Collaborative filtering with attributes

Jacob Abernethy¹ Francis Bach² Theodoros Evgeniou³

Jean-Philippe Vert4

1 / 21

¹UC Berkeley

²INRIA / Ecole normale superieure de Paris

3INSFAD

⁴ParisTech / Institut Curie / INSERM

The Snowbird Learning Workshop, Snowbird, USA, April 1st, 2008.

Collaborative Filtering (CF)

The problem

- Given a set of $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and a set of $n_{\mathcal{Y}}$ "people" $\mathbf{y} \in \mathcal{Y}$,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of person \mathbf{x} for film \mathbf{y}
- Training data: large $n_X \times n_Y$ incomplete matrix Z that describes the known ratings of some persons for some movies
- Goal: complete the matrix.

Another CF example

Drug design

- Given a family of proteins of therapeutic interest (e.g., GPCR's)
- Given all known small molecules that bind to these proteins
- Can we predict unknown interactions?

CF by low-rank matrix approximation

- A common strategy for CF
- Z has rank less than $k \Leftrightarrow Z = UV^{\top} \cup \mathbb{R}^{n_{\mathcal{X}} \times k}, \ V \in \mathbb{R}^{n_{\mathcal{Y}} \times k}$
- Examples: PLSA (Hoffmann, 2001), MMMF (Srebro et al, 2004)
- Numerical and statistical efficiency

CF by low-rank matrix approximation example

Fitting low-rank models (Srebro et al, 2004)

- Choose a convex loss function $\ell(z, z')$ (hinge, square, etc...)
- Relax the (non-convex) rank of Z into the (convex) trace norm of Z: if $\sigma_i(Z)$ are the singular values of Z,

$$\operatorname{rank} Z = \sum_{i} \mathbf{1}_{\sigma_{i}(Z) > 0} \qquad \quad \|Z\|_{*} = \sum_{i} \sigma_{i}(Z).$$

• *n* observations z_u corresponding to $\mathbf{x}_{i(u)}$ and $\mathbf{y}_{j(u)}$, $u=1,\ldots,n$:

$$\min_{Z \in \mathbb{R}^{n_{\mathcal{X}} \times n_{\mathcal{Y}}}} \sum_{u=1}^{n} \ell(z_{u}, Z_{i(u), j(u)}) + \lambda \|Z\|_{*}$$

5/21

ullet This is an SDP if ℓ is SDP-representable

CF with attributes

The problem

- Often we have additional attributes:
 - gender, age of people; type, actors of movies..
 - 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or people.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms for CF in this setting

CF with attributes

The problem

- Often we have additional attributes:
 - gender, age of people; type, actors of movies..
 - 3D structures of proteins and ligands for protein-ligand interaction prediction
- How to include attributes in CF?
- Expected gains: increase performance, allow predictions on new movie and/or people.

Our contributions

- A general framework for CF with or without attributes, using kernels to describe attributes ("kernel-CF")
- A family of algorithms for CF in this setting

Setting

- Movies: points in a Hilbert space \mathcal{X}
- ullet Customers: points in a Hilbert space ${\mathcal Y}$
- We model the preference of customer y for a movie x by a bilinear form:

$$f(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, F\mathbf{y} \rangle_{\mathcal{X}}$$
,

where $F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X})$ is a compact linear operator (i.e., a "matrix").

Spectra of compact operators

Classical results

 Any compact operator F : Y → X admits a spectral decomposition:

$$F = \sum_{i=1}^{\infty} \sigma_i \mathbf{u}_i \otimes \mathbf{v}_i.$$

where the $\sigma_i \geq 0$ are the singular values and $(\mathbf{u}_i)_{i \in \mathbb{N}}$ and $(\mathbf{v}_i)_{i \in \mathbb{N}}$ are orthonormal families in \mathcal{X} and \mathcal{Y} .

- The spectrum of F is the set of singular values sorted in decreasing order: σ₁(F) ≥ σ₂(F) ≥ ... ≥ 0.
- This is the natural generalization of singular values for matrices.

Definition

A function $\Omega: \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R} \cup \{+\infty\}$ is called a spectral penalty function if it can be written as:

$$\Omega(F) = \sum_{i=1}^{\infty} s_i \left(\sigma_i(F) \right) \,,$$

where for any $i \ge 1$, $s_i : \mathbb{R}^+ \mapsto \mathbb{R}^+ \cup \{+\infty\}$ is a non-decreasing penalty function satisfying $s_i(0) = 0$.

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k, \\ +\infty & \text{if } rank(F) > k. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all i, then:

$$\Omega(F) = ||F||_*$$
.

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all i, then

$$\Omega(F) = \|F\|_{Fro}^2$$

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k, \\ +\infty & \text{if } rank(F) > k. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all i, then:

$$\Omega(F) = ||F||_*$$
.

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all i, then

$$\Omega(F) = \|F\|_{Fro}^2$$

Examples

• Rank constraint: take $s_{k+1}(0) = 0$ and $s_{k+1}(u) = +\infty$ for u > 0, and $s_i = 0$ for $i \ge k$. Then

$$\Omega(F) = \begin{cases} 0 & \text{if } rank(F) \leq k, \\ +\infty & \text{if } rank(F) > k. \end{cases}$$

• Trace norm: take $s_i(u) = u$ for all i, then:

$$\Omega(F) = \|F\|_*.$$

• Hilbert-Schmidt norm: take $s_i(u) = u^2$ for all i, then

$$\Omega(F) = \|F\|_{Fro}^2$$
.

Learning operator with spectral regularization

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie, people, preference).
- Loss function I(t, t'): cost of predicting preference t instead of t'.
- Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \ \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} .$$

Abernethy et al. () CF with attributes Snowbird 2008

Learning operator with spectral regularization

Setting

- Training set: $(\mathbf{x}_i, \mathbf{y}_i, t_i)_{i=1,...,N}$ a set of (movie, people, preference).
- Loss function I(t, t'): cost of predicting preference t instead of t'.
- Empirical risk of an operator F:

$$R_N(F) = \frac{1}{N} \sum_{i=1}^N I(\langle \mathbf{x}_i, F \mathbf{y}_i \rangle_{\mathcal{X}}, t_i) .$$

Learning an operator

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \ \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\}.$$

Abernethy et al. () CF with attributes Snowbird 2008

Theorem

If \hat{F} is a solution the problem:

$$\min_{F \in \mathcal{B}_2(\mathcal{Y}, \mathcal{X})} \left\{ R_N(F) + \lambda \sum_{i=1}^{\infty} \sigma_i(F)^2 \right\} ,$$

then it is necessarily in the linear span of $\{\mathbf{x}_i \otimes \mathbf{y}_i : i = 1, ..., N\}$, i.e., it can be written as:

$$\hat{F} = \sum_{i=1}^{N} \alpha_i \mathbf{x}_i \otimes \mathbf{y}_i \,,$$

for some $\alpha \in \mathbb{R}^N$.

Proof

This is just the classical representer theorem for tensor product kernels.

A generalized representer theorem

Theorem

For any spectral penalty function $\Omega: \mathcal{B}_0(\mathcal{Y}, \mathcal{X}) \mapsto \mathbb{R}$, let the optimization problem:

$$\min_{F \in \mathcal{B}_0(\mathcal{Y}, \mathcal{X}), \Omega(F) < \infty} \left\{ R_N(F) + \lambda \Omega(F) \right\} .$$

If the set of solutions is not empty, then there is a solution F in $\mathcal{X}_N \otimes \mathcal{Y}_N$, i.e., there exists $\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}$ such that:

$$F = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j \,,$$

where $(\mathbf{u}_1,\ldots,\mathbf{u}_{m_{\mathcal{X}}})$ and $(\mathbf{v}_1,\ldots,\mathbf{v}_{m_{\mathcal{Y}}})$ form orthonormal bases of \mathcal{X}_N and \mathcal{Y}_N , respectively.

Practical consequence

Theorem (cont.)

The coefficients α that define the solution by

$$F = \sum_{i=1}^{m_{\mathcal{X}}} \sum_{j=1}^{m_{\mathcal{Y}}} \alpha_{ij} \mathbf{u}_i \otimes \mathbf{v}_j \,,$$

can be found by solving the following finite-dimensional optimization problem:

$$\min_{\alpha \in \mathbb{R}^{m_{\mathcal{X}} \times m_{\mathcal{Y}}}, \Omega(\alpha) < \infty} R_{N} \left(diag \left(X \alpha Y^{\top} \right) \right) + \lambda \Omega(\alpha),$$

where $\Omega(\alpha)$ refers to the spectral penalty function applied to the matrix α seen as an operator from $\mathbb{R}^{m_{\mathcal{Y}}}$ to $\mathbb{R}^{m_{\mathcal{X}}}$, and X and Y denote any matrices that satisfy $K = XX^{\top}$ and $G = YY^{\top}$ for the two Gram matrices K and G of \mathcal{X}_N and \mathcal{Y}_N .

Summary

We obtain various algorithms by choosing:

- A loss function (depends on the application)
- 2 A spectral regularization (that is amenable to optimization)
- Two kernels.

Both kernels and spectral regularization can be used to constrain the solution

Examples

- Dirac kernel + spectral constraint (rank, trace norm) = matrix completion
- Attribute kernels + Hilbert-Schmidt regularization = kernel methods for pairs with tensor product kernel
- Attribute kernel on movies, Dirac on people, spectral regularization (rank, trace norm) = multi-task learning (rank constraints enforces sharing the weights between people).

A family of kernels

Taken $K_{\otimes} = K \times G$ with

$$\begin{cases} K = \eta K_{Attribute}^{x} + (1 - \eta) K_{Dirac}^{x}, \\ G = \zeta K_{Attribute}^{y} + (1 - \zeta) K_{Dirac}^{y}, \end{cases}$$

for $0 \le \eta \le 1$ and $0 \le \zeta \le 1$

Abernethy et al. () CF with attributes Snowbird 2008

Simulated data

Experiment

• Generate data $(\mathbf{x}, \mathbf{y}, z) \in \mathbb{R}^{f_\chi} \times \mathbb{R}^{f_\gamma} \times \mathbb{R}$ according to

$$\mathbf{z} = \mathbf{x}^{\top} \mathbf{B} \mathbf{y} + \boldsymbol{\varepsilon}$$

- Observe only $n_X < f_X$ and $n_Y < f_Y$ features
 - Low-rank assumption will find the missing features
 - Observed attributes will help the low-rank formulation to concentrate mostly on the unknown features
- Comparison of
 - Low-rank constraint without tracenorm (note that it requires regularization)
 - Trace-norm formulation (regularization is implicit)

Abernethy et al. () CF with attributes Snowbird 2008

Simulated data: results

- Compare MSE
- Left: rank constraint (best: 0.1540), right: trace norm (best: 0.1522)

- MovieLens 100k database, ratings with attributes
- Experiments with 943 movies and 1,642 people, 100,000 rankings in {1,...,5}
- Train on a subset of the ratings, test on the rest
- error measured with MSE (best constant prediction: 1.26)

Conclusion

What we saw

- A general framework for CF with or without attributes
- A generalized representation theorem valid for any spectral penalty function
- A family of new methods;

Future work

- The bottleneck is often practical optimization. Online version possible.
- Automatic kernel optimization

Reference

J. Abernethy, F. Bach, T. Evgeniou and J.-P. Vert, "A new approach to collaborative filtering: operator estimation with spectral constraint", *technical report arXiv* 0802-1431, 2008.