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@ Gene expression,

@ Protein-protein interactions,
@ Metabolic pathways,
@ Signaling pathways, ...

@ Gene sequence,
@ Protein localization, ...
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Strategies

Unsupervised approaches
The graph is completely unknown
@ model-based approaches : Bayes nets, dynamical systems,..

@ similarity-based : connect similar nodes
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Strategies

Unsupervised approaches

The graph is completely unknown
@ model-based approaches : Bayes nets, dynamical systems,..
@ similarity-based : connect similar nodes

o

Supervised approaches

Part of the graph is known in advance
@ Prior knowledge in model-based approaches

@ Statistical / Machine learning approaches: learn from the known
subnetwork a rule that can predict edges from genomic data
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Genomic Data

Data representation a distances

@ We assume that each type of data (expression, sequences...)
defines a (negative definite) distance between genes.

@ Many such distances exist (cf kernel methods).

@ Data integration is easily obtained by summing the distance to
obtain an “integrated” distance

Network

inference
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Method 1: Direct similarity-based prediction

@ Motivation: “connect similar genes”
@ Connect aand b if d(a, b) is below a threshold.

@ This is an unsupervised approach (no use of the known
subnetwork).
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Method 2: metric learning

Metric learning

@ Motivation: use the known subnetwork to refine the distance
measure, before applying the similarity-based method

@ Based on kernel CCA (Yamanishi et al., 2004) or kernel metric
learning (V. and Yamanishi, 2005).
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Metric learning example

Kernel metric learning (V. and Yamanishi, 2005)

@ Criterion: connected points should be near each other after
mapping to a new d-dimensional Euclidean space.

@ Add regularization to deal with high dimensions.
@ Mapping f(x) = (fi(x), ..., fg(x)) with:

fL{f,....,fi_1},var(f)=1 i~j

fi—  argmin {Z (f(a) — F0g))? + Af%} -

@ Interpolates between (kernel) PCA (A = oo) and graph embedding
(A=0).

@ Equivalent to a generalized eigenvalue problem.
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Metric learning example

Kernel CCA (Yamanishi et al., 2004)

@ Criterion: Find a subspace where the graph distance and the
genomic data distance match

@ Formulated as a search for correlated directions (kernel trick).
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Method 3: Matrix completion

@ Motivation: Fill missing entries in the adjacency matrix directly, by
making it similar to (a variant of) the data matrix

@ Method: EM algorithm based on information geometry of positive
semidefinite matrices (Kato et al., 2005)

Adjacency matrix of protein network Similarity matrix of the other genomic data
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Method 4: Supervised binary classification

@ A pair can be connected (1) or not connected (-1)

@ Use known network as a training set for a SVM that will predict if
new pair is connected or not

@ Example: SVM with tensor product pairwise kernel (Ben-Hur and
Noble, 2006):

Krrei (X1, X2), (X3, Xa)) = K (X1, x3)K(X2, Xa) + K(X1, Xa)K(x2, X3)
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Method 5: Local predictions

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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Local predictions: pros and cons

@ Allow very different models for nearby nodes on the graph

@ Faster to train n models with n examples than 1 model with n?
examples
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@ Faster to train n models with n examples than 1 model with n?
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@ Metabolic network (668 vertices, 2782 edges)

@ Protein-protein interaction network (984 vertices, 2438 edges)

Data (yeast)
@ Gene expression (157 experiments)
@ Phylogenetic profile (145 organisms)
@ Cellular localization (23 intracellular locations)
@ Yeast two-hybrid data (2438 interactions among 984 proteins)

@ 5-fold cross-validation

@ Predict edges between test set and training set
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Results: protein-protein interaction
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Results: metabolic gene network
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Results: effect of data integration
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Local SVM, protein-protein interaction network.
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Local SVM, metabolic gene network.
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Conclusion

@ A variety of methods have been investigated recently

@ Some reach interesting performance on the benchmarks: Local
SVM retrieve 45% of all true edges of the metabolic gene network
at a FDR below 50%

@ Valid for any network, but non-mechanistic model.

@ Future work: experimental validation, improved data integration,
semi-local approaches...
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e Using gene networks for gene expression data classification
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Tumor classification from microarray data

Data available

@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)
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Tumor classification from microarray data

Data available

@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

@ Design a classifier to automatically assign a class to future
samples from their expression profile

@ Interpret biologically the differences between the classes
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Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy, ..., Xp) where
p > 10° is the number of probes

@ Classification: given the set of labeled sample, learn a linear
decision function:

p
f(x) =Y Bixi+ Bo
=1

that is positive for one class, negative for the other

@ Interpretation: the weight 3; quantifies the influence of gene i for
the classification
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Linear classifiers

@ No robust estimation procedure exist for 100 samples in 10°
dimensions!

@ It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the norm of 3, e.g.:

@ Euclidean norm (support vector machines, ridge regression):

18112 = 3274 57

@ Ly-norm (lasso regression) : || B[+ = 37 | 8|

@ Good performance in

@ Limited interpretation
classification

(small weights)
@ No prior biological
knowledge
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Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about
the selected genes.

Pros Cons

@ Good performance in @ The gene selection
classification process is usually not
@ Useful for biomarker robust
selection @ Wrong interpretation is
@ Apparently easy the rule (too much
interpretation correlation between
’ genes)
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Pathway interpretation

@ Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling,
regulatory)

@ Many pathways are already known

@ How to use this prior knowledge to constrain the weights to have
an interpretation at the level of pathways?
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Pathway-derived norm constraint

One solution (Rapaport et al., 2007)
@ Let the set of pathways be represented by an undirected graph.
@ Consider the pathway-derived norm:

i~f

@ Constrain Q(B) instead of || 3|3
@ Remard: this is equivalent to a SVM with a particular kernel.
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Pathway interpretation

N Glycan

Bad example
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Pathway interpretation

Good example

@ The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)

@ We project the classifier
weight learned by a
spectral SVM

@ Good classification
accuracy, and good
interpretation!
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Conclusion

@ Use the gene graph to encode prior knowledge about the
classifier.

@ Prior knowledge is always needed to classify few examples in
large dimensions (sometimes implicitly)

@ Future work: validation of the method on more data, other
formulations, directed graphs...

J.-P. Vert (Ecole des Mines) Supervised network inference 31/32



Acknowledgements

Supervised graph inference

@ Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto): kCCA, kML
@ Kevin Bleakley, Gerard Biau (Univ. Montpellier): local SVM

Classification of microarray data

@ Franck Rapaport, Emmanuel Barillot, Andrei Zynoviev, Marie
Dutreix (Curie Institute)

J.-P. Vert (Ecole des Mines) Supervised network inference 32/32



	Supervised inference of biological networks from heterogeneous genomic data
	Using gene networks for gene expression data classification

