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Biological networks

Many interesting biological situations can be represented as network:
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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Example: metabolic network
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Vertices are enzymes
Edges connect two enzymes when they catalyze two successive
reactions
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What are the challenges?

Questions
1 Given a newly discovered protein (e.g. from genome sequencing),

predict which known ones are connected to it
2 Discover new functional relationships (new edges) between

already known proteins.

Applications
Genome annotation
Elucidation of new pathways
Prediction of new binding partners
Identification of new candidate drug targets
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How can bioinformatics help?

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes.
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Our goal: Summary

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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Unsupervised inference

Setting
Given data about the genes proteins...
Infer the edges between genes and proteins
Note that the graph is considered completely unknown in the
inference process

Strategies for inference
Model-based : fit a “model” involving a graph to the data
Similarity-based : connect “similar” nodes
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Model-based approaches

Strategy
1 Define a model to explain the data with a graph
2 Fit the model to the data to infer a graph

Examples
Dynamical system to model gene expression time series (boolean
network, PDE, state-space models...)
Statistical models where the graph represents conditional
independence relationships among random variables (Bayesian
networks, LASSO, ...)
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Model-based approaches

Pros
Best approach if the model
is correct and enough data
are available
Interpretability of the model
Inclusion of prior
knowledge

Cons
Specific to particular data
and networks
Needs a correct model!
Difficult integration of
heterogeneous data
Often needs a lot of data
and long computation time
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Similarity-based approaches

Rationale
Genes functionally related are likely to be co-regulated, co-localized,
present in the same organisms...

Strategy
1 Define a distance between proteins from the genomic data
2 Predict an edge if the distance is below a threshold
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Integrations of genomic data

Data representation a distances
We assume that each type of data (expression, sequences...)
defines a distance between genes.
Many such distances exist (cf kernel methods).
Data integration is easily obtained by summing the distance to
obtain an “integrated” distance
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Evaluation on metabolic network reconstruction

The known metabolic network of the yeast involves 769 proteins.
Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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What went wrong?

Limitations
Is the assumption that “similar proteins are connected” correct and
sufficient?
Is the Euclidean distance the “correct” way to compare genomic
data?
Perhaps the network inferred is interesting, but not related to the
metabolic network?
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Setting

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.
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Metric learning

Idea
The direct similarity-based method fails because the distance
metric used might not be adapted to the inference of the targeted
protein network.
Solution: use the known subnetwork to refine the distance
measure, before applying the similarity-based method
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Metric learning by kernel CCA (Yamanishi et al., 2004)

Embed both the graph and the genomic data in Hilbert spaces.
Find subspaces in the Hilbert spaces where the graph distance
and the genomic data distance match (kernel CCA)
Use the metric of the genomic data subspace for network
inference with the direct method.
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Kernel metric learning (V. and Yamanishi, 2005)

Kernel metric learning
Criterion: connected points should be near each other after
mapping to a new d-dimensional Euclidean space.
Add regularization to deal with high dimensions.
Mapping f (x) = (f1(x), . . . , fd(x)) with:

fi = arg min
f⊥{f1,...,fi−1},var(f )=1

∑
i∼j

(
f (xi)− f (xj)

)2
+ λ||f ||2k

 .

Interpolates between (kernel) PCA (λ = ∞) and graph embedding
(λ = 0).
Equivalent to a generalized eigenvalue problem.
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Metric learning: Summary

Solves an important question of the similarity-based approach:
which distance should be used?
Virtually any algorithm for distance metric learning can be used
But... do we really need to follow the similarity-based approach to
infer graphs?
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Matrix completion

Idea
Goal: Fill missing entries in the adjacency matrix directly
Use genomic data matrix (similarity/distance) as side information

J.-P. Vert (ParisTech) Supervised network inference 25 / 71



Matrix completion by em algorithm (Kato et al., 2005)

Method
M is the set of matrices obtained when missing entries are filled
D is the set of spectral variants of the genomic data matrix
Find the completed matrix M by solving

min
M∈M,D∈D

KL(D, M)
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Matrix completion by kernel matrix regression
(Yamanishi and V., 2007)

Method
Embed the genomic data to a Hilbert space H
Formulate the problem as a bivariate regression problem:

M(x , y) = u(x)>u(y) + ε ,

where u : H → Rd .
A variant of the em algorithm, using the Euclidean geometry
instead of the information geometry.
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Matrix completion : Summary

Algebric formulation of the problem
Use specific geometries of the set of matrices (information
geometry, Forbenius distances)
However not really motivated by biological motivations
In fact closely related to metric learning approaches (central role
of spectral decomposition)
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Pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X , Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.
Goal: learn a function f : X 7→ {−1, 1}
Many powerful algorithms! Logistic regression, nearest neighbors,
ANN, decision trees, SVM
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Pattern recognition for supervised graph inference

Formulation and basic issue
A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Tensor product SVM (Ben-Hur and Noble, 2006)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A is similar to C and B is similar to D, or...
A is similar to D and B is similar to C

Formally, define a similarity between pairs from a similarity
between individuals by

KTPPK ((a, b), (c, d)) = K (a, c)K (b, d) + K (a, d)K (b, c) .

If K is a positive definite kernel for individuals then KTPPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
tensor product:

(a, b) → (a⊗ b)⊕ (b ⊗ a) .
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Metric learning pairwise SVM (V. et al, 2007)

Intuition: a pair (A, B) is similar to a pair (C, D) if:
A− B is similar to C − D, or...
A− B is similar to D − C.

Formally, define a similarity between pairs from a similarity
between individuals by

KMLPK ((a, b), (c, d)) = (K (a, c) + K (b, d)− K (a, c)− K (b, d))2 .

If K is a positive definite kernel for individuals then KMLPK is a p.d.
kernel for pairs which can be used by SVM
This amounts to representing a pair (a, b) by the symmetrized
difference:

(a, b) → (a− b)⊗2 .
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Remarks about pattern recognition for pairs

Pros
The objective function is exactly what we want (discriminate
between connected and non-connected pairs)
We can use state-of-the-art powerful algorithms for graph
inference (e.g., SVM)

Cons
We need to deduce an embedding for pairs from data about
individuals.
There are many training examples (N(N − 1)/2) which can be a
problem of pattern recognition algorithms in terms of computation
time and memory
The result is a global model over the graph; however the presence
or absence of a connection may also depend on the “position” of
the connection in the graph.
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Local pattern recognition (Bleakley et al., 2007)

Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model: training edges
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The LOCAL model: testing edges
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The LOCAL model: learning
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The LOCAL model: learning
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The LOCAL model: decision boundary
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The LOCAL model: testing
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The LOCAL model: testing
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The LOCAL model: Predictions
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The LOCAL model: target graph
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The LOCAL model: Two correct edges, one error
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The LOCAL model: Do same for each learning node
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Local predictions: pros and cons

Pros
Allow very different models for nearby nodes on the graph
Faster to train n models with n examples than 1 model with n2

examples
No need for tricky embedding of pairs: each model works at the
level of individuals.

Cons
Few positive examples available for some nodes
We must rank pairs based on scores obtained on different models
=⇒ scores must be calibrated.
If we have two new proteins, no simple way to predict an edge
between them.
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Experiments

Network
Metabolic network (668 vertices, 2782 edges)
Protein-protein interaction network (984 vertices, 2438 edges)

Data (yeast)
Gene expression (157 experiments)
Phylogenetic profile (145 organisms)
Cellular localization (23 intracellular locations)
Yeast two-hybrid data (2438 interactions among 984 proteins)

Method
5-fold cross-validation
Predict edges between test set and training set
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Results: protein-protein interaction
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Results: metabolic gene network
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Results: effect of data integration
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Local SVM, protein-protein interaction network.
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Results: effect of data integration
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Local SVM, metabolic gene network.
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Experiments: Summary

Supervised approaches work much better than the baseline direct
approach
Data integration is easy and very powerful
Good results obtained on two apparently very different networks
(metabolic, physical interactions)
The LOCAL method wins the benchmark competition
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction
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Applications: function annotation
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Take-home messages

When the network is known in part, supervised methods can be
more adapted than unsupervised ones.
A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition); the current
winner on our benchmarks (metabolic network and PPI network)
is the local pattern recognition approach.
It reaches high performance on the benchmarks: 45% of all true
edges of the metabolic gene network are retrieved at a FDR below
50% (for the yeast).
These methods:

work for any network
work with any data
can integrate heterogeneous data, which strongly improves
performance
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