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Kernel methods
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A positive definite kernel is a function K : X × X 7→ R such that
any Gram matrix is positive semidefinite.
Many algorithm for data analysis, called kernel methods, are
based on p.d. kernels (SVMs, kernel PCA, kernel regression, ...)
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Examples

Kernels for vectors
Classical kernels for vectors (X = Rp) include:

The linear kernel
Klin

(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=

(
x>x′ + a

)d
.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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P.d. kernels are inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

φ
X H
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Motivation 1: “expensive” vs “cheap” kernels

FVNQHLCGSHLVEALYLVCGERGFF...

Objective: predict the function of proteins =⇒ we need a kernel
for proteins.
“Cheap” kernel: all protein sequences are easily known, we easily
define a kernel Kseq based on sequences.
“Expensive” kernel: a few protein structures are known, we can
define a kernel Kstruct based on structures
The problem: Kstruct is more relevant, but not available for all
proteins; Kseq is less relevant but known for all proteins.
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Motivation 2: Graph inference

Available genomic data = Kinput

Graph to predict (partially known) = Koutput (after Hilbert
embedding)
Problem: predict missing entries in Koutput from Kinput
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The problem

K =

(
Ktt K>

pt
Kpt Kpp

)
, G =

(
Gtt G>

pt
Gpt Gpp

)
,

K is fully known
Gtt is known, but not Gpt nor Gpp

Goal: predict Gpt and Gpp from K and Gtt
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Direct approach

The idea
The cheap kernel could be used in place of the expensive kernel.

Solution
Use the cheap kernel as a proxy for the expensive one:

Gpt = Kpt Gpp = Kpp.
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Kernel CCA approach (Y. et al., 2004)

The idea
Consider the kernels as inner products
Find low-dimensional projections of the t points in Ktt and Gtt with
maximum correlation
Project the last p points of K onto this subspace
Estimate Gtp as the inner products in the projection from K .
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Kernel matrix regression

The idea
Directly try to predict the expensive kernel G from K , using the
know part as training set.
In order to learn a p.d. function we impose the model:

G(x , y) =
∑

i

ui(x)ui(y) + ε ,

for ui : X → R.
We minimize the L2 (Frobenius) norm of ε over the training set.
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Kernel matrix regression

Solution
We look for ui in the RKHS of K :

ui(x) =
n∑

i=1

αi
jK (xj , x) .

Minimization over the α’s of

‖Gtt − KttAA>Ktt ‖2
Fro

gives:
AA> = K−1

tt GttK−1
tt ,

and therefore:

Gpt = KptK−1
tt Gtt Gpp = KptK−1

tt GttK−1
tt K>

pt .
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Regularized kernel matrix regression

Minimization over the α’s of

‖Gtt − KttAA>Ktt ‖2
Fro + 2λ

∑
i

‖ui ‖2
RKHS

gives:
AA> = K−1

tt

(
Gtt − λK−1

tt

)
K−1

tt ,

and therefore:

Gpt = KptK−1
tt

(
Gtt − λK−1

tt

)
Gpp = KptK−1

tt

(
Gtt − λK−1

tt

)
K−1

tt K>
pt .
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Biological network inference

Data
Reconstruct the metabolic gene network, a biological network with
769 genes as vertices
Use a kernel over genes deduced from gene expression data,
phylogenetic profiles, cellular localization.
The graph is embedded to a Hilbert space using a diffusion kernel
5-fold cross-validation, measure average AUC.
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Biological network inference: Results
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Conclusion

A method to predict missing entries in a kernel Gram matrix using
side information from another Gram matrix
Objective function and regularization more adapted to the problem
than kernel CCA
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