 0.9
058
056

0 0001 001 01 05 09 099 0999 1
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e Conclusion
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Take-home messages

@ When the network is known in part, supervised methods can be
more adapted than unsupervised ones.

@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

e work for any network

e work with any data

e Can integrate heterogeneous data, which strongly improves
performance

@ Link with collaborative filtering with attributes

@ Current research: infer edges simultaneously with global
constraints on the graph?
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