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Biological networks
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. J
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More precisely

“De novo” inference

@ Given data about individual genes and proteins
@ Infer the edges between genes and proteins
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More precisely

“De novo” inference

@ Given data about individual genes and proteins
@ Infer the edges between genes and proteins

“Supervised” inference
@ Given data about individual genes and proteins
@ and given some known interactions
@ infer unknown interactions
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Main messages

@ Many methods developed so far are “de novo” (e.g.,
co-expression, Bayesian networks, mutual information nets,
dynamical systems...)
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Main messages

@ Many methods developed so far are “de novo” (e.g.,
co-expression, Bayesian networks, mutual information nets,
dynamical systems...)

© Here | will focus instead on supervised methods:

© Indeed, many real-world applications can be formulated in the
supervised framework,

© The hypothesis behind the supervised inference paradigm can be
easily justified,

© And we obtain very good results at the end.
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e De novo methods
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros Cons

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Evaluation on regulatory network reconstruction

OPEN @ ACCESS Freely available online PLOS sioLoay

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete"", Joshua T. Thaden®?, llaria Mogno®*, Jamey Wierzbowski*>, Guillaume Cottarel®?,
Simon Kasif''2, James J. Collins™, Timothy S. Gardner"*"
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e Supervised methods
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Supervised methods

In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method

@ Given genomic data and
the currently known
network...

@ Infer missing edges

between current nodes and
additional nodes.
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Pattern recognition

@ O O
® O
.o ®
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks?



Pattern recognition

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks?



Pattern recognition

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks?



Pattern recognition

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks?



Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xj, X2)

Two solutions

@ Consider each pair (X, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs

Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ We must represent a pair of proteins (u, v) by a vector
¥(u, v) € R9in order to estimate a linear classifier

@ Question: how build ¢(u, v) from v and v?
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Representing a pair

Direct sum

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

4

w(u,v):u@v:<u>.
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Representing a pair

Direct sum

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

4

w(u,v):u@v:<u>.

@ Problem: a linear function then becomes additive...

flu,v) =w'y(u,v)=wju+w'v.
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Representing a pair

Direct product

@ Alternatively, make the direct product, i.e., the p?-dimensional
vector whose entries are all products of entries of u by entries of
Vi

b(u,v)=uav
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Representing a pair

Direct product

@ Alternatively, make the direct product, i.e., the p?-dimensional
vector whose entries are all products of entries of u by entries of
Vi

b(u,v)=uav

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:

(ur@wr)" (U2 @ vp) = <U1TU2) X (V1TV2) :

which is good for algorithms that use only inner products (SVM...)

v
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Other representions for pair

Symmetric tensor product (Ben-Hur and Noble, 2006

P(u,v)=(uev)+(vau).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similarto D and B is similar to C
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Other representions for pair

Symmetric tensor product (Ben-Hur and Noble, 2006

Y(u,v)=(uev)+(veu).
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
@ Ais similar to D and Bis similar to C

v

Metric learning (V. et al, 2007)
Y(u,v) = (u—v)*.
Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bissimilarto C — D, or...
@ A— Bis similarto D — C.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.

+1
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The LOCAL model
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The LOCAL model
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

Ratio of true positives
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Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi', Hisaaki Mihara?, Motoharu Osaki?, Hisashi Muramatsu®, Nobuyoshi Esaki?,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto" and Minoru Kanehisa’

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Science, Osaka University, Japan
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto'*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa’

' Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET?

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.
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Application: predicted regulatory network (E. coli)

| )
T =3 m‘. A _.—f!m"fll
: A

gak
: (| B
cysE . ‘ -$‘ ‘.‘.’ ot “\5" ‘mm 15::15 !

ginG,

= Jhyda] % i A
o A Pt R Cal
= nac , - ".§\\‘ %“-‘-‘_ - qals [+ 92R]

] AN SR =—{ fruk
b1499 yhix 4=V - '
> A

evgA fyaix] mp vial
*hns. A ‘
"\'.l ‘\ {fuck|

flhD
ﬁ._\_‘ ‘!‘.—-' er
rcsB ‘;‘:‘e\\ aa Al
‘,‘ Vith a 1liA |

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Outline

e Conclusion

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks? 32/34



Take-home messages

@ When the network is known in part, supervised methods can be
more adapted than unsupervised ones.

@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

@ The current winner on our benchmarks (metabolic, PPl and
regulatory networks) is the local pattern recognition approach,
which reaches high performance

@ These methods:

e work for any network

e work with any data

e can integrate heterogeneous data, which strongly improves
performance
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