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Collaborative Filtering (CF)

The problem
Given a set of nX “movies” x ∈ X and a set of nY “people” y ∈ Y,
predict the “rating” z(x, y) ∈ Z of person x for film y
Training data: large nX × nY incomplete matrix Z that describes
the known ratings of some persons for some movies
Goal: complete the matrix.
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Another CF example

Drug design
Given a family of proteins of therapeutic interest (e.g., GPCR’s)
Given all known small molecules that bind to these proteins
Can we predict unknown interactions?
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CF by low-rank matrix approximation

A common strategy for CF

Z has rank less than k ⇔ Z = UV> U ∈ RnX×k , V ∈ RnY×k

Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
Numerical and statistical efficiency

U

V
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CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)
Choose a convex loss function `(z, z ′) (hinge, square, etc...)
Relax the (non-convex) rank of Z into the (convex) trace norm of
Z : if σi(Z ) are the singular values of Z ,

rankZ =
∑

i

1σi (Z )>0 ‖Z‖∗ =
∑

i

σi(Z ) .

n observations zu corresponding to xi(u) and yj(u), u = 1, . . . , n:

min
Z∈RnX×nY

n∑
u=1

`(zu, Zi(u),j(u)) + λ‖Z‖∗

This is an SDP if ` is SDP-representable
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CF with attributes

The problem
Often we have additional attributes:

gender, age of people; type, actors of movies..
3D structures of proteins and ligands for protein-ligand interaction
prediction

How to include attributes in CF?
Expected gains: increase performance, allow predictions on new
movie and/or people.

Our contributions
A general framework for CF with or without attributes, using
kernels to describe attributes (“kernel-CF”)
A family of algorithms for CF in this setting
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Setting

Movies: points in a Hilbert space X
Customers: points in a Hilbert space Y
We model the preference of customer y for a movie x by a bilinear
form:

f (x, y) = 〈x, Fy〉X ,

where F ∈ B0 (Y,X ) is a compact linear operator (i.e., a “matrix”).

Y

F

X
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Spectra of compact operators

Classical results
Any compact operator F : Y → X admits a spectral
decomposition:

F =
∞∑

i=1

σiui ⊗ vi .

where the σi ≥ 0 are the singular values and (ui)i∈N and (vi)i∈N
are orthonormal families in X and Y.
The spectrum of F is the set of singular values sorted in
decreasing order: σ1(F ) ≥ σ2(F ) ≥ . . . ≥ 0.
This is the natural generalization of singular values for matrices.
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Spectral penalty function

Definition
A function Ω : B0 (Y,X ) 7→ R ∪ {+∞} is called a spectral penalty
function if it can be written as:

Ω(F ) =
∞∑

i=1

si (σi(F )) ,

where for any i ≥ 1, si : R+ 7→ R+ ∪ {+∞} is a non-decreasing
penalty function satisfying si(0) = 0.
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Spectral penalty function

Examples
Rank constraint: take sk+1(0) = 0 and sk+1(u) = +∞ for u > 0,
and si = 0 for i ≥ k . Then

Ω(F ) =

{
0 if rank(F ) ≤ k ,

+∞ if rank(F ) > k .

Trace norm: take si(u) = u for all i , then:

Ω(F ) = ‖F ‖∗ .

Hilbert-Schmidt norm: take si(u) = u2 for all i , then

Ω(F ) = ‖F ‖2
Fro .
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Learning operator with spectral regularization

Setting
Training set: (xi , yi , ti)i=1,...,N a set of (movie,people,preference).
Loss function l(t , t ′) : cost of predicting preference t instead of t ′.
Empirical risk of an operator F :

RN(F ) =
1
N

N∑
i=1

l (〈xi , Fyi〉X , ti) .

Learning an operator

min
F∈B0(Y,X ), Ω(F )<∞

{RN(F ) + λΩ(F )} .
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A classical representer theorem

Theorem
If F̂ is a solution the problem:

min
F∈B2(Y,X )

{
RN(F ) + λ

∞∑
i=1

σi(F )2

}
,

then it is necessarily in the linear span of {xi ⊗ yi : i = 1, . . . , N}, i.e.,
it can be written as:

F̂ =
N∑

i=1

αixi ⊗ yi ,

for some α ∈ RN .

Proof
This is just the classical representer theorem for tensor product
kernels.
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A generalized representer theorem

Theorem
For any spectral penalty function Ω : B0 (Y,X ) 7→ R, let the
optimization problem:

min
F∈B0(Y,X ),Ω(F )<∞

{RN(F ) + λΩ(F )} .

If the set of solutions is not empty, then there is a solution F in
XN ⊗ YN , i.e., there exists α ∈ RmX×mY such that:

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

where (u1, . . . , umX ) and
(
v1, . . . , vmY

)
form orthonormal bases of XN

and YN , respectively.
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Practical consequence

Theorem (cont.)
The coefficients α that define the solution by

F =

mX∑
i=1

mY∑
j=1

αijui ⊗ vj ,

can be found by solving the following finite-dimensional optimization
problem:

min
α∈RmX×mY ,Ω(α)<∞

RN

(
diag

(
XαY>

))
+ λΩ(α) ,

where Ω(α) refers to the spectral penalty function applied to the matrix
α seen as an operator from RmY to RmX , and X and Y denote any
matrices that satisfy K = XX> and G = YY> for the two Gram
matrices K and G of XN and YN .
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Summary

We obtain various algorithms by choosing:
1 A loss function (depends on the application)
2 A spectral regularization (that is amenable to optimization)
3 Two kernels.

Both kernels and spectral regularization can be used to constrain the
solution
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Examples

Dirac kernel + spectral constraint (rank, trace norm) = matrix
completion
Attribute kernels + Hilbert-Schmidt regularization = kernel
methods for pairs with tensor product kernel
Attribute kernel on movies, Dirac on people, spectral
regularization (rank, trace norm) = multi-task learning (rank
constraints enforces sharing the weights between people).
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A family of kernels

Taken K⊗ = K ×G with{
K = ηK x

Attribute + (1− η)K x
Dirac ,

G = ζK y
Attribute + (1− ζ)K y

Dirac ,

for 0 ≤ η ≤ 1 and 0 ≤ ζ ≤ 1

ζ

?

multi−task prediction from attributes

multi−task
completion

matrix 1

1

0

η
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Simulated data

Experiment

Generate data (x, y, z) ∈ RfX × RfY × R according to

z = x>By + ε

Observe only nX < fX and nY < fY features
Low-rank assumption will find the missing features
Observed attributes will help the low-rank formulation to
concentrate mostly on the unknown features

Comparison of
Low-rank constraint without tracenorm (note that it requires
regularization)
Trace-norm formulation (regularization is implicit)
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Simulated data: results

Compare MSE
Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)
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Movies

MovieLens 100k database, ratings with attributes
Experiments with 943 movies and 1,642 people, 100,000 rankings
in {1, . . . , 5}
Train on a subset of the ratings, test on the rest
error measured with MSE (best constant prediction: 1.26)
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Conclusion

What we saw
A general framework for CF with or without attributes
A generalized representation theorem valid for any spectral
penalty function
A family of new methods;

Future work
The bottleneck is often practical optimization. Online version
possible.
Automatic kernel optimization
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