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Ligand-Based Virtual Screening and QSAR
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More formally...

Objective
Build models to predict biochemical properties Y of small molecules
from their structures X , using a training set of (X , Y ) pairs.

Structures X

C15H14ClN3O3

Properties Y
binding to a therapeutic target,
pharmacokinetics (ADME),
toxicity...
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Classical approaches

Two steps
1 Map each molecule to a vector of fixed dimension using molecular

descriptors
Global properties of the molecules (mass, logP...)
2D and 3D descriptors (substructures, fragments, ....)

2 Apply an algorithm for regression or pattern recognition.
PLS, ANN, ...

Example: 2D structural keys
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Which descriptors?

Difficulties
Many descriptors are needed to characterize various features (in
particular for 2D and 3D descriptors)
But too many descriptors are harmful for memory storage,
computation speed, statistical estimation

Our approach
Work implicitly with many descriptors:

Allows to consider a large number (potentially infinite) of
potentially important features.
Computation trick: no need to compute and store explicitly the
vectors
Statistical trick: use regularized statistical algorithm to handle the
problem of large dimension
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Simplest SVM

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 8 / 41



Simplest SVM

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 8 / 41



Simplest SVM

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 8 / 41



Simplest SVM

γ

γ
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Simplest SVM

Choose the linear separator which is as far as possible to the
closest point (maximize the margin γ).
Computationally: this boils down to a simple convex quadratic
optimization problem (next slide). No local minima, efficient
algorithms for up to 100,000 points.
Statistically: this allows resistance to overfitting in large dimension
(statistical learning theory).
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Linear SVM: implementation

After some algebra it is obtained by solving in α ∈ Rn the following
quadratic program:

minimize
n∑

i=1

n∑
j=1

αiαjx>i xj −
n∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , n ,
n∑

i=1

αiyi = 0 .

Once α is found, the classification function is the sign of :

f (x) =
n∑

i=1

αix>i x + b .
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Linear SVM: non-separable case

Implementation
Solution: find a trade-off between large margin and few
misclassification
Simple and elegant mathematical translation: replace 0 ≤ αi by
0 ≤ αi ≤ C, for some constant C > 0, in the optimization problem.

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 11 / 41



Linear SVM: non-separable case

Implementation
Solution: find a trade-off between large margin and few
misclassification
Simple and elegant mathematical translation: replace 0 ≤ αi by
0 ≤ αi ≤ C, for some constant C > 0, in the optimization problem.

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 11 / 41



Linear SVM: non-separable case

Implementation
Solution: find a trade-off between large margin and few
misclassification
Simple and elegant mathematical translation: replace 0 ≤ αi by
0 ≤ αi ≤ C, for some constant C > 0, in the optimization problem.

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 11 / 41



Linear SVM: non-separable case

Implementation
Solution: find a trade-off between large margin and few
misclassification
Simple and elegant mathematical translation: replace 0 ≤ αi by
0 ≤ αi ≤ C, for some constant C > 0, in the optimization problem.

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 11 / 41



Nonlinear SVM

The idea
Define a (nonlinear) mapping

φ : X → F ⊂ Rp .

Run a linear SVM in the feature space.
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Nonlinear SVM: implementation

Solve in α ∈ Rn:

minimize
n∑

i=1

n∑
j=1

αiαjΦ(xi)
>Φ(xj)−

n∑
i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , n ,
n∑

i=1

αiyi = 0 .

Once α is found, the classification function is the sign of :

f (x) =
n∑

i=1

αiΦ(xi)
>Φ(x) + b
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The kernel tricks

Important idea!
To any mapping Φ : X → F corresponds a kernel function K :

K (x , x ′) = Φ(x)>Φ(x ′) .

SVM only need K , rather than Φ:

minimize
n∑

i=1

n∑
j=1

αiαjK (xi , xj)−
n∑

i=1

αi

subject to 0 ≤ αi ≤ C, i = 1, . . . , n ,
n∑

i=1

αiyi = 0 .
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Example: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)
> ∈ R2, let Φ(x) = (x2

1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (x , x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(

x>x ′
)2

.
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SVM and kernel: summary

Data representation
Data do not need to be explicitly vectors
A similarity function K (x , x ′) between data is enough
K must be symmetric and positive definite to be a valid kernel
Allows nonlinear function estimation or working with non-vectorial
data without any change in the algorithm!

Performance
State-of-the-art in many real-world applications
Resistant to large dimensions
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Other algorithms

Kernel methods
You don’t want to try SVM, or your problem is not binary classification,
but you would like to benefit from the kernel trick (nonlinearity,
structured data etc...)? Try other kernel methods that extend your
favorite algorithm to handle kernels:

kernel PLS,
kernel PCA,
kriging,
kernel perceptron,
kernel logistic regression,
and many more!
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Kernel methods for chemoinformatics

In order to use kernel methods for QSAR / virtual screening, all we
need are kernels for molecules:

K (molecule1, molecule2).

Strategy 1: use well-known molecular descriptors to represent
molecules m as vectors Φ(m), and then use kernels for vectors,
e.g.:

K (m1, m2) = Φ(m1)
>Φ(m2).

Strategy 2: invent new kernels to do things you can not do with
strategy 1, such as using an infinite number of descriptors. We will
now see two examples of this strategy, extending 2D and 3D
molecular descriptors.
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments

. . . . . .C N
CC
ON

C C NO C

CO C

CC C
CN C

NO CC C C

CC CC C C

CN CC C C

N

O

O

O N

O

C
. . . . . . . . .

Pros
Many features
Easy to detect

Cons
Too many features?
Hashing =⇒ clashes
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SVM approach

. . . . . .C N
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Let Φ(x) the vector of fragment counts:
Long fragments lead to large dimensions :

SVM can learn in high dimension
Φ(x) is too long to be stored, and hashes induce clashes:

SVM do not need Φ(x), they just need the kernel

K (x , x ′) = φ(x)>φ(x ′) .
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2D fingerprint kernel

Definition
For any d > 0 let φd(x) be the vector of counts of all fragments of
length d :

φ1(x) = ( #(C),#(O),#(N), ...)>

φ2(x) = ( #(C-C),#(C=O),#(C-N), ...)> etc...

The 2D fingerprint kernel is defined, for λ < 1, by

K2D(x , x ′) =
∞∑

d=1

λdφd(x)>φd(x ′) .

This is an inner product in the space of 2D fingerprints of infinite
length.
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2D kernel computation

Theorem
The 2D fingerprint kernel between two molecules x and x ′ can be
computed with a worst-case complexity O

(
(| x | × | x ′ |)3

)
(much faster

in practice).

Remarks
The complexity is not related to the length of the fragments
considered (although faster computations are possible if the
length is limited).
Solves the problem of clashes and memory storage.
Allows to work with infinite-length fingerprints without computing
them!
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2D kernel computation trick

Rephrase the kernel computation as that as counting the number
of walks on a graph (the product graph)

1’

2’

2,1’

1,2’

3,2’

1

2
3

X =

The infinite counting can be factorized

λA + λ2A2 + λ3A3 + . . . = (I − λA)−1 − I .
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible.
Faster computation with more labels (less matches implies a
smaller product graph).
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Extensions 2: filter out tottering fragments

Tottering fragments

CC

C 0

C

C CC

O

Solution: graph transform
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Extensions 3: tree-like fragments

N
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Experiments

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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Subtree kernels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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BRANCH−BASED, NO−TOTTERING

h = 2
h = 3
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AUC as a function of the branching factors for different tree depths
(from Mahé et al., 2007).
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Space of pharmacophore

3-points pharmacophores

O

O

2

d1

d3

d

O

O

2

d1

d3

d

A set of 3 atoms, and 3 inter-atom distances:

T = {((x1, x2, x3) , (d1, d2, d3)) , xi ∈ {atom types}; di ∈ R}

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 31 / 41



3D fingerprint kernel

Pharmacophore fingerprint
1 Discretize the space of pharmacophores T (e.g., 6 atoms or

groups of atoms, 6-7 distance bins) into a finite set Td

2 Count the number of occurrences φt(x) of each pharmacophore
bin t in a given molecule x , to form a pharmacophore fingerprint.

3D kernel
A simple 3D kernel is the inner product of pharmacophore fingerprints:

K (x , x ′) =
∑
t∈Td

φt(x)φt(x ′) .
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Discretization of the pharmacophore space

Common issues
1 If the bins are too large, then they are not specific enough
2 If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

x2

→ d(x1, x3) < d(x1, x2)
BUT bin(x1) = bin(x2) 6= bin(x3)
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Kernels between pharmacophores

A small trick

K (x , y) =
∑
t∈Td

φt(x)φt(y)

=
∑
t∈Td

(
X

px∈P(x)

1(bin(px) = t))(
X

py∈P(y)

1(bin(py) = t))

=
∑

px∈P(x)

∑
py∈P(y)

1(bin(px) = bin(py))

General pharmacophore kernel

K (x , y) =
∑

px∈P(x)

∑
py∈P(y)

KP(px , py )
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New pharmacophore kernels

Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

KP(p1, p2) = 1 (bin(px) = bin(py))

For general kernels, there is no need for discretization!
For example, is d(p1, p2) is a Euclidean distance between
pharmacophores, take:

KP (p1, p2) = exp (−γd (p1, p2)) .
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Experiments

4 public datasets
BZR: ligands for the benzodiazepine receptor
COX: cyclooxygenase-2 inhibitors
DHFR: dihydrofolate reductase inhibitors
ER: estrogen receptor ligands

TRAIN TEST
Pos Neg Pos Neg

BZR 94 87 63 62
COX 87 91 61 64
DHFR 84 149 42 118
ER 110 156 70 110
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Experiments

Results (accuracy)
Kernel BZR COX DHFR ER
2D (Tanimoto) 71.2 63.0 76.9 77.1
3D fingerprint 75.4 67.0 76.9 78.6
3D not discretized 76.4 69.8 81.9 79.8
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Summary

SVM is a powerful and flexible machine learning algorithm. The
kernel trick allows the manipulation of non-vectorial objects at the
cost of defining a kernel function.
The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, allows infinite
fingerprints and various extensions.
The 3D kernel for molecule extends classical pharmacophore
fingerprint-based approaches. It solves the problems of bit
clashes and of discretization.
Both kernels improve upon their classical counterparts, and
provide competitive results on benchmark datasets.

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 39 / 41



Acknowledgements

Pierre Mahé (CBIO)
Tatsuya Akutsu, Nobuhisa Ueda, Jean-Luc Perret (Kyoto
University)
Liva Ralaivola (U Marseille)

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 40 / 41



References

Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized kernels between labeled
graphs. Proceedings of the 20th ICML, 2003, pp. 321-328.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Graph kernels for
molecular structure-activity relationship analysis with SVM. J. Chem. Inf. Model.,
45(4):939-951, 2005.

P. Mahé, L. Ralaivola, V. Stoven, and J-P Vert.The pharmacophore kernel for
virtual screening with SVM. J. Chem. Inf. Model., 46(5):2003-2014, 2006.

P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules.
Technical report HAL:ccsd-00095488, 2006.

P. Mahé. Kernel design for virtual screening of small molecules with support
vector machines. PhD thesis, Ecole des Mines de Paris, 2006.

Open-source kernels for chemoinformatics:
http://chemcpp.sourceforge.net/

Jean-Philippe Vert (ParisTech) QSAR and Virtual Screening with SVM 41 / 41


	Support Vector Machines and kernels
	2D Kernel
	3D Pharmacophore Kernel
	Conclusion

