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Collaborative Filtering (CF)

The problem

@ Given a set of ny “movies” x € X and a set of ny, “customers”
yey
@ predict the “rating” z(x,y) € Z of customer y for movie x

@ Training data: large ny x ny incomplete matrix Z that describes
the known ratings of some customers for some movies

@ Goal: complete the matrix.
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Another CF example

Drug design
@ Given a family of proteins of therapeutic interest (e.g., GPCR’s)
@ Given all known small molecules that bind to these proteins
@ Can we predict unknown interactions?
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CF by low-rank matrix approximation

@ A common strategy for CF

@ Z has rank less than k < U e RMxxk v ¢ RxK

@ Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
@ Numerical and statistical efficiency
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

@ Relax the (non-convex) rank of Z into the (convex) trace norm of
Z: if 0;(Z) are the singular values of Z,

rankZ = Z 15:(2)>0 1Z]]« = Za,-(Z).
i

i
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

@ Relax the (non-convex) rank of Z into the (convex) trace norm of
Z: if 0;(Z) are the singular values of Z,

rankZ = Z 15:(2)>0 1Z]]« = ng(z)'
i

i

@ nobservations z, corresponding to X;,y and y;,), u=1,...,m:
min Uzy,Z )+ AIZ]|«,
ZER”XX”J) Z . 1]

where /(z, Z') is a convex loss function.
@ This is an SDP if 7 is SDP-representable

v
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CF with attributes

The problem

@ Often we have additional attributes:

@ gender, age of customers; type, actors of movies..
e 3D structures of proteins and ligands for protein-ligand interaction
prediction

@ How to include attributes in CF?

@ Expected gains: increase performance, allow predictions on new
movie and/or customers.
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CF with attributes

The problem

@ Often we have additional attributes:

@ gender, age of customers; type, actors of movies..
e 3D structures of proteins and ligands for protein-ligand interaction
prediction

@ How to include attributes in CF?

@ Expected gains: increase performance, allow predictions on new
movie and/or customers.

Our contributions

@ A general framework for CF with or without attributes, using
kernels to describe attributes (“kernel-CF”)

@ A family of algorithms for CF in this setting
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The idea

@ ny movies and ny customers

@ The known rating z(/, j) of customer j for movie i is stored in the
(,4)-th entry of a matrix M (of size nx x ny).

@ M represents a linear application / bilinear form:
M:R™ — R"™

defined by:
e/ Mf; = Mj,

@ Rank /trace norm are spectral properties of the linear application

v
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The idea

Reformulations

@ Represent the i movie x; € X" (resp. j-th customer y; € V) by the
i-th basis vector e; € R~ (resp. f; € R™):

ox(xi)=ei, ov(y) =1.

@ Approximate the rating function by a bilinear form:

VX, y) € X x Y, Gu(x,y) = ox(x) Moy (y)),

by constraining a spectral property of M : R™* — R"x,
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Reformulations

@ Represent the / movie x; € X' (resp. j-th customer y; € )) by the
i-th basis vector e; € R~ (resp. f; € R™):

ox(xi)=ei, ov(y) =1.

@ Approximate the rating function by a bilinear form:

V(X ¥) €X XY, Gu(x,y) = ox(x) Moy(y),

by constraining a spectral property of M : R™* — R"x,

If we have additional attributes about movies / customer, why not
include them in ¢(x) and ¢(y)?

v
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@ Movies: points in a Hilbert space X
@ Customers: points in a Hilbert space )

@ We model the preference of customer y for a movie x by a bilinear
form:
f(X,y) = (X, Fy>X )

where F € By (), X) is a compact linear operator (i.e., a “matrix”).

v
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Spectra of compact operators

Classical results

@ For (x,y) in X x Y the tensor product x @y is the operator

Vhey, (x®y)h=(y,h),x.

@ Any compact operator F : Y — X admits a spectral
decomposition:

o
F = Z ol Q@ V;.
i=1
where the o; > 0 are the singular values and (u;);cy and (V;);cy
are orthonormal families in X and ).

@ The spectrum of F is the set of singular values sorted in
decreasing order: o1(F) > o2(F) > ... > 0.

@ This is the natural generalization of singular values for matrices.

v
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Useful classes for operators

Operators of finite rank

@ The rank of an operator is the number of strictly positive singular
values.

@ Hence operators of rank smaller or equal to k are characterized
by:
ok+1(F)=0.
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Useful classes for operators

Operators of finite rank

@ The rank of an operator is the number of strictly positive singular
values.

@ Hence operators of rank smaller or equal to k are characterized
by:
ok+1(F)=0.

Trace-class operators

The trace-class operators are the compact operators F that satisfy:

o0

I Flle:="0i(F) < o0.

i=1

|| F ||« is a norm over the trace-class operators, called the trace norm.

v
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Useful classes for operators (cont.)

Hilbert-Schmidt operators

@ The Hilbert-Schmidt operators are compact operators F that
satisfy:

(e.o]

H FH%ro = ZU,’(F)Z < 00.
i=1

@ They form a Hilbert space with inner product:

XY, X Y) vy = (XX) 1 (V) -
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Spectral penalty function

Definition

A function Q : By (Y, X) — R U {400} is called a spectral penalty
function if it can be written as:

QF) =) _si(ai(F)) ,
i=1

where forany i > 1,s;: Rt — RT U {400} is a non-decreasing
penalty function satisfying s;(0) = 0.
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Spectral penalty function

@ Rank constraint: take sx4.1(0) = 0 and sx1(u) = 400 for u > 0,
and s; = 0 for i > k. Then

Q(F) — {o if rank(F) < k

+oo if rank(F) > k.
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Spectral penalty function

@ Rank constraint: take sx4.1(0) = 0 and sx1(u) = 400 for u > 0,
and s; = 0 for i > k. Then

Q(F) — {o if rank(F) < k

+oo if rank(F) > k.

@ Trace norm: take sj(u) = u for all i, then:

Q(F) = Fll-
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Spectral penalty function

@ Rank constraint: take sx4.1(0) = 0 and sx1(u) = 400 for u > 0,
and s; = 0 for i > k. Then

Q(F) — {o if rank(F) < k

+oo if rank(F) > k.
@ Trace norm: take sj(u) = u for all i, then:

Q(F) = Fll-

@ Hilbert-Schmidt norm: take s;(u) = u? for all i, then

QF) = || F I
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Learning operator with spectral regularization

Setting

o Training set: (X;,Y;, %),y @ set of (movie,customer,preference).
@ Loss function /(t, ') : cost of predicting preference t instead of t'.
@ Empirical risk of an operator F:

N

Rn(F) = %/Z 1((X;, FY) v, 1) -
i=1
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A classical representer theorem

If F is a solution the problem:

min Rn(F) + ) (F)? 4,
FEBZ(W){ N(F) ,Z_;U’( )}

then it is necessarily in the linear span of {x;®y; : i=1,...,N},i.e.,
it can be written as:

N
F=) axayi,
i=1

for some o € RN,
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Proof sketch

@ B, (), X) is isomorphic to the RKHS of the tensor product kernel:
ko (%,¥), (X,¥) = (X.X) (V. ¥')y,
by f(x,y) = (X, Fy) ,. In particular,
113, = | FII? = Q(F).

@ The problem is therefore a classical kernel method:

min {Rn(f) + AIfIE }

so the classical representer theorem can be used. [
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A generalized representer theorem

For any spectral penalty function Q : By (¥, X) — R, let the
optimization problem:

min RBn(F) + A\Q(F)} .
FGBO(WMF)@{ n(F) +AQ(F)}
If the set of solutions is not empty, then there is a solution F in

XN ® Yp, i.e., there exists a € R™¥*My gych that:

my My

F:ZZO&/]’U/@V]',

i=1 j=1

where (u1,...,Um,) and (vq,...,Vp,) form orthonormal bases of Xy
and Yy, respectively.

v
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Proof sketch

@ For any operator F € By (Y, X), let
G =My, FMy,,,

where I is the orthogonal projection onto U.
@ Lemma: we can show that for all / > 0:

0i(G) < 0(F).

@ Therefore Q(G) < Q(F).
@ On the other hand Ry(G) = An(F).

@ Consequently for any solution F we have another solution
GeXy®)Yy. O
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Practical consequence

Theorem (cont.)
The coefficients « that define the solution by

my My

FZZZO[,‘/U,’@V],

i=1 j=1

can be found by solving the following finite-dimensional optimization
problem:

min Ry (diag (Xa YT>) +AQ(a),

a€R™X XMy Q(a)<oco

where Q(«) refers to the spectral penalty function applied to the matrix
« seen as an operator from R™ to R™* and X and Y denote any
matrices that satisfy K = XX and G = YY" for the two Gram
matrices K and G of Xy and Y.

v
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We obtain various algorithms by choosing:

@ A loss function (depends on the application)

© A spectral regularization (that is amenable to optimization)
© Two kernels.

Both kernels and spectral regularization can be used to constrain the
solution
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@ Dirac kernel + spectral constraint (rank, trace norm) = matrix
completion
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@ Dirac kernel + spectral constraint (rank, trace norm) = matrix
completion

@ Attribute kernels + Hilbert-Schmidt regularization = kernel
methods for pairs with tensor product kernel
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@ Dirac kernel + spectral constraint (rank, trace norm) = matrix
completion

@ Attribute kernels + Hilbert-Schmidt regularization = kernel
methods for pairs with tensor product kernel

@ Attribute kernel on movies, Dirac on customers, spectral

regularization (rank, trace norm) = multi-task learning (rank
constraints enforces sharing the weights between customers).
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A family of kernels

Taken Kg = K x G with

{K _ 77Kzz\(tl‘ribute + (1 - n)Kgirac’
G= CK/J4/1ftribuz‘e +(1- C)Kgirac’

for0<n<tand0<(<1

n
A . ,
multi-task™] prediction from attributes
?
matrix 1 _C

completion O .
P multi—task
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Simulated data

@ Generate data (x,y, z) € R* x R x R according to

z=x"By+e

@ Observe only ny < fx and ny < fy features
o Low-rank assumption will find the missing features
e Observed attributes will help the low-rank formulation to
concentrate mostly on the unknown features
@ Comparison of
e Low-rank constraint without tracenorm (note that it requires
regularization)
e Trace-norm formulation (regularization is implicit)
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Simulated data: results

@ Compare MSE
@ Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522) J

o o o <
o o 9

test set accuracy

test set accuracy
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Movies

@ MovielLens 100k database, ratings with attributes

@ Experiments with 943 movies and 1,642 customers, 100,000
rankings in {1,...,5}

@ Train on a subset of the ratings, test on the rest

@ error measured with MSE (best constant prediction: 1.26)
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Conclusion

@ A general framework for CF with or without attributes

@ A generalized representation theorem valid for any spectral
penalty function

@ A family of new methods;

@ The bottleneck is often practical optimization. Online version
possible.

@ Automatic kernel optimization

Reference
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Annex: algorithms
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The problem

@ Let ¢;(t) = I(t, 1;), supposed to be convex.
@ Suppose

QA) =) s(oi(A)),
i>1
where s is a convex even function s.t. s(0) = 0.
@ The problem we wish to solve is:

n

i > i((XaYT)i) + AQ(a)
ae mmey i:1

@ One may directly solve this primal problem.
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Fenchel conjugacy

@ Let ¢ denote the Fenchel conjugate of ¢;:
Y7 (o) = maxa;v; — (V).
VieR
@ Let * denote the Fenchel conjugate of Q:

Q*(B) = max_ Tr(a'pB) — Q(a).

cRMx X my

@ In fact Q* is a spectral function corresponding to s*:

Q°(5) = 3 5°(0i(9)).

i>1
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Dual problem

@ Primal:

min Zm (XaYT)i) +AQ(a)

aeR™ >y £

@ Dual (strong duality):

@ The solution « of the primal is among the Fenchel duals of
—%XT Diag(3)Y (closed form if s if differentiable).

@ Choosing the primal or dual formulation depends on the number
of training patterns N compared to my x mj.
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Example: trace norm constraint

@ Primal:

min Zm (XaYT)i) + Al a ||«

QERMxxmy £

@ Large convex, non-smooth problem (can be cast as a SDP).
@ Dual:

N
max — Z ¥} (B;) such that max o; (—XT Diag(3) Y) <A
i—1 :

@ Two tricks to (approximately) solve this problem:

o Make it smooth
o Make it low-rank
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Smoothing the problem

Make the problem smooth by approximating the non smooth functions:
@ loss: (depends on the loss)
@ trace norm:

f.(b) = elog(1 + €7/%) + elog(1 + € 7/%).

25

——absolute value
—— smooth approximation
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Making the problem low-rank

@ Let G(M) be a convex twice differentiable function to optimize over
RP>4,

@ If the global minimum of G has rank r, then G restricted to
matrices of rank r + 1 have no local minimum apart from the
global minimum.
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Making the problem low-rank

@ Let G(M) be a convex twice differentiable function to optimize over
RP>4,

@ If the global minimum of G has rank r, then G restricted to
matrices of rank r + 1 have no local minimum apart from the
global minimum.

@ Start with small r.

@ Find local minimum with Quasi-Newton.

© If solution is rank-defficient then we have the global optimum;
otherwise increase r and start again in 2.
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