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Outline

1 Supervised inference of biological networks from heterogeneous
genomic data

2 Using gene networks for gene expression data classification
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Motivation

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...
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Strategies

Unsupervised approaches
The graph is completely unknown

model-based approaches : Bayes nets, dynamical systems,..
similarity-based : connect similar nodes

Supervised approaches
Part of the graph is known in advance

Prior knowledge in model-based approaches
Statistical / Machine learning approaches: learn from the known
subnetwork a rule that can predict edges from genomic data
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Genomic Data

Data representation a distances
We assume that each type of data (expression, sequences...)
defines a (negative definite) distance between genes.
Many such distances exist (cf kernel methods).
Data integration is easily obtained by summing the distance to
obtain an “integrated” distance
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Method 1: Direct similarity-based prediction

Motivation: “connect similar genes”
Connect a and b if d(a, b) is below a threshold.
This is an unsupervised approach (no use of the known
subnetwork).
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Method 2: metric learning

Metric learning
Motivation: use the known subnetwork to refine the distance
measure, before applying the similarity-based method
Based on kernel CCA (Yamanishi et al., 2004) or kernel metric
learning (V. and Yamanishi, 2005).
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Metric learning example

Kernel metric learning (V. and Yamanishi, 2005)
Criterion: connected points should be near each other after
mapping to a new d-dimensional Euclidean space.
Add regularization to deal with high dimensions.
Mapping f (x) = (f1(x), . . . , fd(x)) with:

fi = arg min
f⊥{f1,...,fi−1},var(f )=1

∑
i∼j

(
f (xi)− f (xj)

)2
+ λ||f ||2k

 .

Interpolates between (kernel) PCA (λ = ∞) and graph embedding
(λ = 0).
Equivalent to a generalized eigenvalue problem.
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Metric learning example

Kernel CCA (Yamanishi et al., 2004)
Criterion: Find a subspace where the graph distance and the
genomic data distance match
Formulated as a search for correlated directions (kernel trick).
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Method 3: Matrix completion

Motivation: Fill missing entries in the adjacency matrix directly, by
making it similar to (a variant of) the data matrix
Method: EM algorithm based on information geometry of positive
semidefinite matrices (Kato et al., 2005)
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Method 4: Supervised binary classification

A pair can be connected (1) or not connected (-1)
Use known network as a training set for a SVM that will predict if
new pair is connected or not
Example: SVM with tensor product pairwise kernel (Ben-Hur and
Noble, 2006):

KTTPK ((x1, x2), (x3, x4)) = K (x1, x3)K (x2, x4) + K (x1, x4)K (x2, x3) .
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Method 5: Local predictions

Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Local predictions: pros and cons

Pros
Allow very different models for nearby nodes on the graph
Faster to train n models with n examples than 1 model with n2

examples

Cons
Few positive examples available for some nodes
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Experiments

Network
Metabolic network (668 vertices, 2782 edges)
Protein-protein interaction network (984 vertices, 2438 edges)

Data (yeast)
Gene expression (157 experiments)
Phylogenetic profile (145 organisms)
Cellular localization (23 intracellular locations)
Yeast two-hybrid data (2438 interactions among 984 proteins)

Method
5-fold cross-validation
Predict edges between test set and training set
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Results: protein-protein interaction
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Results: metabolic gene network
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Results: effect of data integration
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Local SVM, protein-protein interaction network.
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Local SVM, metabolic gene network.
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Conclusion

Summary
A variety of methods have been investigated recently
Some reach interesting performance on the benchmarks: Local
SVM retrieve 45% of all true edges of the metabolic gene network
at a FDR below 50%

Valid for any network, but non-mechanistic model.
Future work: experimental validation, improved data integration,
semi-local approaches...

J.-P. Vert (Ecole des Mines) Supervised network inference 20 / 32



Outline

1 Supervised inference of biological networks from heterogeneous
genomic data

2 Using gene networks for gene expression data classification
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Tumor classification from microarray data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of gene i for
the classification
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Linear classifiers

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!
It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge regression):
‖β ‖2 =

∑p
i=1 β2

i

L1-norm (lasso regression) : ‖β ‖1 =
∑p

i=1 |βi |

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example 2: Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about
the selected genes.

Pros
Good performance in
classification
Useful for biomarker
selection
Apparently easy
interpretation

Cons
The gene selection
process is usually not
robust
Wrong interpretation is
the rule (too much
correlation between
genes)
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Pathway interpretation

Motivation
Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling,
regulatory)
Many pathways are already known
How to use this prior knowledge to constrain the weights to have
an interpretation at the level of pathways?
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Pathway-derived norm constraint

One solution (Rapaport et al., 2007)
Let the set of pathways be represented by an undirected graph.
Consider the pathway-derived norm:

Ω(β) =
∑
i∼j

(
βi − βj

)2
.

Constrain Ω(β) instead of ‖β ‖2
2

Remard: this is equivalent to a SVM with a particular kernel.
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Pathway interpretation
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Bad example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
SVM
Good classification
accuracy, but no
possible interpretation!
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Pathway interpretation

Good example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
spectral SVM
Good classification
accuracy, and good
interpretation!
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Conclusion

Use the gene graph to encode prior knowledge about the
classifier.
Prior knowledge is always needed to classify few examples in
large dimensions (sometimes implicitly)
Future work: validation of the method on more data, other
formulations, directed graphs...
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