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Part 1

Statistical Learning with
Positive Definite Kernels
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0 .
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Examples

Kernels for vectors
Classical kernels for vectors (X = Rp) include:

The linear kernel
Klin

(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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P.d. kernels are inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

φ
X H
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Reproducing kernel Hilbert space

Definition
Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product 〈., .〉H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = 〈f , Kx〉H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).
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Positive definite and reproducing kernels are the same

Theorem (Aronszajn, 1950)
K is a p.d. kernel if and only if there exists a RKHS having K as r.k.

Explicit construction of the RKHS
If K is p.d., then the RKHS H is the vector subspace of RX

spanned by the functions {Kx}x∈X (and their pointwise limits).
For any f , g ∈ H0, given by:

f =
∑

i

aiKxi , g =
∑

j

bjKyj ,

the inner product is given by:

〈f , g〉H0
:=

∑
i,j

aibjK
(
xi , yj

)
, ‖ f ‖2

H0
=

∑
i,j

aiajK
(
xi , xj

)
.
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Example : RKHS of the linear kernel


K (x, x′) = x>x′ .
f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5
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Smoothness functional

A simple inequality
By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :∣∣ f (x)− f

(
x′

) ∣∣ = | 〈f , Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ‖ f ‖H).

Important message

Small norm =⇒ slow variations.
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A useful property

Representer theorem (Kimeldorf and Wahba, 1971)
Let X be a set endowed with a p.d. kernel K , HK the
corresponding RKHS, and S = {x1, · · · , xn} ⊂ X a finite set of
points in X .
Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.
Then, any solution to the optimization problem:

min
f∈HK

Ψ(f (x1) , · · · , f (xn) , ‖ f ‖HK ) ,

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi , x) .
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Learning from data

General setting
Observation: {z1, . . . , zn} where zi = (xi , yi) ∈ X × Y
Goal: learn a function f : X → R
Examples: density estimation, pattern recognition, regression,
outlier detection, clustering, compression, low-dimensional
embedding...
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Learning from data

Empirical risk minimization (ERM)
1 Define a loss function l(f , z) and a space of functions F .
2 Minimize the empirical average loss over F :

f̂ ∈ arg min
f∈F

1
n

n∑
i=1

l(f , zi) .

General properties of ERM

If F is not “too large” then the ERM is consistent (f̂ is close to the
best possible f ∈ F as the number of observations increases).
If F is not “too small” then the best possible f ∈ F is a “good”
solution.
Challenge: choose a “small” F that contains “good” functions.
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Learning with kernels

ERM in RKHS
Take F to be a ball in the RKHS:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Advantage: by controlling the “size” of F (related to B) the ERM
principle works (consistency and theoretical rates of
convergence).
The kernel should be chosen s.t. some “good” functions have a
small RKHS norm.
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Example: pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X
Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.
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Large-margin classifiers

General setting
For pattern recognition Y = {−1, 1}.
Goal: estimate a function f : X → R to predict y from the sign of
f (x)

The margin for a pair (x, y) is yf (x).
Focusing on large margins ensures that f (x) has the same sign
as y and a large absolute value (confidence).
Leads to a loss function

l (f , (x, y)) = φ (yf (x)) ,

where φ : R → R is non-increasing.
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ERM in for large-margin classifiers: Theory

Theoretical results

The ERM estimator f̂n solves:{
minf∈H

1
n

∑n
i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

Let P an unknown distribution over X × Y, assume
S = (xi , yi)i=1,...,n i.i.d. according to P.
Assume K upper bounded by κ and φ Lipschitz with constant Lφ.
For the φ-risk Rφ(f ) = Eφ (Yf (X )) we have:

ERφ

(
f̂n

)
≤ inf

f∈FB
Rφ(f ) +

8LφκB√
n

.
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ERM in for large-margin classifiers: Practice

Reformulation as penalized minimization
We must solve the constrained minimization problem:{

minf∈H
1
n

∑n
i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

To make this practical we assume that φ is convex.
The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f∈H

{
1
n

n∑
i=1

φ (yi f (xi)) + λ‖ f ‖2
H

}
,

and complimentary slackness holds (λ = 0 or ‖ f ‖H = B).
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Optimization in RKHS

By the representer theorem, the solution of the unconstrained
problem can be expanded as:

f (x) =
n∑

i=1

αiK (xi , x) .

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1
n

n∑
i=1

φ

yi

n∑
j=1

αjK
(
xi , xj

) + λ

n∑
i,j=1

αiαjK
(
xi , xj

) .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).
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Loss function examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

ph
i(u

)

1−SVM
2−SVM
Logistic
Boosting

Method φ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u, 0)

Support vector machine (2-SVM) max (1− u, 0)2

Boosting e−u
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Kernel methods: Summary

3 ways to map X to a Hilbert space:
1 Explicitly define and compute Φ : X → H
2 Define a p.d. kernel over X
3 Define a RKHS over X

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).
The norm in the RKHS can be used as regularization for empirical
risk minimization. This is theoretically justified and leads to
efficient algorithms (often finite-dimensional convex problem
thanks to the representer theorem).
We are now ready to learn with graphs by defining positive definite
kernels for graphs!
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Part 2

Kernels on Graphs
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.
Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to make a kernel on a graph
X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X .
How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj
are “close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth” on
the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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Conditionally p.d. kernels

Hilbert distance
Any p.d. kernels is an inner product in a Hilbert space

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

It defines a Hilbert distance:

dK
(
x, x′

)2
= K (x, x) + K

(
x′, x′

)
− 2K

(
x, x′

)
−d2

K is conditionally positive definite, i.e.:

∀t > 0 , exp
(
−tdK

(
x, x′

)2
)

is p.d.
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Graph distance

Graph embedding in a Hilbert space
Given a graph G = (V , E), the graph distance dG(x , x ′) between
any two vertices is the length of the shortest path between x and
x ′.
We say that the graph G = (V , E) can be embedded (exactly) in a
Hilbert space if −dG is c.p.d., which implies in particular that
exp(−tdG(x , x ′)) is p.d. for all t > 0.

Lemma
In general graphs can not be embedded exactly in Hilbert spaces.
In some cases exact embeddings exists, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.
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Example: non-c.p.d. graph distance

1 5

2

3
4

dG =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0


λmin

([
e(−0.2dG(i,j))

])
= −0.028 < 0 .
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Graph distance on trees are c.p.d.

Proof
Let G = (V , E) a tree
Fix a root x0 ∈ V
Represent any vertex x ∈ V by a vector Φ(x) ∈ R|E |, where
Φ(x)i = 1 is the i-th edge is in the (unique) path between x and
x0, 0 otherwise.
Then:

dG(x , x ′) = ‖Φ(x)− Φ(x ′) ‖2 ,

and therefore −dG is c.p.d., in particular exp(−tdG(x , x ′)) is p.d.
for all t > 0.
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Example

1

2

3

4

5

[
e−dG(i,j)

]
=


1 0.14 0.37 0.14 0.05

0.14 1 0.37 0.14 0.05
0.37 0.37 1 0.37 0.14
0.14 0.14 0.37 1 0.37
0.05 0.05 0.14 0.37 1


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Graph distance on closed chains are c.p.d.

Proof: case |V | = 2p
Let G = (V , E) a cycle with an even number of vertices |V | = 2p
Fix a root x0 ∈ V , number the 2p edges from x0 to x0.
Map the 2p edges in Rp to (e1, . . . , ep,−e1, . . . ,−ep)

Map a vertex v to the sum of the edges in the shortest path
between x0 and v .
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Functional approach

Motivation
How to make p.d. kernel on general graphs?
Making a kernel is equivalent to defining a RKHS.
There are intuitive notions of smoothness on a graph

Idea
Define a priori a smoothness functional on the functions
f : X → R.
Show that it defines a RKHS and identify the corresponding kernel

Jean-Philippe Vert (ParisTech) Statistical learning on graphs 37 / 72



Notations

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1


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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1


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Properties of the Laplacian

Lemma
Let L = D − A be the Laplacian of a connected graph:

For any f : X → R,

Ω(f ) :=
∑
i∼j

(
f (xi)− f

(
xj

))2
= f>Lf

L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}
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Proof: link between Ω(f ) and L

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

=
∑
i∼j

(
f (xi)

2 + f
(
xj

)2 − 2f (xi) f
(
xj

))

=
m∑

i=1

Di,i f (xi)
2 − 2

∑
i∼j

f (xi) f
(
xj

)
= f>Df − f>Af

= f>Lf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.
For any f ∈ Rm, f>Lf = Ω(f ) ≥ 0, therefore the (real-valued)
eigenvalues of L are ≥ 0 : L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0
iff f>Lf = 0
iff

∑
i∼j

(
f (xi)− f

(
xj

))2
= 0 ,

iff f (xi) = f
(
xj

)
when i ∼ j ,

iff f is constant (because the graph is connected).
L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. �
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Our first graph kernel

Theorem

The set H =
{

f ∈ Rm :
∑m

i=1 fi = 0
}

endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

is a RKHS whose reproducing kernel is L∗, the pseudo-inverse of the
graph Laplacian.
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Proof (1/2)

Resticted to H, the symmetric bilinear form:

〈f , g〉 = f>Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).
The norm in this Hilbert space H is:

‖ f ‖2 = 〈f , f 〉 = f>Lf = Ω(f ) .

Jean-Philippe Vert (ParisTech) Statistical learning on graphs 44 / 72



Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L∗, it suffices
to show that: {

∀x ∈ X , Kx ∈ H ,

∀ (x, f ) ∈ X ×H, 〈f , Kx〉 = f (x) .

Ker(K ) = Ker (L∗) = Ker (L), implying K 1 = 0. Therefore, each
row/column of K is in H.
For any f ∈ H, if we note gi = 〈K (i , ·), f 〉 we get:

g = KLf = L∗Lf = ΠH(f ) = f .

As a conclusion K = L∗ is the reproducing kernel of H. �
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Example

1

2

3

4

5

L∗ =


0.88 −0.12 0.08 −0.32 −0.52

−0.12 0.88 0.08 −0.32 −0.52
0.08 0.08 0.28 −0.12 −0.32

−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08



Jean-Philippe Vert (ParisTech) Statistical learning on graphs 46 / 72



Outline

1 Statistical learning with positive definite kernels

2 Kernels on graphs
Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Jean-Philippe Vert (ParisTech) Statistical learning on graphs 47 / 72



The diffusion equation

Lemma
For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp
(
−‖x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x, 0) = δx0(x).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = −Lft

which admits the following solution:

ft = f0e−tL

This suggest to consider:

K = e−tL

which is indeed symmetric positive semi-definite. We call it the
diffusion kernel or heat kernel.
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Example: complete graph

Ki,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .
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Example: closed chain

Ki,j =
1
m

m−1∑
ν=0

exp
[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)
m

.
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Example

1

2

3

4

5

e−L =


0.50 0.13 0.24 0.10 0.04
0.13 0.50 0.24 0.10 0.04
0.24 0.24 0.24 0.18 0.10
0.10 0.10 0.18 0.32 0.30
0.04 0.04 0.10 0.30 0.52


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Outline

1 Statistical learning with positive definite kernels

2 Kernels on graphs
Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
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Spectrum of the diffusion kernel

Let 0 = λ1 < λ2 ≤ . . . ≤ λm be the eigenvalues of the Laplacian:

L =
m∑

i=1

λiuiu>i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi uiu>i
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Norm in the diffusion RKHS

For any function f ∈ Rm, let:

f̂i = u>i f

be the Fourier coefficients of f (projection of f onto the eigenbasis
of K ).
The RKHS norm of f is then:

‖ f ‖2
Kt

= f>K−1f =
m∑

i=1

etλi f̂ 2
i .
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)uiu>i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ + ε
, ε > 0

K =
m∑

i=1

1
λi + ε

uiu>i = (L + εI)−1

‖ f ‖2
K = f>K−1f =

∑
i∼j

(
f (xi)− f

(
xj

))2
+ ε

m∑
i=1

f (xi)
2 .
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Example

1

2

3

4

5

(L + I)−1 =


0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
0.19 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62


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Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f∈RX

∑
i∼j

(
fi − fj

)2 s.t.
∑

i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2
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Applications 2: search on a graph

Let x1, . . . , xq a set of q nodes (the query). How to find “similar”
nodes (and rank them)?
One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . , q.
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Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray
data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes

Jean-Philippe Vert (ParisTech) Statistical learning on graphs 64 / 72



Application 4: Tumor classification from microarray
data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes

Jean-Philippe Vert (ParisTech) Statistical learning on graphs 64 / 72



Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

Interpretation: the weight βi quantifies the influence of gene i for
the classification

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!
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Prior knowledge

We know the functions of many genes, and how they interact
together.
This can be represented as a graph of genes, where connected
genes perform some action together
Prior knowledge: constraint the weights of genes that work
together to be similar
Mathematically: constrain the norm of the weight vector in the
RKHS of the diffusion kernel.
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Comparison
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Conclusion
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Conclusion

What we saw
Extension of machine learning algorithms to graph data through
the definition of positive definite kernels for and on graphs
A variety of solutions have been proposed, borrowing ideas from
graph algorithms and spectral graph theory.
Increasingly used in real-world applications.

Unanswered question
Theoretical foundations to guide the choice of kernel?
How to design / choose / learn a kernel for a given application in
practice?
How to improve scalability of kernel methods + graph kernels to
large datasets?
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