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Typical problem: supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.
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Strategy 1: Supervised classification with vector
embedding

The idea
@ Map each string x € X' to a vector ®(x) € RP.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)
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Strategy 1: Supervised classification with vector
embedding

Cons

@ How to embed strings
into vectors?

@ How to include prior
knowledge in the
features?

@ Many algorithms exist

@ Good performance in
classification
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Strategy 2: generative models

The idea

@ Estimate a model P;(x) and Py(x) for each class

@ Predict the class of a new sequence by comparing the
probabilities of the sequence under both models
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Strategy 2: generative models

Pros

Cons

@ Many good models exist @ Discrepancy between
(Markov chains, HMM, the modelling criterion
SCFG..) and the classification

@ Easy to include prior criterion
knowledge @ Discriminative methods

@ Good procedures to often give better results
estimate models

Nt
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Contribution

@ A general framework to combine the pros of both approaches:
kernel methods with mutual information kernels

© A particular case where this framework can be applied efficiently:
the context-tree weighting kernel
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@ From generative models to kernel methods
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@ From generative models to kernel methods

e Context-tree weighting kernel
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@ From generative models to kernel methods
e Context-tree weighting kernel

e Conclusion
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@ From generative models to kernel methods
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Ingredients

@ X the space of data
e e.g., the set of finite-length strings
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Ingredients

@ X the space of data
e e.g., the set of finite-length strings

© A parametric set of probability distributions over X’:

{Py,0 € © C R}

e e.g., a Markov chain, HMM, SCFG, ...
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Ingredients

@ X the space of data
e e.g., the set of finite-length strings

© A parametric set of probability distributions over X’:

{Py,0 € © C R}

@ e.g., a Markov chain, HMM, SCFG, ...
© A prior distribution w(d@) over ©
@ e.g., Dirichlet prior...
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Fitting a generative model

The problem
@ Given atraining set of ndata D = (x1,...,Xn) in X,
@ Estimate a distribution Pp(dx) over X to model D
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Fitting a generative model

The problem
@ Given atraining set of ndata D = (x1,...,Xn) in X,
@ Estimate a distribution Pp(dx) over X to model D

Estimation strategy

@ Parameter estimation: take Pp = P;, where 0 € © is estimated,
e.g., by maximum likelihood or MAP.

@ Bayesian approach: take Pp = [ Pyw(d6|D), where w(d6|D) is
the posterior distribution.
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Fitting a generative model

The problem
@ Given atraining set of ndata D = (xq,...,Xp) in X,
@ Estimate a distribution Pp(dx) over X to model D

Estimation strategy

@ Parameter estimation: take Pp = P;, where 0 € © is estimated,
e.g., by maximum likelihood or MAP.

@ Bayesian approach: take Pp = [ Pyw(d6|D), where w(d6|D) is
the posterior distribution.

@ Pp is a distribution over X, in the convex hull of the model.
@ The probability of the strings in the training set under P is “large”.
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Fitting a generative model

In both cases

@ MODELLING: The model {Py, 0 € ©} defines a set of basic
distributions

@ LEARNING: The fitting procedure finds a convex combination:
Pp = Powp(d9),
=C)

where wp is a distribution over © that depends on the training set
D, following some principle (ML, MAP, Bayes...)
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Generative models for discrimination

The problem

Given two sets Dy and D, representing two populations (e.g., secreted
vs. non-secreted proteins), estimate a score function f(x) that
discrimates both populations.

The generative approach

@ Estimate Pp, and Pp, using the methodology to fit generative
models on Dy and D>

@ Form the score:

f(x) = Pp,(x) — Pp,(x) + cte.

@ fis an affine function of the {Py,0 € ©}
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Fitting generative model for classification

In both cases

@ MODELLING: The model {Py, 0 € ©} defines a set of basic
distributions

@ LEARNING: The fitting procedure finds an affine combination:

f= Pywp(db),
6co

where wp is a signed measure, following some principle.
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Discrimination with generative models
@ Modelling l @ Learning principles not

adapted to classification
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Discrimination with generative models
@ Modelling \ @ Learning principles not

adapted to classification

A natural idea

@ Keep the model for MODELLING: f should be an affine function of
{Py,0 € ©}, i.e.:

f(x) = Py(x)wp(d),
0co
where wp is a signed measure that depends on the training set D.

@ Change the procedure for LEARNING: Replace the generative
model fitting principles by learning principles for discrimination.
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Reformulation

Learning in Hilbert space

@ Let H = L2(©, w) be the Hilbert space of functions f : © — R with
inner product:

9 = /e (0)g(6) w(db).
@ Let the embedding ¢ : X — H defined by:
d(x) =1{0 — Py(x)} .
@ We want to find a linear function in H, i.e., a vector u € H with:
F(x) = (®(x), Uy, = / Po(X)u(0)w(db),

that discriminates between the two classes.
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Example: support vector machine

f(x) = sign <Z aiyi <¢(Xi)7¢(x)>H> ;

i=1

where oy, ..., an solve, under the constraints 0 < «; < C:

min (% DD iy (O0), (%)), — > 0“') '
i=1

i=1 i=1
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Kernel trick

Problem

d(x) ={0— Py(x)}is
infinite-dimensional,
can not be computed
nor manipulated.

Jean-Philippe Vert (ParisTech)

Context tree weighting kernel



Kernel trick

Problem

d(x) ={0— Py(x)}is
infinite-dimensional,
can not be computed
nor manipulated.

Kernel

@ Thekernel K: X x X — Ris:

K(x,x") = (®(x), ®(x')),,

@ If K(x, x") can be computed, learning algorithms can be used!
(kernel methods)
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Example: support vector machine with kernels

SVM algorithm
n
f(x) = sign (Z a;yiK(x;, X)) ;

i=1

where oy, ..., an solve, under the constraints 0 < «; < C:

mOEn( ZZa,a/y,y/ (X1, X)) Za,).

=l =1

Jean-Philippe Vert (ParisTech) Context tree weighting kernel 20/36



From generative models to kernel methods

@ A model defines a family of distributions M = {Py,0 € © C R™}.

@ Fitting a model to empirical data usually means finding a function
f in the convex hull or linear span of M:

f= Py WD(O'Q) ,
0co
@ Equivalently f is a linear function in the Hilbert space X after the
embedding ®(x) = {6 — Pa(x)}
@ Powerful kernel methods (e.g., SVM) can be used to infer such a
linear function as soon as the mutual information kernel (Seeger,
2002) can be computed:

K(x,X') = (0(x), &(x')),, /Pg X)Py (X w(db) .
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e Context-tree weighting kernel
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Warm-up example

@ X the set of finite-length binary strings

@ Py(X =1)=20and Py(X =0)=1—6amodel for independent
random coin toss, with 6 € [0, 1].

@ Let do be the Lebesgue measure on [0, 1]
@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =6(1—0)>
Py(X') =62(1-0),

3'4I 1
3 —_
x x / 6° (1 9 T 280 .
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Context-tree model

A context-tree model is a variable-memory Markov chain:

Pp o(X) = Pp (X H Ppo(Xi| Xi—p .. Xi—1)
i=D+1

@ D is a suffix tree
@ 0 c P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0a5(A)04(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree weighting kernel

@ We have a family of models:

M={Ppy,DeT,0 X}
@ We define a prior over M that factorizes as:
(D, df) = n(D)r(d6|D) .

@ The resulting context-tree weighting kernel is then

K(x.x)=>Y /9 - Pp o(X)Pp o(X")7(d6|D)m (D).
D €
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Prior =(D)

The set of suffix trees of depth up to D is endowed with the distribution J

of a branching process
Sy
& (-9

P(D) = (1 — ¢)*
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Prior 7(d6 | D)

@ 0 is made of |D| multinomial parameters. We endow them
independently with a Dirichlet prior:

m(d0| D) = [] ws(dbs)

seD

with
d
9) ~ H 9,-6i—1
i=1

@ We can also consider Dirichlet mixtures:

Wy, ﬁ d93 Z Y Wﬁ k)(des)
k=1
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The context-tree kernel

Theorem (Cuturi et al., 2004)

@ For these choices of priors, the context-tree kernel:

Kxx)=Y" /6 _ Po(x)Pns(x)x(db|D)x(D)
D S

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.
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Computation

@ The CTW algorithm (Willems et al., 1995) provides a linear-time
algorithm to compute the coding probability:

z /0 Pp (X)7(d8]|D)x(D)

@ The extension to K(x, x’) is obvious: it roughly corresponds to
computing the coding probability of the concatenation of x and x’
because

P’D’Q(X)P'D’Q(X/) = PDﬂ(XX/) .

@ The extension from Dirichlet priors to Dirichlet mixture does not
increase the complexity of the algorithm.
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Length normalization

@ In practice K(x, x") decreases exponentially with the length of x
and x’

@ This means that the sequences are almost orthogonal in the
Hilbert space, which prevents learning (issue of diagonal
dominance)

@ Possible length normalization:

Ky (x.x) =Y /0 . Pp.o(X) ™ Pp o(X') 1 (6| D) (D).
D Ve
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Coding interpretation

@ The cosine between ®(x) and ®(x’) in H is:

(), @(x))y KX, X)
PO [l SO Nl /KOG X)K (X, X))

c(x,x") =

@ Therefore:
—log, ¢(x, x') = —log K(x, x’)+% (—log, K(x, x") —log, K(x', x")) |

@ —log, K(x, x") is the length of the code of x and x’ coded together

@ —logc(x, x') is therefore the gain in compression when x and x’
are coded together, compared to the situation where they are
compressed independently to each other.

@ This is known as the mutual information between x and x’.
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Semigroup kernel interpretation

@ Let W(x) the statistics of x needed to compute the kernel.

@ The CTW kernel has the particularity that K(x, x’) is a function of
V(x) + W(x’) (i.e., roughly speaking a function of the
concatenation of x and x’).

@ The set of strings endowed with the concatenation is a semigroup
(more precisely the set of V(x) endowed with addition is a
semigroup)

@ the CTW kernel is a semigroup positive definite function;
K(x,x") = g(¥(x) + V(X))

@ Such semigroup kernels can be characterized in more generality
(representation as convex combination of semigroup characters),
and more kernel can be imagined (Cuturi et al., 2006).
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Application: SCOP classification benchmark
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Fig. 4. Performance of all considered kernels on the problem of recognizing domain’s superfamily.
The curve shows the total number of families for which a given methods exceeds a ROC score
threshold. CTK denotes the context-tree kernel set with o = 2, & = 1/20, Jeffrey’s prior and depth
D=4
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Outline

e Conclusion
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Conclusion

@ Mutual information kernels allow to use well-designed probabilistic
models with a variety of learning algorithms

@ The CTW kernel is a practical way to compute such a kernel

@ Suggests systematic ways to make kernels with other
compression algorithms

@ Can be extended in the context of semigroup kernels

Thanks Marco Cuturi!
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