Supervised inference of biological networks

Jean-Philippe Vert

Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology Ecole des Mines de Paris, ParisTech

Machine Learning in Systems Biology (MLSB 2007), Evry, France, September 24th, 2007

Motivation

2 Unsupervised inference

3 Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

4) Experiments

Motivation

2 Unsupervised inference

Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

Experiments

3

Motivation

2 Unsupervised inference

Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

Experiments

3

Motivation

2 Unsupervised inference

Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

Experiments

3

Motivation

2 Unsupervised inference

Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

Experiments

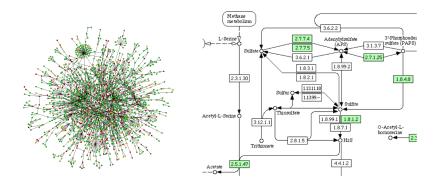
Motivation

2 Unsupervised inference

3 Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition
- 4 Experiments

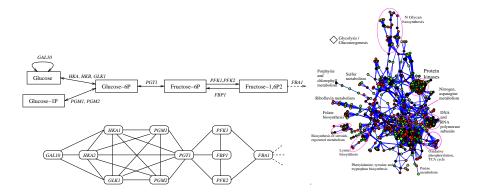
Biological networks



Many interesting biological situations can be represented as network:

- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Example: metabolic network



- Vertices are enzymes
- Edges connect two enzymes when they catalyze two successive reactions

Questions

- Given a newly discovered protein (e.g. from genome sequencing), predict which known ones are connected to it
- Discover new functional relationships (new edges) between already known proteins.

Applications

- Genome annotation
- Elucidation of new pathways
- Prediction of new binding partners
- Identification of new candidate drug targets

Questions

- Given a newly discovered protein (e.g. from genome sequencing), predict which known ones are connected to it
- Discover new functional relationships (new edges) between already known proteins.

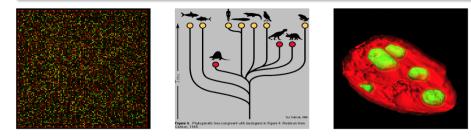
Applications

- Genome annotation
- Elucidation of new pathways
- Prediction of new binding partners
- Identification of new candidate drug targets

How can bioinformatics help?

Biologists have collected a lot of data about proteins. e.g.,

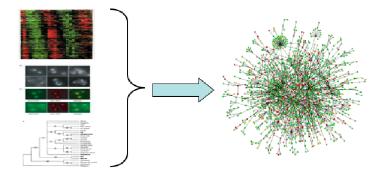
- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell



How to use this information "intelligently" to find a good function that predicts edges between nodes.

J.-P. Vert (ParisTech)

Our goal: Summary



Data

• Gene expression,

- Gene sequence,
- Protein localization, ...

Graph

- Protein-protein interactions,
- Metabolic pathways,
- Signaling pathways, ...

Motivation

2 Unsupervised inference

Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

4 Experiments

Setting

- Given data about the genes proteins...
- Infer the edges between genes and proteins
- Note that the graph is considered completely unknown in the inference process

Strategies for inference

- Model-based : fit a "model" involving a graph to the data
- Similarity-based : connect "similar" nodes

Setting

- Given data about the genes proteins...
- Infer the edges between genes and proteins
- Note that the graph is considered completely unknown in the inference process

Strategies for inference

- Model-based : fit a "model" involving a graph to the data
- Similarity-based : connect "similar" nodes

Strategy

- Define a model to explain the data with a graph
- Pit the model to the data to infer a graph

Examples

- Dynamical system to model gene expression time series (boolean network, PDE, state-space models...)
- Statistical models where the graph represents conditional independence relationships among random variables (Bayesian networks, LASSO, ...)

Strategy

- Define a model to explain the data with a graph
- Pit the model to the data to infer a graph

Examples

- Dynamical system to model gene expression time series (boolean network, PDE, state-space models...)
- Statistical models where the graph represents conditional independence relationships among random variables (Bayesian networks, LASSO, ...)

Pros

- Best approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Similarity-based approaches

Rationale

Genes functionally related are likely to be co-regulated, co-localized, present in the same organisms...

Strategy

Define a distance between proteins from the genomic data

Predict an edge if the distance is below a threshold

Similarity-based approaches

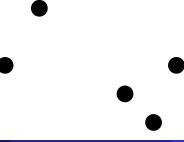
Rationale

Genes functionally related are likely to be co-regulated, co-localized, present in the same organisms...

Strategy

Define a distance between proteins from the genomic data

2 Predict an edge if the distance is below a threshold



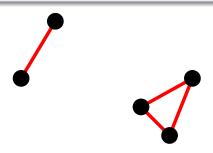
Similarity-based approaches

Rationale

Genes functionally related are likely to be co-regulated, co-localized, present in the same organisms...

Strategy

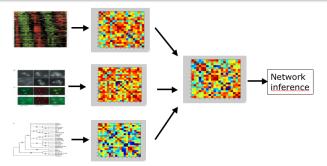
- Define a distance between proteins from the genomic data
- Predict an edge if the distance is below a threshold



Integrations of genomic data

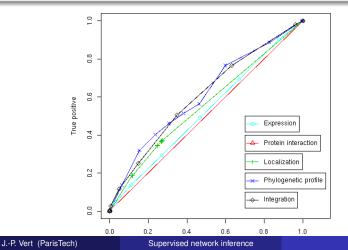
Data representation a distances

- We assume that each type of data (expression, sequences...) defines a distance between genes.
- Many such distances exist (cf kernel methods).
- Data integration is easily obtained by summing the distance to obtain an "integrated" distance



Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).



Limitations

- Is the assumption that "similar proteins are connected" correct and sufficient?
- Is the Euclidean distance the "correct" way to compare genomic data?
- Perhaps the network inferred is interesting, but not related to the metabolic network?

3

Motivation

2 Unsupervised inference

Supervised inference

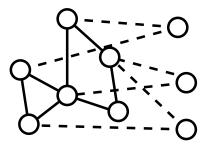
- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition
- 4) Experiments

Setting

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information



Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.

3

Motivation

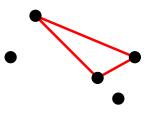
Supervised inference

Metric learning

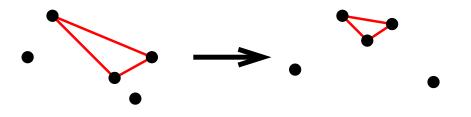
- Matrix completion
- Global pattern recognition
- Local pattern recognition

4 Experiments

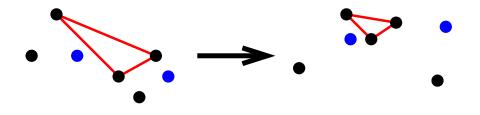
- The direct similarity-based method fails because the distance metric used might not be adapted to the inference of the targeted protein network.
- Solution: use the known subnetwork to refine the distance measure, before applying the similarity-based method



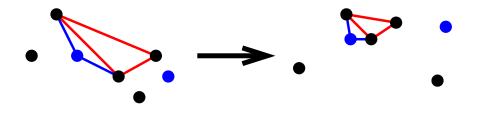
- The direct similarity-based method fails because the distance metric used might not be adapted to the inference of the targeted protein network.
- Solution: use the known subnetwork to refine the distance measure, before applying the similarity-based method



- The direct similarity-based method fails because the distance metric used might not be adapted to the inference of the targeted protein network.
- Solution: use the known subnetwork to refine the distance measure, before applying the similarity-based method



- The direct similarity-based method fails because the distance metric used might not be adapted to the inference of the targeted protein network.
- Solution: use the known subnetwork to refine the distance measure, before applying the similarity-based method

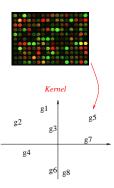


• Embed both the graph and the genomic data in Hilbert spaces.

- Find subspaces in the Hilbert spaces where the graph distance and the genomic data distance match (kernel CCA)
- Use the metric of the genomic data subspace for network inference with the direct method.

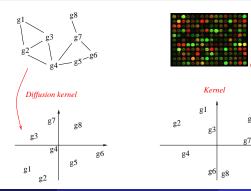
• Embed both the graph and the genomic data in Hilbert spaces.

- Find subspaces in the Hilbert spaces where the graph distance and the genomic data distance match (kernel CCA)
- Use the metric of the genomic data subspace for network inference with the direct method.

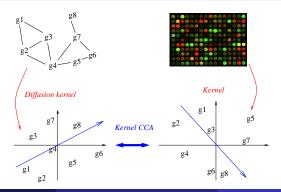


• Embed both the graph and the genomic data in Hilbert spaces.

- Find subspaces in the Hilbert spaces where the graph distance and the genomic data distance match (kernel CCA)
- Use the metric of the genomic data subspace for network inference with the direct method.



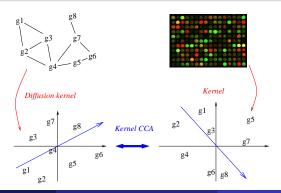
- Embed both the graph and the genomic data in Hilbert spaces.
- Find subspaces in the Hilbert spaces where the graph distance and the genomic data distance match (kernel CCA)
- Use the metric of the genomic data subspace for network inference with the direct method.



J.-P. Vert (ParisTech)

Metric learning by kernel CCA (Yamanishi et al., 2004)

- Embed both the graph and the genomic data in Hilbert spaces.
- Find subspaces in the Hilbert spaces where the graph distance and the genomic data distance match (kernel CCA)
- Use the metric of the genomic data subspace for network inference with the direct method.



J.-P. Vert (ParisTech)

Kernel metric learning

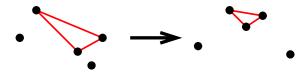
- Criterion: connected points should be near each other after mapping to a new *d*-dimensional Euclidean space.
- Add regularization to deal with high dimensions.
- Mapping $f(x) = (f_1(x), ..., f_d(x))$ with:

$$f_{i} = \arg\min_{f \perp \{f_{1}, \dots, f_{i-1}\}, \text{var}(f) = 1} \left\{ \sum_{i \sim j} \left(f(x_{i}) - f(x_{j}) \right)^{2} + \lambda ||f||_{k}^{2} \right\}$$

- Interpolates between (kernel) PCA ($\lambda = \infty$) and graph embedding ($\lambda = 0$).
- Equivalent to a generalized eigenvalue problem.

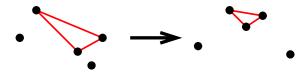
.

Metric learning: Summary



- Solves an important question of the similarity-based approach: which distance should be used?
- Virtually any algorithm for distance metric learning can be used
- But... do we really need to follow the similarity-based approach to infer graphs?

Metric learning: Summary



- Solves an important question of the similarity-based approach: which distance should be used?
- Virtually any algorithm for distance metric learning can be used
- But... do we really need to follow the similarity-based approach to infer graphs?

3

Motivation

2 Unsupervised inference

Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition
- 4 Experiments

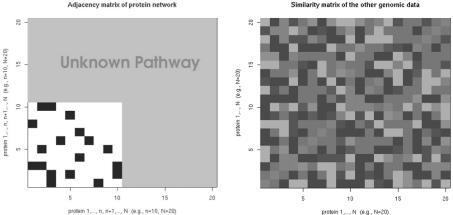
Conclusion

Matrix completion

Idea

Goal: Fill missing entries in the adjacency matrix directly

Use genomic data matrix (similarity/distance) as side information



Similarity matrix of the other genomic data

J.-P. Vert (ParisTech)

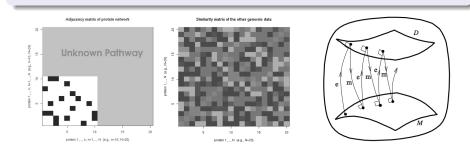
Supervised network inference

Matrix completion by em algorithm (Kato et al., 2005)

Method

- *M* is the set of matrices obtained when missing entries are filled
- D is the set of spectral variants of the genomic data matrix
- Find the completed matrix M by solving

 $\min_{M \in \mathcal{M}, D \in \mathcal{D}} KL(D, M)$



J.-P. Vert (ParisTech)

Supervised network inference

Matrix completion by kernel matrix regression (Yamanishi and V., 2007)

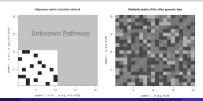
Method

- Embed the genomic data to a Hilbert space H
- Formulate the problem as a bivariate regression problem:

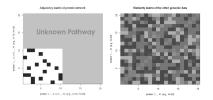
 $M(x,y) = u(x)^{\top} u(y) + \epsilon,$

where $u : \mathcal{H} \to \mathbb{R}^d$.

• A variant of the em algorithm, using the Euclidean geometry instead of the information geometry.



Matrix completion : Summary



- Algebric formulation of the problem
- Use specific geometries of the set of matrices (information geometry, Forbenius distances)
- However not really motivated by biological motivations
- In fact closely related to metric learning approaches (central role of spectral decomposition)

Outline

3

Motivation

Unsupervised inference

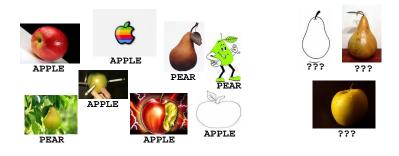
Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

4 Experiments

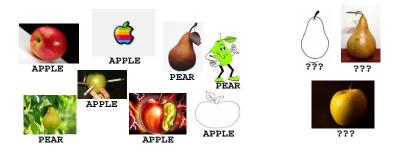
Conclusion

Pattern recognition



- Input variables $\mathbf{x} \in \mathcal{X}$, Output $y \in \{-1, 1\}$.
- Training set $S = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \}.$
- Goal: learn a function $f : \mathcal{X} \mapsto \{-1, 1\}$
- Many powerful algorithms! Logistic regression, nearest neighbors, ANN, decision trees, SVM

Pattern recognition

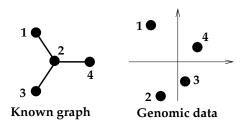


- Input variables $\mathbf{x} \in \mathcal{X}$, Output $y \in \{-1, 1\}$.
- Training set $S = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}.$
- Goal: learn a function $f : \mathcal{X} \mapsto \{-1, 1\}$
- Many powerful algorithms! Logistic regression, nearest neighbors, ANN, decision trees, SVM

Pattern recognition for supervised graph inference

Formulation and basic issue

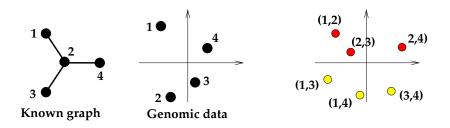
- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Pattern recognition for supervised graph inference

Formulation and basic issue

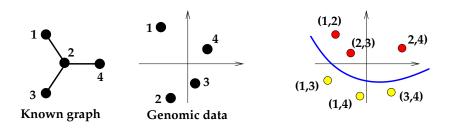
- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Pattern recognition for supervised graph inference

Formulation and basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!



Tensor product SVM (Ben-Hur and Noble, 2006)

- Intuition: a pair (A, B) is similar to a pair (C, D) if:
 - A is similar to C and B is similar to D, or...
 - A is similar to D and B is similar to C
- Formally, define a similarity between pairs from a similarity between individuals by

 $K_{TPPK}((a,b),(c,d)) = K(a,c)K(b,d) + K(a,d)K(b,c)$.

- If *K* is a positive definite kernel for individuals then K_{TPPK} is a p.d. kernel for pairs which can be used by SVM
- This amounts to representing a pair (*a*, *b*) by the symmetrized tensor product:

 $(a,b)
ightarrow (a\otimes b)\oplus (b\otimes a)$.

Tensor product SVM (Ben-Hur and Noble, 2006)

- Intuition: a pair (A, B) is similar to a pair (C, D) if:
 - A is similar to C and B is similar to D, or...
 - A is similar to D and B is similar to C
- Formally, define a similarity between pairs from a similarity between individuals by

 $K_{TPPK}\left((a,b),(c,d)
ight)=K(a,c)K(b,d)+K(a,d)K(b,c)$.

- If *K* is a positive definite kernel for individuals then K_{TPPK} is a p.d. kernel for pairs which can be used by SVM
- This amounts to representing a pair (*a*, *b*) by the symmetrized tensor product:

 $(a,b)
ightarrow (a \otimes b) \oplus (b \otimes a)$.

Tensor product SVM (Ben-Hur and Noble, 2006)

- Intuition: a pair (A, B) is similar to a pair (C, D) if:
 - A is similar to C and B is similar to D, or...
 - A is similar to D and B is similar to C
- Formally, define a similarity between pairs from a similarity between individuals by

 $K_{TPPK}((a, b), (c, d)) = K(a, c)K(b, d) + K(a, d)K(b, c)$.

- If K is a positive definite kernel for individuals then K_{TPPK} is a p.d. kernel for pairs which can be used by SVM
- This amounts to representing a pair (*a*, *b*) by the symmetrized tensor product:

$$(a,b)
ightarrow (a \otimes b) \oplus (b \otimes a)$$
.

Metric learning pairwise SVM (V. et al, 2007)

• Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.
- Formally, define a similarity between pairs from a similarity between individuals by

 $K_{MLPK}((a,b),(c,d)) = (K(a,c) + K(b,d) - K(a,c) - K(b,d))^2$

- If *K* is a positive definite kernel for individuals then K_{MLPK} is a p.d. kernel for pairs which can be used by SVM
- This amounts to representing a pair (*a*, *b*) by the symmetrized difference:

$$(a,b)
ightarrow (a-b)^{\otimes 2}$$

Metric learning pairwise SVM (V. et al, 2007)

• Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.

 Formally, define a similarity between pairs from a similarity between individuals by

 $K_{MLPK}\left((a,b),(c,d)
ight)=\left(K(a,c)+K(b,d)-K(a,c)-K(b,d)
ight)^2$.

- If K is a positive definite kernel for individuals then K_{MLPK} is a p.d. kernel for pairs which can be used by SVM
- This amounts to representing a pair (*a*, *b*) by the symmetrized difference:

$$(a,b)
ightarrow (a-b)^{\otimes 2}$$

Metric learning pairwise SVM (V. et al, 2007)

• Intuition: a pair (A, B) is similar to a pair (C, D) if:

- A B is similar to C D, or...
- A B is similar to D C.
- Formally, define a similarity between pairs from a similarity between individuals by

 $K_{MLPK}\left((a,b),(c,d)
ight)=\left(K(a,c)+K(b,d)-K(a,c)-K(b,d)
ight)^2$.

- If K is a positive definite kernel for individuals then K_{MLPK} is a p.d. kernel for pairs which can be used by SVM
- This amounts to representing a pair (*a*, *b*) by the symmetrized difference:

$$(a,b)
ightarrow (a-b)^{\otimes 2}$$

Remarks about pattern recognition for pairs

Pros

- The objective function is exactly what we want (discriminate between connected and non-connected pairs)
- We can use state-of-the-art powerful algorithms for graph inference (e.g., SVM)

Cons

- We need to deduce an embedding for pairs from data about individuals.
- There are many training examples (N(N-1)/2) which can be a problem of pattern recognition algorithms in terms of computation time and memory
- The result is a global model over the graph; however the presence or absence of a connection may also depend on the "position" of the connection in the graph.

J.-P. Vert (ParisTech)

Remarks about pattern recognition for pairs

Pros

- The objective function is exactly what we want (discriminate between connected and non-connected pairs)
- We can use state-of-the-art powerful algorithms for graph inference (e.g., SVM)

Cons

- We need to deduce an embedding for pairs from data about individuals.
- There are many training examples (N(N-1)/2) which can be a problem of pattern recognition algorithms in terms of computation time and memory
- The result is a global model over the graph; however the presence or absence of a connection may also depend on the "position" of the connection in the graph.

J.-P. Vert (ParisTech)

Outline

3

Motivation

Unsupervised inference

Supervised inference

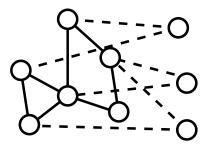
- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

Experiments

Conclusion

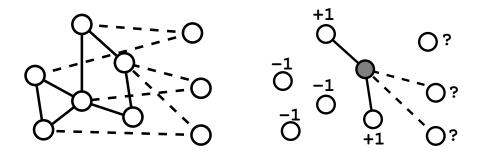
Local pattern recognition (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

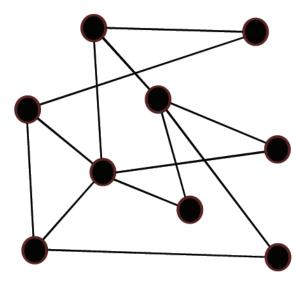


Local pattern recognition (Bleakley et al., 2007)

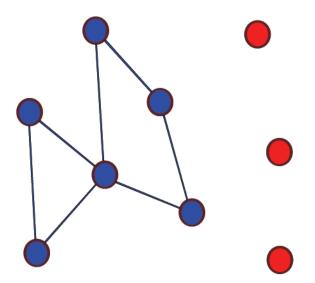
- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.



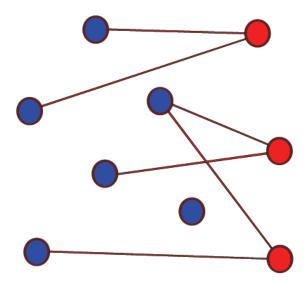
The LOCAL model

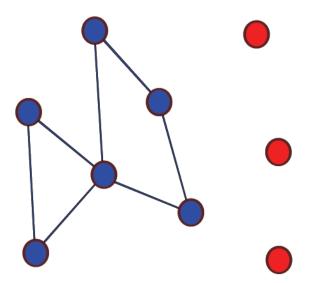


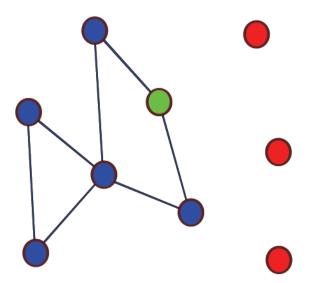
The LOCAL model: training edges

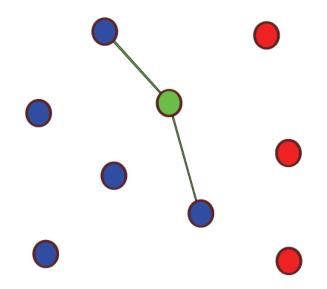


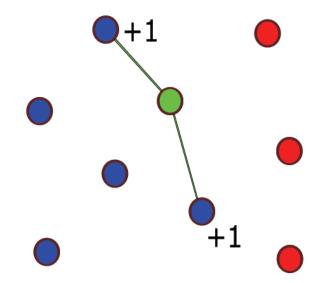
The LOCAL model: testing edges

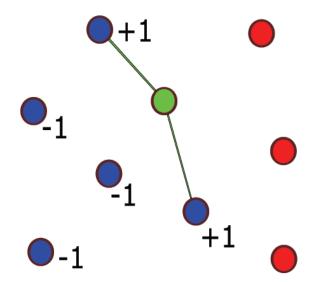




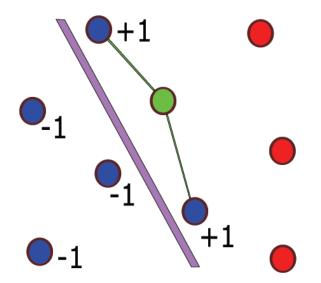




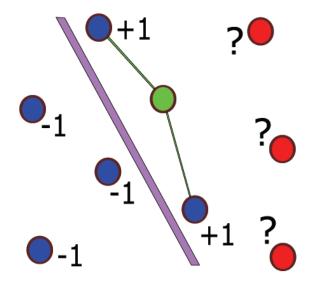




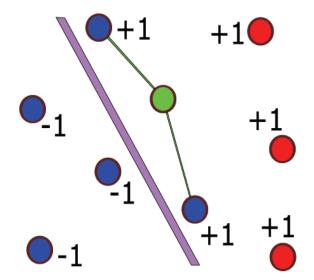
The LOCAL model: decision boundary



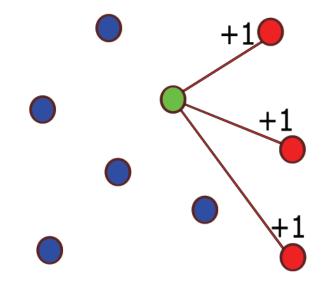
The LOCAL model: testing



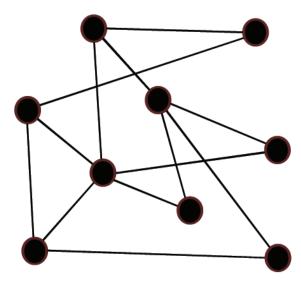
The LOCAL model: testing



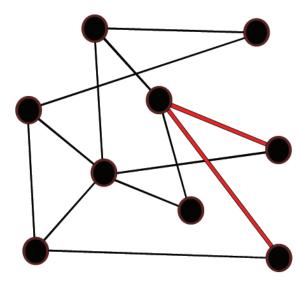
The LOCAL model: Predictions

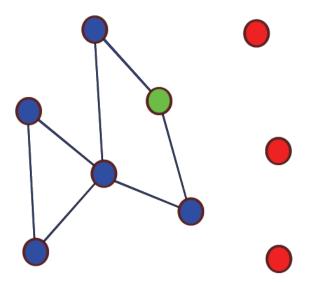


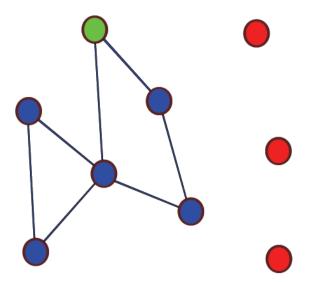
The LOCAL model: target graph

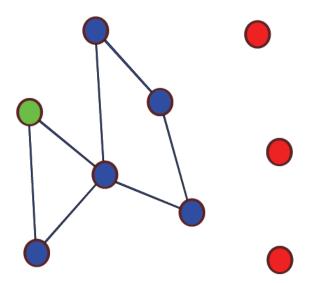


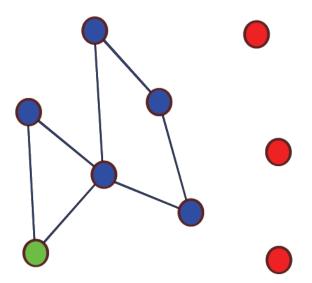
The LOCAL model: Two correct edges, one error

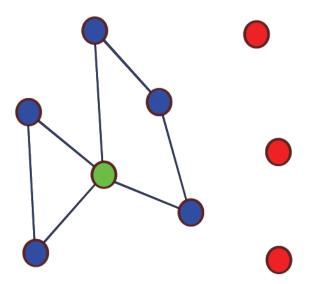


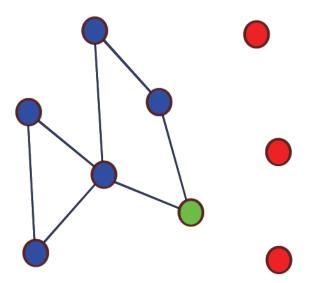












Pros

- Allow very different models for nearby nodes on the graph
- Faster to train *n* models with *n* examples than 1 model with *n*² examples
- No need for tricky embedding of pairs: each model works at the level of individuals.

Cons

- Few positive examples available for some nodes
- We must rank pairs based on scores obtained on different models
 ⇒ scores must be calibrated.
- If we have two new proteins, no simple way to predict an edge between them.

Pros

- Allow very different models for nearby nodes on the graph
- Faster to train *n* models with *n* examples than 1 model with *n*² examples
- No need for tricky embedding of pairs: each model works at the level of individuals.

Cons

- Few positive examples available for some nodes
- We must rank pairs based on scores obtained on different models
 ⇒ scores must be calibrated.
- If we have two new proteins, no simple way to predict an edge between them.

Outline

Motivation

2 Unsupervised inference

3 Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

Experiments

Conclusion

Experiments

Network

- Metabolic network (668 vertices, 2782 edges)
- Protein-protein interaction network (984 vertices, 2438 edges)

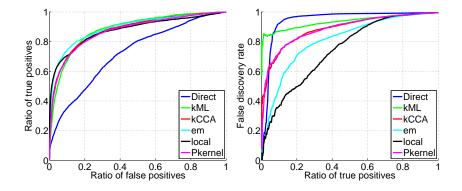
Data (yeast)

- Gene expression (157 experiments)
- Phylogenetic profile (145 organisms)
- Cellular localization (23 intracellular locations)
- Yeast two-hybrid data (2438 interactions among 984 proteins)

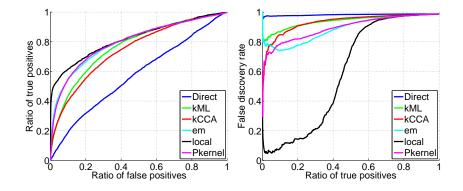
Method

- 5-fold cross-validation
- Predict edges between test set and training set

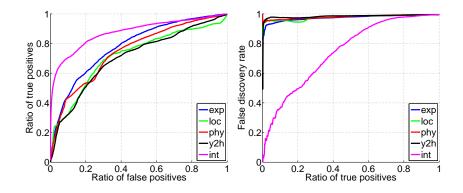
Results: protein-protein interaction



Results: metabolic gene network

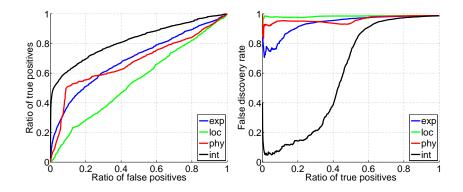


Results: effect of data integration



Local SVM, protein-protein interaction network.

Results: effect of data integration



Local SVM, metabolic gene network.

- Supervised approaches work much better than the baseline direct approach
- Data integration is easy and very powerful
- Good results obtained on two apparently very different networks (metabolic, physical interactions)
- The LOCAL method wins the benchmark competition

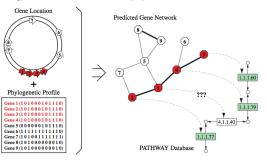
Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

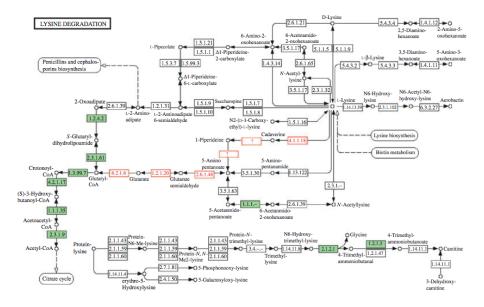
Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
 Department of Biology, Craduate School of Science, Osaka University, Japan



Applications: missing enzyme prediction



900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in Anabaena by kernel-based network analysis

Shinobu Okamoto¹*, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura¹** and Minoru Kanehisa¹

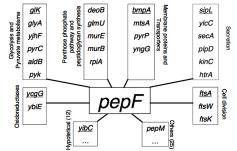
¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
 ² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
 ³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

¹Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France. ²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.



Outline

Motivation

2 Unsupervised inference

3 Supervised inference

- Metric learning
- Matrix completion
- Global pattern recognition
- Local pattern recognition

4 Experiments

5 Conclusion

- When the network is known in part, supervised methods can be more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition); the current winner on our benchmarks (metabolic network and PPI network) is the local pattern recognition approach.
- It reaches high performance on the benchmarks: 45% of all true edges of the metabolic gene network are retrieved at a FDR below 50% (for the yeast).
- These methods:
 - work for any network
 - work with any data
 - can integrate heterogeneous data, which strongly improves performance

People I need to thank

Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
Jian Qian, Bill Noble (Univ. Washington): pairwise SVM
Kevin Bleakley, Gerard Biau (Univ. Montpellier): local SVM

