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Tissue profiling with DNA chips
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@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data
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Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy, ..., Xp) where
p > 10° is the number of probes

@ Classification: given the set of labeled sample, learn a linear
decision function:

o
f3(x) =Y Bixi+ Bo ,
i=1

that is positive for one class, negative for the other

@ Interpretation: the weight 3; quantifies the influence of gene i for
the classification
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Linear classifiers estimation

Empirical risk minimization
Estimate the weights g; by minimizing an empirical error on the training
set:

-
min — " I(f3(x), ¥i)
p

BeRP+1 N

where I(y, f(x)) is a loss function.
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Linear classifiers estimation

Empirical risk minimization
Estimate the weights g; by minimizing an empirical error on the training
set:

-
min — " I(f3(x), ¥i)
p

BeRP+1 N

where I(y, f(x)) is a loss function.

Pitfalls

@ Statistics does not apply (?): 100 samples in 10° dimensions!

@ Itis necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the Euclidean norm of g

p
181E="Y" 682,
i=1

(ridge regression, support vector machines...)

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example : Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 100) whose
expression are enough for classification. Interpretation is then about
the selected genes. Examples:

@ Greedy feature selection (T-tests, ...)

@ Contrain the norm of 3: LASSO penalty (|| 8 [l1 = Y5, | 8i ),
elastic net penalty (|| 811 + || B12), --- )

Cons

@ The gene selection
process is usually not

@ Good performance in
classification

@ Biomarker selection robust
@ Interpretability @ No use of prior biological
knowledge
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e Using gene networks as prior knowledge
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Gene networks
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Gene network interpretation

@ Basic biological functions usually involve the coordinated action of
several proteins:
e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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reception lowfrequency componert high-frequency component
i {noise)

high-frequency component

microarray smooth componert

@ Use the gene network to extract the “important information” in
gene expression profiles by Fourier analysis on the graph

@ Learn a linear classifier on the smooth components
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Properties of the Laplacian

Lemma

Let L = D — A be the Laplacian of the graph:
@ Foranyf: X — R,

L =5"(F(x) — £ (x;))?

inof

@ L is a symmetric positive semi-definite matrix

@ 0 is an eigenvalue with multiplicity equal to the number of
connected components.
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Proof: link between Q(f) and L

> (F(x) = £ (x) = D7 (FO0) + 7 (%)% 2F (%) 7 (x;) )

i~f i~f
m
= "D ()2 =2 (%) f (x))
i=1 i~
— ' Df — fTAf
= fILf
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Proof: eigenstructure of L

@ L is symmetric because A and D are symmetric.
@ Forany f ¢ R™, fTLf > 0, therefore the (real-valued) eigenvalues
of Lare > 0 : L is therefore positive semi-definite.

@ fis an eigenvector associated to eigenvalue 0
iff fTLfF=0
iff >, (F(xi) — £ (x;))° =0,
iff £(x;) = f (x;) when i ~ j,
iff f is constant (because the graph is connected).
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Fourier basis

@ The eigenvectors ey, ..., e, of L with eigenvalues
0= X <...< \,form abasis called Fourier basis

@ Forany f: V — R, the Fourier transform of f is the vector f € R”
defined by:

f=fe, i=1,...,n

@ Obviously the inverse Fourier formula holds:

n
f= Z?,-e,-.
i=1
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Fourier basis
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Fourier basis
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Smoothing operator

@ Let ¢ : Rt — RT be non-increasing.

@ A smoothing operator Sy transform a function f : V — R into a
smoothed version:

Su(f) = " Fo(M)e.
i=1
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Smoothing operators

@ Identity operator (S,(f) = f):
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Smoothing operators

@ Identity operator (S,(f) = f):

@ Low-pass filter:

0 otherwise.

¢(A){1 if A< A\*,

J.-P. Vert (Ecole des Mines) Classification of gene expression data 23/35



Smoothing operators

@ Identity operator (S,(f) = f):

@ Low-pass filter:

1 ifA< A",

\) = S A,

oA {O otherwise.
@ Attenuation of high frequencies:

6(\) = exp(—3)).

23/35
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Supervised classification and regression

Working with smoothed profiles

@ Classical methods for linear classification and regression with a
ridge penalty solve:

min — Z / (ﬂTf,,y,> +2378.

BERP N

@ Applying these algorithms on the smooth profiles means solving:

min — Z / <[5TS¢ y,-) +2873.

BERP N
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Smooth solution

Lemma

This is equivalent to:

n 1SS (e ) 4SS
V'Q]'}Qvn; (V ”y’)+ §¢(A,)’

hence the linear classifier v is smooth.
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Smooth solution

This is equivalent to:

V2
521'1@77;2/(‘/ fy’)JFAZg/)

hence the linear classifier v is smooth.

@ Letv=>",6(\)ee s, then
BT Sy(f) =BT Z fig(A

A~ o Tn_ n 012
@ Then v, = (b(/\,')ﬂ,‘ and ﬂ ,8 = Zi:1 SO07
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Kernel methods

Smoothing kernel

Kernel methods (SVM, kernel ridge regression..) only need the inner
product between smooth profiles:

K(f,g) = Sy(f) " Se(g)
=Y f@io(\)?
i=
=f' (i qﬁ()\,-)ze,-e,-T) g
i=1

= fTKyg,

with

n
K¢ = Z (/)(A,)ze;e,-T 5
i=1
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@ For ¢(\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .
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@ For ¢(\) = exp(—t\), we recover the diffusion kernel:

K, = expy(—2tL) .

@ For ¢(\) = 1/+/1+ A, we obtain
Ky=(L+ D",

and the penalization is:

n ~D
Vi )2
E =vi(L+Nv=|Vv|E+ E —Vj)*©.

IN]
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Outline
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Expression

@ Study the effect of low irradiation doses on the yeast
@ 12 non irradiated vs 6 irradiated

@ Which pathways are involved in the response at the transcriptomic
level?

@ KEGG database of metabolic pathways

@ Two genes are connected is they code for enzymes that catalyze
successive reactions in a pathway (metabolic gene network).

@ 737 genes, 4694 vertices.
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Classification performance
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Classifier
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Classifier

GLYCOLYSS GLYCOLYSS

(g
()

-
| ‘inrch and sucrose
R

i /@otzxﬂﬁﬁw

O ———)

. fre K )
oS o (T S
e ool o et
oo st o— T

(e | =~ a7 ‘,

on
GLUCONEOGENESS 7 GLUCONEOGENESIS

=)

(Ramepssoas)

(=)o
-

W)

o

M- -amaetet it et mowratm

S

Py

it

| |
| |

| |

| |

| |

| |

| |

| |

| |

| || (e
| |||

| [
I i

i i

| |

| |

| |

| |

| |

| |

| |

rrTTrTT

1
| | e et
[ o

b)

J.-P. Vert (Ecole des Mines 32/35




Outline
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Conclusion

@ Use the gene graph to encode prior knowledge about the
classifier.

@ Prior knowledge is always needed to classify few examples in
large dimensions (sometimes implicitly)

@ Future work: validation of the method on more data, other
formulations, directed graphs...
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