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Biological networks
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Data available

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes.
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Our goal

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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More precisely

“De novo” inference
Given data about individual genes and proteins
Infer the edges between genes and proteins

“Supervised” inference
Given data about individual genes and proteins
and given some known interactions
infer unknown interactions
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Main messages

1 Most methods developed so far are “de novo” (e.g., co-expression,
Bayesian networks, mutual information nets, dynamical
systems...)

2 Here I will focus instead on supervised methods:
3 Indeed, many real-world applications can be formulated in the

supervised framework,
4 The hypothesis behind the supervised inference paradigm can be

easily justified,
5 And we obtain very good results at the end.
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De novo methods

Typical strategies
Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)
Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros
Excellent approach if the
model is correct and
enough data are available
Interpretability of the model
Inclusion of prior
knowledge

Cons
Specific to particular data
and networks
Needs a correct model!
Difficult integration of
heterogeneous data
Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

The known metabolic network of the yeast involves 769 proteins.
Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Evaluation on regulatory network reconstruction
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Supervised methods

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.
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Supervised approach by Metric learning

Idea
The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.
Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method
Examples: kernels CCA (Yamanishi et al. 2004), kernel metric
learning (V and Yamanishi, 2005)
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Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)
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Supervised inference by pattern recognition

Formulation and basic issue
A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b)→ (a⊗ b)⊕ (b ⊗ a) .
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Metric learning pairwise SVM (V. et al, 2007)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A− B is similar to C − D, or...
A− B is similar to D − C.

Formally, define a similarity between pairs from a similarity
between individuals by

KMLPK ((a, b), (c, d)) = (K (a, c) + K (b, d)− K (a, c)− K (b, d))2 .

If K is a positive definite kernel for individuals then KMLPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
difference:

(a, b)→ (a− b)⊗2 .
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Supervised inference with local models

The idea (Bleakley et al., 2007)
Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks? 20 / 31



Supervised inference with local models

The idea (Bleakley et al., 2007)
Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.

+1

−1

?

?

?

+1

−1

−1

Jean-Philippe Vert (ParisTech-Curie) How to infer gene networks? 20 / 31



The LOCAL model
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Results: protein-protein interaction (yeast)
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Results: regulatory network (E. coli)
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Applications: missing enzyme prediction
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Applications: function annotation
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Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Take-home messages

When the network is known in part, supervised methods can be
more adapted than unsupervised ones.
A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).
The current winner on our benchmarks (metabolic, PPI and
regulatory networks) is the local pattern recognition approach,
which reaches high performance
These methods:

work for any network
work with any data
can integrate heterogeneous data, which strongly improves
performance
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