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@ A joint lab about “Cancer computational genomics, bioinformatics,
biostatistics and epidemiology”

@ Located in th Institut Curie, a major hospital and cancer research
institute in Europe

@ Hosted in a brand new building in the center of Paris (near
Notre-Dame, Saint-Germain, Pantheon...)
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Our research

@ Epidemiology of cancer (eg, studies on etiology of breast cancer)
@ General biostatistics (eg, clinical trials, risk modelling...)

@ Biostatistics and machine learning for bioinformatics
(high-throughput data processing, modeling, predictive models...)

@ Systems biology: analysis, modeling, inference of important
regulatory and signaling systems

@ IT: software developments, DB, web
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Main topics in machine learning / statistics

@ Processing high-throughput data (normalization, analysis):
transcriptome, genome (CGH/SNP), proteomics, kinome.
High-throughput sequencing is coming soon.

@ Making predictive models, in particular diagnosis / prognosis

@ Data mining / integration of heterogeneous data

@ Structural bioinformatics, protein-protein interactions, virtual
screening, chemogenomics
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0 Including prior knowledge in classification and regression
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0 Including prior knowledge in classification and regression

e Virtual screening and chemogenomics
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0 Including prior knowledge in classification and regression
e Virtual screening and chemogenomics

e Inference on biological networks
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0 Including prior knowledge in classification and regression
e Virtual screening and chemogenomics
e Inference on biological networks

e Conclusion
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0 Including prior knowledge in classification and regression
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Linear classifiers

The model

@ Each sample is represented by a vector x = (xy,...,Xp)
@ Goal: estimate a linear function:

o
fa(x) = > BiXi + fo -

i=1

@ Interpretability: the weight g; quantifies the influence of feature i
(but...)
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Linear classifiers

Training the model

p
fa(x) =Y Bixi + Bo -

i=1

@ Minimize an empirical risk on the training samples:

. 1<
mMin_ Remp(3) = . Z/(fﬁ(xi)7}/i):
i—1

BERPH

@ ... subject to some constraint on 3, e.g.:

Q(p) < C.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of g

)
Qriage(8) = 1 BII5 =D _ 57,

i=1

(ridge regression, support vector machines...)

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are sufficient for classification.

@ Greedy feature selection (T-tests, ...)

@ Contrain the norm of 3: LASSO penalty (|| 8 l1 = Y5, | 8 ]),
elastic net penalty (|| 5 |l1 + || B1l2), --- )

Cons

@ The gene selection
process is usually not

@ Good performance in
classification

@ Biomarker selection robust
knowledge

v
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Incorporating prior knowledge

@ If we have a specific prior knowledge about the “correct” weights,
it can be included in Q in the contraint:

Minimize Remp() subject to Q(5) < C.

@ If we design a convex function €2, then the algorithm boils down to
a convex optimization problem (usually easy to solve).

@ Similar to priors in Bayesian statistics
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Example: CGH array classification

The problem

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?

@ Prior knowledge: we expect 3 to be sparse, and piecewise
constant along the genome

Amplified segments

N Unaltered segment

Deleted segment

61 162 163
‘genomic position x10°
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Example: CGH array classification

A solution (Rapaport et al., 2008)
qusedlasso(ﬂ) - Z ’6/‘ + Z ’ﬂ/ - ﬁj| .

inof

@ Good performance on diagnosis for bladder cancer, and prognosis
for melanoma.

@ More interpretable classifiers
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Example: finding discriminant modules in gene
networks

The problem

@ Classification of gene expression: too many genes

@ A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)

@ We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification
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Example: finding discriminant modules in gene
networks

The problem
@ Classification of gene expression: too many genes
@ A gene network is given (PPI, metabolic, regulatory, signaling,
co-expression...)
@ We expect that “clusters of genes” (modules) in the network
contribute similarly to the classification

.

Two solutions (Rapaport et al., 2007, 2008)
Qspectral(ﬂ) = Z(ﬁi - ﬂj)z )

inf

Qgraphiusion(8) = > _ 161 — Bjl + Z |1Gil -

inf
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Example: finding discriminant modules in gene

networks
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e Virtual screening and chemogenomics
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Ligand-Based Virtual Screening and QSAR

inactive %’

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Classical approaches

Two steps

@ Map each molecule to a vector of fixed dimension using molecular
descriptors

o Global properties of the molecules (mass, logP...)
e 2D and 3D descriptors (substructures, fragments, ....)

© Apply an algorithm for regression or pattern recognition.
o PLS, ANN, ...

Example: 2D structural keys

@ AN AN, NG =N N

NIy

| ENEEEEEENNEN EEEREEE N
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Which descriptors?
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@ Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)

@ But too many descriptors are harmful for memory storage,
computation speed, statistical estimation
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Kernels

Definition
@ Let &(x) = (P1(x),...,Pp(x)) be a vector representation of the
molecule x

@ The kernel between two molecules is defined by:
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Example: 2D fragment kernel

(] C c—-c O——N—"-C c=—c——c=—c——c=—c¢
—_— ——c—C
» Io) g 2‘ ...0 c—~C. ... O N C e e e
N—oO ¢ ¢ ¢ N——C——C=—=C——C—=C
N/O N N——C——¢C
(o]

@ ¢q(x) is the vector of counts of all fragments of length d:
p1(x)=( t©, 40,4, ...)"

do(X) =( #(c—c),#(c=0),4(CcN), ...

)T etc...

@ The 2D fragment kernel is defined, for A < 1, by

o0
Kfragment X, X Z I’ T¢d( )
a=1
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Example: 2D fragment kernel

/
0] C c——c O——N—-¢C c=—c——c=—c——c=—c¢
- o SN ..o=—c—=C...... N e e
N/O N NTo ﬁ:i:ﬁ N—C—¢=—¢—¢c—=¢
I
In practice

@ Kiagment can be computed efficiently (geometric kernel, random
walk kernel...) although the feature space has infinite dimension.

@ Increasing the specificity of atom labels improves performance

@ Selecting only “non-tottering” fragments can be done efficiently
and improves performance.
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Example: 2D subtree kernel

N— N—C—C—C
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Example: 3D pharmacophore kernel (Mahé et al.,
2005)

Kx.y)= >, > exp(—d(pxpy) -

PxE€P(x) pyeP(y)

Results (accuracy)

Kernel \ BZR \ COX \ DHFR \ ER
2D (Tanimoto) 712 | 63.0 | 76.9 | 771
3D fingerprint 754|670 | 769 |78.6
3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Chemogenomics

The problem
@ Similar targets bind similar ligands

@ Instead of focusing on each target individually, can we screen the
biological space (target families) vs the chemical space (ligands)?

@ Mathematically, learn f(target, ligand) € {bind, notbind}

CAL S, }{
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Chemogenomics with SVM

Tensor product SVM

@ Take the kernel:

K (8D, (1,1) = Ki(t, YK (1, ).

@ Equivalently, represent a pair (t, /) by the vector ¢;(t) @ ¢,(/)

@ Allows to use any kernel for proteins K; with any kernel for small
molecules K;

@ When K; is the Dirac kernel, we recover the classical paradigm:
each target is treated independently from the others.

@ Otherwise, information is shared across targets. The more similar
the targets, the more they share information.
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Example: MHC-I epitope prediction across different
alleles

The approach (Jacob and V., 2007)

@ take a kernel to compare different MHC-I alleles (e.g., based on
the amino-acids in the paptide recognition pocket)

@ take a kernel to compare different epitopes (9-mer peptides)
@ Combine them to learn the f(allele, epitope) function

@ State-of-the-art performance

@ Available at http://cbio.ensmp.fr/kiss
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Generalization: collaborative filtering with attributes

@ General problem: learn f(x, y) with a kernel K, for x and a kernel
Ky for y.

@ SVM with a tensor product kernel Ky ® K is a particular case of
something more general: estimating an operator with a spectral
regularization.

@ Other spectral regularization are possible (e.g., trace norm) and
lead to efficient algorithms

@ More details in Abernethy et al. (2008).

0
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e Inference on biological networks
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Biological networks
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@ Gene expression, @ Protein-protein interactions,
@ Gene sequence, @ Metabolic pathways,

@ Protein localization, ... @ Signaling pathways, ...
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More precisely

“De novo” inference

@ Given data about individual genes and proteins
@ Infer the edges between genes and proteins
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More precisely

“De novo” inference

@ Given data about individual genes and proteins
@ Infer the edges between genes and proteins

“Supervised” inference

@ Given data about individual genes and proteins
@ and given some known interactions
@ infer unknown interactions
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Main messages

@ Most methods developed so far are “de novo” (e.g., co-expression,
Bayesian networks, mutual information nets, dynamical
systems...)

© However most real-world application fit the “supervised”
framework

© Solving the “supervised” problem is much easier (and more
efficient) than the “de novo” problem. It requires less hypothesis.
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional indenpence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros Cons

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time
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Supervised methods

In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method

@ Given genomic data and
the currently known
network...

@ Infer missing edges

between current nodes and
additional nodes.
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Supervised approach by Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method

@ Examples: kernels CCA (Yamanishi et al. 2004), kernel metric
learning (V and Yamanishi, 2005)
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Supervised approach by Metric learning

@ The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.

@ Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method

@ Examples: kernels CCA (Yamanishi et al. 2004), kernel metric
learning (V and Yamanishi, 2005)
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!

10
1 4
2 o
@
4

®3
3 2@
Known graph Genomic data
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Supervised inference by pattern recognition

Formulation and basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
e Ais similarto D and B is similar to C
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
e Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepx (8, b), (¢, d)) = K(a, c)K(b, d) + K(a, d)K(b,c) .
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Tensor product SVM (Ben-Hur and Noble, 2006)

@ Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ Ais similar to C and B is similar to D, or...
e Ais similarto D and B is similar to C

@ Formally, define a similarity between pairs from a similarity
between individuals by

Krepx (8, b), (¢, d)) = K(a, c)K(b, d) + K(a, d)K(b,c) .

@ If K is a positive definite kernel for individuals then Krppi is a p.d.
kernel for pairs which can be used by SVM

@ This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a,b) — (a®b)® (bw a) .
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Metric learning pairwise SVM (V. et al, 2007)

@ |Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bis similarto C — D, or...
o A— Bissimilarto D — C.
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Metric learning pairwise SVM (V. et al, 2007)

@ |Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bis similarto C — D, or...
o A— Bissimilarto D — C.

@ Formally, define a similarity between pairs from a similarity
between individuals by

Kuek ((a, b), (¢, d)) = (K(a,c) + K(b,d) — K(a,c) — K(b,d))? .
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Metric learning pairwise SVM (V. et al, 2007)

@ |Intuition: a pair (A, B) is similar to a pair (C, D) if:
@ A— Bis similarto C — D, or...
e A— Bis similarto D — C.
@ Formally, define a similarity between pairs from a similarity
between individuals by

Kuek ((a, b), (¢, d)) = (K(a,c) + K(b,d) — K(a,c) — K(b,d))? .

@ If K is a positive definite kernel for individuals then K px is a p.d.
kernel for pairs which can be used by SVM
@ This amounts to representing a pair (a, b) by the symmetrized

difference:
(a,b) — (a—b)*?.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Supervised inference with local models

The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
+1 O
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



The LOCAL model
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The LOCAL model
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The LOCAL model
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The LOCAL model
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Results: protein-protein interaction (yeast)
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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(from Bleakley et al., 2007)
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Results: regulatory network (E. coli)

Ratio of true positives

0.8

0.6

0.4

0.2

! CLR
SIRENE
0.8 SIRENE-Bias
‘5 0.6
§ 0.4
CLR 0.2
SIRENE
SIRENE-Bias
0.2 0.4 0.6 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Results: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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Outline

e Conclusion
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@ Modern machine learning methods for regression / classification
lend themselves well to the integration of prior knowledge in the
penalization / regularization function, in particular for feature
selection / grouping. Applications in array CGH classification,
siRNA design, microarray classification with gene networks

@ Kernel methods (eg SVM) allow to manipulate complex objects
(eg molecules, biological sequences) as soon as kernels can be
defined and computed. Applications in virtual screening, QSAR,
chemogenomics.

@ Inference of biological networks can be formulated as a
supervised problem if the graph is partly known, and powerful
methods can be applied. Application in PPI, metabolic and
regulatory networks inference.

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



People | need to thank

Including prior knowledge in penalization

Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Christian
Lajaunie, Yves Vandenbrouck, Nicolas Foveau...

Virtual screening, kernels etc..

Pierre Mahé, Laurent Jacob, Liva Ralaivola, Véronique Stoven, Brice
Hoffman, Martial Hue, Francis Bach, Jacob Abernethy, Theos
Evgeniou...

| A

Network inference

Kevin Bleakley, Fantine Mordelet, Yoshihiro Yamanihi, Gérard Biau,
Minoru Kanehisa, William Noble, Jian Qiu...

| A

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



	Including prior knowledge in classification and regression
	Virtual screening and chemogenomics
	Inference on biological networks
	Conclusion

