
Statistical Learning with Graph Kernels

Jean-Philippe Vert
Jean-Philippe.Vert@ensmp.fr

Center for Computational Biology
Ecole des Mines de Paris, ParisTech

The International Workshop on Data-Mining and Statistical Science
(DMSS2007), Tokyo, Japan, October 5, 2007.

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 1 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 2 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 3 / 47

Ligand-Based Virtual Screening

Objective
Build models to predict biochemical properties of small molecules from
their structures.

Structures

C15H14ClN3O3

Properties
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 4 / 47

Example

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 5 / 47

Image retrieval and classification

From Harchaoui and Bach (2007).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 6 / 47

Formalization

The problem
Given a set of training instances (x1, y1), . . . , (xn, yn), where xi ’s
are graphs and yi ’s are continuous or discrete variables of interest,
Estimate a function

y = f (x)

where x is any graph to be labeled.
This is a classical regression or pattern recognition problem over
the set of graphs.

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 7 / 47

Classical approaches

Classical approaches
1 Map each molecule to a vector of fixed dimension.
2 Apply an algorithm for regression or pattern recognition over

vectors.

Example: 2D structural keys in chemoinformatics
A vector indexed by a limited set of informative stuctures

O

N

O

O

OO

N N N

O O

O

+ NN, PLS, decision tree, ...
Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 8 / 47

Classical approaches

Classical approaches
1 Map each molecule to a vector of fixed dimension.
2 Apply an algorithm for regression or pattern recognition over

vectors.

Example: 2D structural keys in chemoinformatics
A vector indexed by a limited set of informative stuctures

O

N

O

O

OO

N N N

O O

O

+ NN, PLS, decision tree, ...
Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 8 / 47

Difficulties

O

N

O

O

OO

N N N

O O

O

Expressiveness of the features (which features are relevant?)
Large dimension of the vector representation (memory storage,
speed, statistical issues)

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 9 / 47

The kernel trick

Kernel
Let Φ(x) be a vector representation of the graph x
The kernel between two graphs is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) .

The trick
Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors
Computing the kernel is often more efficient than computing Φ(x),
especially in high or infinite dimensions!

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 10 / 47

The kernel trick

Kernel
Let Φ(x) be a vector representation of the graph x
The kernel between two graphs is defined by:

K (x , x ′) = Φ(x)>Φ(x ′) .

The trick
Many linear algorithms for regression or pattern recognition can
be expressed only in terms of inner products between vectors
Computing the kernel is often more efficient than computing Φ(x),
especially in high or infinite dimensions!

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 10 / 47

Kernel trick example: computing distances in the
feature space

φ
X F

x1

x2

x1

x2φ()

φ()d(x1,x2)

dK (x1, x2)
2 = ‖Φ (x1)− Φ (x2) ‖2

H

= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1, x2)
2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 11 / 47

Kernel trick example: computing distances in the
feature space

φ
X F

x1

x2

x1

x2φ()

φ()d(x1,x2)

dK (x1, x2)
2 = ‖Φ (x1)− Φ (x2) ‖2

H

= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1, x2)
2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 11 / 47

Graph kernels

Definition
A graph kernel K (x , x ′) is a p.d. kernel over the set of (labeled)
graphs.
It is equivalent to an embedding Φ : X 7→ H of the set of graphs to
a Hilbert space through the relation:

K (x , x ′) = Φ(x)>Φ(x ′) .

φ
X H

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 12 / 47

Summary

The problem
Regression and pattern recognition over labeled graphs
Classical vector representation is both statistically and
computationally challenging

The kernel approach
By defining a graph kernel we work implicitly in large (potentially
infinite!) dimensions:

Allows to consider a large number of potentially important
features.
No need to store explicitly the vectors (no problem of memory
storage or hash clashes) thanks to the kernel trick
Use of regularized statistical algorithm (SVM, kernel PLS, kernel
perceptron...)to handle the statistical problem of large dimension

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 13 / 47

Summary

The problem
Regression and pattern recognition over labeled graphs
Classical vector representation is both statistically and
computationally challenging

The kernel approach
By defining a graph kernel we work implicitly in large (potentially
infinite!) dimensions:

Allows to consider a large number of potentially important
features.
No need to store explicitly the vectors (no problem of memory
storage or hash clashes) thanks to the kernel trick
Use of regularized statistical algorithm (SVM, kernel PLS, kernel
perceptron...)to handle the statistical problem of large dimension

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 13 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 14 / 47

Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1, G2 ∈ X , dK (G1, G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 15 / 47

Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1, G2 ∈ X , dK (G1, G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 15 / 47

Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1, G2)
2 = K (G1, G1) + K (G2, G2)− 2K (G1, G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1, G2) = 0 iff G1 ' G2). �

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 16 / 47

Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1, G2)
2 = K (G1, G1) + K (G2, G2)− 2K (G1, G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1, G2) = 0 iff G1 ' G2). �

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 16 / 47

Subgraphs

Definition
A subgraph of a graph (V , E) is a connected graph (V ′, E ′) with
V ′ ⊂ V and E ′ ⊂ E .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 17 / 47

Subgraph kernel

Definition
Let (λG)G∈X a set or nonnegative real-valued weights
For any graph G ∈ X , let

∀H ∈ X , ΦH(G) =
∣∣ {G′ is a subgraph of G : G′ ' H

} ∣∣ .

The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1, G2) =
∑
H∈X

λHΦH(G1)ΦH(G2) .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 18 / 47

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n vertices.
Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . . + ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
a n × n triangular system).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 19 / 47

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n vertices.
Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . . + ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
a n × n triangular system).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 19 / 47

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

Φ(G)>

(
n∑

i=1

αiΦ(Pi)

)
=

n∑
i=1

αiKsubgraph(G, Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 20 / 47

Paths

Definition
A path of a graph (V , E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj) such that (vi , vi+1) ∈ E for
i = 1, . . . , n − 1.
Equivalently the paths are the linear subgraphs.

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 21 / 47

Path kernel

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.

Proof
Same as the subgraph kernel. �

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 22 / 47

Path kernel

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.

Proof
Same as the subgraph kernel. �

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 22 / 47

Path kernel

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.

Proof
Same as the subgraph kernel. �

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 22 / 47

Summary

Expressiveness vs Complexity trade-off
It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.
Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.
One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 23 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 24 / 47

Walks

Definition
A walk of a graph (V , E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . , n − 1.
We note Wn(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

etc...

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 25 / 47

Paths and walks

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 26 / 47

Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph G let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 27 / 47

Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph G let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 27 / 47

Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1, G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 28 / 47

Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1, G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 28 / 47

Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1, G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 28 / 47

Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 29 / 47

Product graph

Definition
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V , E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v ′2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 30 / 47

Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 31 / 47

Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1, G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 31 / 47

Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1, G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1, G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 32 / 47

Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt(vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt(v , v ′):

Kwalk (G1, G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt(vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt)
−1 1

Computation in O(|G1|3|G2|3)

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 33 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 34 / 47

Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 35 / 47

Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 36 / 47

Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 37 / 47

Extension 2: Subtree kernels

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 38 / 47

Example: Tree-like fragments of molecules

.

.

.

.

.

.

.

.

.
N

N

C

CO

C

.

.

. C

O

C

N

C

N O

C

N CN C C

N

N

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 39 / 47

Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt(v , v ′)T (v ′, n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 40 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 41 / 47

Chemoinformatics (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 42 / 47

Subtree kernels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
76

77

78

79

80

81

82

83

84

85

86

lambda

A
U

C

BRANCH−BASED, NO−TOTTERING

h = 2
h = 3
h = 4
h = 5
h = 6
h = 7
h = 8
h = 9
h = 10

AUC as a function of the branching factors for different tree depths
(from Mahé et al., 2007).

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 43 / 47

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 44 / 47

Outline

1 Introduction

2 Complexity vs expressiveness trade-off

3 Walk kernels

4 Extensions

5 Applications

6 Conclusion

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 45 / 47

Conclusion

What we saw
Extension of machine learning algorithms to graph data through
the definition of positive definite kernels for graphs
The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, allows infinite
fingerprints and various extensions.
Increasingly used in real-world applications.

Open question
How to design / choose / learn a kernel for a given application in
practice?
How to improve scalability of kernel methods + graph kernels to
large datasets?

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 46 / 47

References

Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized kernels between labeled
graphs. Proceedings of the 20th ICML, 2003, pp. 321-328.

T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: hardness results and
efficient alternatives. Proceedings of COLT, p.129–143, Springer, 2003.

J. Ramon and T. Gärtner. Expressivity versus Efficiency of Graph Kernels. First
International Workshop on Mining Graphs, Trees and Sequences, 2003.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Graph kernels for
molecular structure-activity relationship analysis with SVM. J. Chem. Inf. Model.,
45(4):939-951, 2005.

P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules.
Technical report HAL:ccsd-00095488, 2006.

P. Mahé. Kernel design for virtual screening of small molecules with support
vector machines. PhD thesis, Ecole des Mines de Paris, 2006.

Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2007.

Open-source kernels for chemoinformatics:
http://chemcpp.sourceforge.net/

Jean-Philippe Vert (ParisTech) Learning with Graph kernels Gbr’2007 47 / 47

	Introduction
	Complexity vs expressiveness trade-off
	Walk kernels
	Extensions
	Applications
	Conclusion

