Kernel Methods for Strings and Graphs

Jean-Philippe Vert
Jean-Philippe.Vert@ensmp. fr

Centre for Computational Biology
Ecole des Mines de Paris, ParisTech

Kyoto University, Bioinformatics Center, February 8th, 2007

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 1/126



0 Kernels and kernel methods

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 2/126



0 Kernels and kernel methods

e Kernels for biological sequences
@ Motivations
@ Feature space approach
@ Using generative models
@ Derive from a similarity measure
@ Application: remote homology detection
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0 Kernels and kernel methods

e Kernels for biological sequences
@ Motivations
@ Feature space approach
@ Using generative models
@ Derive from a similarity measure
@ Application: remote homology detection

e Kernels on graphs
@ Motivations
@ Construction by regularization
@ The diffusion kernel
@ Harmonic analysis on graphs
@ Applications
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Kernels and Kernels Methods
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Overview

@ Develop versatile algorithms to process and learn from data

@ No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)

The approach

@ Develop methods based on pairwise comparisons.

@ By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a nice general framework for
learning from data.
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Representation by pairwise comparisons

----——--=>(( S) =(aat cgagt cac, at ggacgt ct, t gcact act)

@ Define a “comparison function” K : X x X +— R.

@ Represent a set of ndata points S = {Xy,Xz,...,X,} bythe n x n
maitrix:
[K]j = K (xi,%;) -
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K: X x X — R symmetric:

V(x,x) € X2, K (x,x) =K (X,x),

)

and which satisfies, for all N € N, (x4, Xo, . .

., Xn) € XN et
(ay, @, ...,an) € RN:

Za,a, (x;,%;) > 0.
1 j=1

=
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General remarks

@ Equivalently, a kernel K is p.d. if and only if, for any N € N and
any set of points (Xy, Xz, ...,Xy) € XN, the similarity matrix
[K]; == K (xi,%;) is positive semidefinite.

@ Complete modularity between the kernel (mapping a set of points
to a matrix) and the algorithm (processing the matrix)

@ Poor scalability w.r.t to the dataset size (m2?)
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Examples

Kernels for vectors

Classical kernels for vectors (X = RP) include:
@ The linear kernel

Kiin (x,X') =x"x".
@ The polynomial kernel
d
Kool (X, X') = <xTx’ + a> .

@ The Gaussian RBF kernel:

X — X 2
KGaussian (x7 X/) = exp (_%) .
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Geometric interpretation: Kernels are inner products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
'H and a mapping

¢ X—H,
such that, for any x,x" in X :
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Corollary: The kernel trick

Kernel trick

Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel
evaluation.

v

Remark

@ The proof of this proposition is trivial, because the kernel is
exactly the inner product in the feature space.

@ This trick has huge practical applications, in particular to extend
linear methods to non-linear settings and non-vector data.

@ Vectors in the feature space are only manipulated implicitly,
through pairwise inner products.
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Kernel trick example: computing distances in the
feature space

dk (X1,%2)? = || ® (x1) — & (x2) [13,

= (P (X1) = P (X2), P (X1) — P (X2))y

= (P (X1), P (X1))3, + (P (X2) , P (X2))y, — 2(P (X1), P (X2)),
di(X1,%2)? = K(Xq,X1) + K(X2,X2) — 2K(X1, X2)
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Distance for the Gaussian kernel

@ The Gaussian kernel with
bandwidth o on R is:

_(x—y)?
K(x,y)=e = )

@ K(x,x)=1=|®(x) |2, soall 3

points are on the unit sphere in e ]

the feature space. 2z °]
@ The distance between the pa

images of two points x and y in -

the feature space is given by: =R B . : . .

_(xy)?
dk (X,y) = \/2 [1 —e 22 ] Ix-yll

4
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Functional interpretation: RKHS

RKHS definition

@ To each p.d. kernel on X is associated a unique Hilbert space of
function X — R, called the reproducing kernel Hilbert space
(RKHS) H

@ Typical functions are:

with norm

| fHH = ZZ@/O@ X,,X/

=1 =1
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Example: Linear kernel

Kin (X, X') =xTx".

f(x) =w'x,
[ Fllx =lwllz.
IFl=2 [Ifl=1 [IFlI=0.5
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Examples: Gaussian RBF kernel

x—x|?
KGaussian (X, X,) =exp <_%> ’
X)‘Za,exp( _X/H ) ,
—X
||f||%—zza,a,exp( ,||)

i=1 j=1
n 2 2.2
= / f(w) ’ e 2 dw.
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Smoothness functional

A simple inequality

@ The norm of a function in the RKHS controls how fast the function
varies over X’ with respect to the geometry defined by the kernel:

| F(x) = F(X') | < | fllz x dk (x,X) .

@ fis Lipschitz with constant || f ||y w.r.t. dk.

v

An important message

The RKHS norm is therefore a smoothness functional:

Small norm — slow variations.
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Pattern recognition

2772 299

@ Input variables x € X
@ Outputy € {—1,1}.
@ Training set S = {(X1,¥1),---,(Xn, ¥n)}-
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Learning from data

General setting
@ Observation: {z1,...,2,} Wwhere z; = (X;, ;) € X x Y
@ Goal: learn a function f: X — R

@ Examples: density estimation, pattern recognition, regression,
outlier detection, clustering, compression, embedding...
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Learning from data

Empirical risk minimization (ERM)

@ Define a loss function /(f, z) and a space of functions F.
© Minimize the empirical average loss over F:

. 1
feargmin—->» I(f,z).
fer N ,21: :

General properties of ERM

e If Fis not “too large” then the ERM is consistent (f is close to the
best possible f € F as the number of observations increases).

@ If Fis not “too small” then the best possible f € F is a “good”
solution.

@ Challenge: choose a “small” F that contains “good” functions.
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Learning with kernels

ERM in RKHS

@ Take F to be a ball in the RKHS:

Fe={feH : |fln<B}.

@ Advantage: by controlling the “size” of F (related to B) the ERM
principle works (consistency and theoretical rates of
convergence).

@ The kernel should be chosen s.t. some “good” functions have a
small RKHS norm.
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Large-margin classifiers

General setting

@ For pattern recognition Y = {—1,1}.

@ Goal: estimate a function f : X — R to predict y from the sign of
f(x)

@ The margin for a pair (x,y) is yf (x).

@ Focusing on large margins ensures that f (x) has the same sign
as y and a large absolute value (confidence).

@ Leads to a loss function

I(f,(x,y)) = & (yf (X)) ,

where ¢ : R — R is non-increasing.
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ERM in for large-margin classifiers: Theory

Theoretical results

@ The ERM estimator ?n solves:

{minfeH L o (vif (%))

subjectto || f|n < B.

@ Let P an unknown distribution over X x ), assume

S = (Xj, ¥i)j=1,. pi-i.d. according to P.
@ Assume K upper bounded by ~ and ¢ Lipschitz with constant L.
@ For the ¢-risk R, (f) = E¢ (Yf (X)) we have:

SL@HB
\/ﬁ .

ER, (h) < it Ry(f) +

v
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ERM in for large-margin classifiers: Practice

Reformulation as penalized minimization

@ We must solve the constrained minimization problem:

MiNfer; + Y 1mq & (Vif (X))
subject to || f ||« < B.
@ To make this practical we assume that ¢ is convex.

@ The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter A the unconstrained problem:

r;;;g{ Z¢ yif ( +AHf!H},

and complimentary slackness holds (A = 0 or || f ||« = B).
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Optimization in RKHS

@ By the representer theorem, the solution of the unconstrained
problem can be expanded as:

Z aiK xlv

@ Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in R”:

1 L
[nin ¢~ 21 oy zajK (xi,%;) | + A Z ajogK (X, X))
1= j:

ij=1

@ This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).

v
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Loss function examples

— 1-SVM
— 2-SVM
—— Logistic
—— Boosting

phi(u)
00 05 10 15 20 25 30

Method o(u)
Kernel logistic regression log(1+e7Y)

Support vector machine (1-SVM) | max (1 — u,0)
Support vector machine (2-SVM) | max (1 — u, 0)‘2
Boosting e Y
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Example: Support vector machines

1(f(x),y)

yi(x)

o
@ The loss function is the hinge loss:

Phinge(U) = max (1 — u,0) .

@ SVM solve the problem:

i Al f .
;2'72{ Z¢h|nge y/ _|_ H HH}
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Problem reformulation (2/2)

Finite-dimensional expansion

Replacing f by

?(x Zal XI7 ’

the problem can be rewritten as an optimization problem in a:
min + X' Ka,
aeREern N Z S
subject to:

{y;27:1a,-K(x/,x/)+f,-—1 >0, fori=1,....n

§ >0, fori=1,...,n.
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Solving the problem

@ This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.

@ The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.

@ Solving the dual of this problem (also a QP) will be more

convenient and lead to faster algorithms (due to the sparsity of the
final solution).

v
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Geometric interpretation
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Geometric interpretation
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Geometric interpretation

ay=U2nAF=zz-o--f_~T---"% B
\O //’ 5.. \ ///’
\‘ /// 1 ’-A //
0<ay<1/2nA
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Kernel methods: Summary

@ Positive definite kernels can be thought of as:
e Embedding the data to a Hilbert space,
o Defining a Hilbert space of real-valued functions over the data.
@ The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).

@ The norm in the RKHS can be used as regularization for empirical
risk minimization. This is theoretically justified and leads to
efficient algorithms (often finite-dimensional convex problem
thanks to the representer theorem).
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Further reading

Kernels and RKHS: general

[d N. Aronszajn.
Theory of reproducing kernels.
Trans. Am. Math. Soc., 68:337 — 404, 1950.

[§ C.Berg, J. P. R. Christensen, and P. Ressel.
Harmonic analysis on semigroups.
Springer-Verlag, New-York, 1984.

[ G.Wahba.
Spline Models for Observational Data, volume 59 of CBMS-NSF
Regional Conference Series in Applied Mathematics.
SIAM, Philadelphia, 1990.
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Further reading

Learning with kernels

@ V. N. Vapnik.
Statistical Learning Theory.
Wiley, New-York, 1998.

[4 B. Schélkopf and A. J. Smola.
Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond.
MIT Press, Cambridge, MA, 2002.

[4 J. Shawe-Taylor and N. Cristianini.
Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.
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Kernels for biological
sequences
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ﬂ Kernels and kernel methods

e Kernels for biological sequences
@ Motivations

e Kernels on graphs
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Proteins

: Alanine
: Phenylalanine
: Acide glutamique

: Threonine

T 4 m M >

: Histidine

| : Isoleucine

D : Acide aspartique

: Valine

: Proline

: Lysine

: Cysteine
: Thyrosine

: Sérine

O O < 0 X TV <

: Glycine

O sz3=z -

: Leucine
: Méthionine
: Arginine

: Asparagine

: Tryptophane

: Glutamine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
sequencing programs)

@ Need for algorithms to compare, classify, analyze these
sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
@ Map each string x € X' to a vector ®(x) € RP.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)
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Kernels for protein sequences

Generalities

@ Kernel methods have been widely investigated since Jaakkola et
al’s seminal paper (1998).
@ What is a good kernel?
o it should be mathematically valid (symmetric, p.d. or c.p.d.)
o fast to compute
e adapted to the problem (give good performances), e.g., the
unknown decision function should be smooth w.r.t. to the norm
induced by the kernel.
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Kernel for protein sequences

Kernel engineering strategies

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
@ Spectrum, mismatch, substring kernels
e Pairwise, motif kernels
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Kernel for protein sequences

Kernel engineering strategies

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
@ Spectrum, mismatch, substring kernels
e Pairwise, motif kernels

@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
o Marginalized kernel
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Kernel for protein sequences

Kernel engineering strategies

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
@ Spectrum, mismatch, substring kernels
e Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
o Mutual information kernel
o Marginalized kernel
@ Derive a kernel from a similarity measure
o Local alignment kernel
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ﬂ Kernels and kernel methods

e Kernels for biological sequences

@ Feature space approach

e Kernels on graphs
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € RP. How to perform this embedding?
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € RP. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence

@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

o Fourier transforms (Wang et al., 2004)
e Autocorrelation functions (Zhang et al., 2003)

1 M
= 7/’7—] 2 hihi+j
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Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (X)) yeax

where ¢, (x) can be:
@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismaich kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of

X = CGGSLIAMMWEGV
is:
(CGG, GGS, GSL, SLI,LIA, IAM, AMM, MMW, MWF, WEG, FGV) .

@ Let ¢, (x) denote the number of occurrences of uin x. The
k-spectrum kernel is:

K(x,X) = > &y (x) 0y (X) .

uc Ak
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Example: spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over |.A|¥ terms,
but at most | x| — k + 1 terms are non-zero in ¢ (X) =
Computation in O (| x| + | x"|) with pre-indexation of the strings.

@ Fast classification of a sequence x in O (| x|):

| x| —k+1

f(x) = ZWUCDU (x) = Z Wi xiop_s-

| A\

REINELE
@ Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification.
@ Variants allow matching of k-mers up to m mismatches.

\
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Example 2: Substring kernel (1/5)

@ For1 < k < ne N, wedenote by Z(k, n) the set of sequences of
indices i = (iy,...,ik),With1 <y <bh < ... < <n.

@ Forastring x = xq ... x, € X of length n, for a sequence of indices
i € Z(k, n), we define a substring as:

X (i) =X, X, ... X, .

@ The length of the substring is:

/(i):ik—i1+1.
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Example 2: Substring kernel (2/5)

ABRACADABRA

@ i=(3,4,7,8,10)
@ x (i) =RADAR
@ /(i))=10-3+1=38
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Example 2: Substring kernel (3/5)

The kernel

@ Let k e Nand )\ € R fixed. For allu € A, let &, : ¥ — R be
defined by:

VX e X, oy(x)= > pUON
i€Z(k, X)) x(i)=u

@ The substring kernel is the p.d. kernel defined by:

V(x,X) € X%, Kix (x,X) = D by (x)

uc Ak
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Example 2: Substring kernel (4/5)

u |ca ct at ba bt cr ar br
Pycat) [ X2 X* X2 0 0 0 O O
dy(car) [X2 0 0 0 0 A X 0
dubat) [0 0 X X2 X 0 0 0
dubar) [0 0 0 X 0 0 A2 A

K (cat,cat) = K (car,car) = 2\* + \°
K (cat,car) = \*
K (cat,bar) =0
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Example 2: Substring kernel (5/5)

Kernel computation

@ We need to compute, for any pair x,x’ € X, the kernel:

Ko (X,X') Zcbu

uc Ak

Z Z Z A+

uc Ak i:xx(i)=u i’ =u

@ Enumerating the substrings is too slow (of order | x ]k)

@ The kernel can be factorized and computed by dynamic
programming in O (| x| x |X"]).
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (X) = (s (X, X;))

x;,eD
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (x) = (s (X, X;))x.cp

Examples
This includes:
@ Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
@ Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Further reading

Substring kernels

[3 C. Leslie, E. Eskin, and W.S. Noble.
The spectrum kernel:a string kernel for SVM protein classification.
In PSB 2002, pages 564-575. World Scientific, 2002.

[3 H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C.
Watkins.
Text classification using string kernels.
J. Mach. Learn. Res., 2:419-444, 2002.

[3 C.S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble.
Mismatch string kernels for discriminative protein classification.
Bioinformatics, 20(4):467—476, 2004.
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Further reading

Dictionary-based string kernels

[§ B.Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif.
A Study of Remote Homology Detection.
Technical Report CRL 2001/05, Compaq Cambridge Research
laboratory, June 2001.

[@ L. Liao and W.S. Noble.
Combining Pairwise Sequence Similarity and Support Vector
Machines for Detecting Remote Protein Evolutionary and
Structural Relationships.
J. Comput. Biol., 10(6):857-868, 2003.
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ﬂ Kernels and kernel methods

e Kernels for biological sequences

@ Using generative models

e Kernels on graphs
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel

designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Py,0 € © CR™} C M{ (X)
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Strategy 1: Fisher kernel

@ Fix a parameter 0y € © (e.g., by maximum likelihood over a
training set of sequences)

@ For each sequence x, compute the Fisher score vector:
by, (X) = Vg log Py(x)|g—g, -
@ Form the kernel (Jaakkola et al., 1998):
K (%, X") = ®g,(X) " 1(60) " g, (X')

where /(69) = Eg, [®g,(X)Pg,(x) "] is the Fisher information matrix.

v

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 56 /126



Fisher kernel properties

@ The Fisher score describes how each parameter contributes to
the process of generating a particular example

@ The Fisher kernel is invariant under change of parametrization of
the model

@ A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).

@ A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 57 /126



Fisher kernel in practice

@ dg (x) can be computed explicitly for many models (e.g., HMMs)
@ /() is often replaced by the identity matrix

@ Several different models (i.e., different 6,) can be trained and
combined

@ Feature vectors are explicitly computed
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Further reading

Fisher kernels

[@ T. Jaakkola, M. Diekhans, and D. Haussler.

A Discriminative Framework for Detecting Remote Protein
Homologies.

J. Comput. Biol., 7(1,2):95—114, 2000.

[§ K. Tsuda, M. Kawanabe, G. Ratsch, S. Sonnenburg, and K.-R.
Muller.
A new discriminative kernel from probabilistic models.
Neural Computation, 14(10):2397—2414, 2002.
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Strategy 2: Mutual information kernels

@ Chose a prior w(d#f) on the measurable set ©
@ Form the kernel (Seeger, 2002):

K (x,x') = " Po(x)Py(x")w(d6) .

@ No explicit computation of a finite-dimensional feature vector
b K(X, X/) =< ¢(X) @ (X/) >L2(W) with

¢ (X) = (Po (X))o -
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Example: coin toss

@ Let Py(X =1)=0and Py(X =0) =1 — 6 a model for random
coin toss, with 6 € [0, 1].

@ Let df be the Lebesgue measure on [0, 1]
@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =6(1-6)>,
Py(x') =62(1-0)%,

! 141 4
K(x7X’)=/0 93(1—9)4d0:387!:%,
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Context-tree model

A context-tree model is a variable-memory Markov chain:

Pp o(X) = Pp (X H Ppo(Xi| Xi—p .. Xi—1)
i=D+1

@ D is a suffix tree
@ 0 c P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0a5(A)04(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)

@ fFor particular choices of priors, the context-tree kernel:

Kxx)=Y" /0 _ Pro(0Pp(x)w(d0[D)x(D)
AL

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.
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Further reading

Mutual information kernels

[4 M. Seeger.
Covariance Kernels from Bayesian Generative Models.
In Adv. Neural Inform. Process. Syst., volume 14, pages 905-912,
2002.

[@ M. Cuturi and J.-P. Vert.
The context-tree kernel for strings.
Neural Network., 18(4):1111-1123, 2005.

[3 M. Cuturi, K. Fukumizu, and J.P. Vert.
Semigroup Kernels on Measures.
J. Mach. Learn. Res., 6:1169—1198, 2005.
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Strategy 3: Marginalized kernels

@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability
Px (dy).

@ Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Tsuda et al., 2002):

Kx (%, X') := Ep,(ay)xP, (ay) Kz (2,7)

://KZ ((x,y), (X,y")) Px(dy) Px (dy') .
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Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore there exists a Hilbert space H and
¢z : Z — H such that:

KZ(ZZ)—<¢Z q)z( )>’H
@ Marginalizing therefore gives:

Kx (X, X') = Ep,(dy)xp,(ay)Kz (2, Z/)
= Ep,(dy)xPy(dy) (P2 (2) . @z (Z'))y,
= (Epy(ay)®z (2) . Epyay)®z (Z)),,

therefore Ky isp.d.on X. O
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Example: HMM for normal/biased coin toss

@ Normal (N) and biased (B)
coins (not observed)

0.85
@ Observed output are 0/1 with probabilities:

7(O|N) = 1 — =(1|N) = 0.5,
7(0|B) =1 —x(1|B) = 0.8.

@ Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

@ If both x € A* and y € §* were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

Kz (2.2) = Z Nas(2Z) Nas (2),

(a,5)eAXS
where ny s (x,y) fora= 0,1 and s = N, B is the number of

occurrences of s in y which emit a in x.
@ Example:

Z=1001011101111010010111001111011,
Z =0011010110011111011010111101100101,

Kz (2,2)) =no(z)no () + no (2) no (Z') + n1 (2) ny (Z') 4+ ny (2) Ny (Z
=7x154+9x124+13 x6+2x1=293.

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 69/126



1-spectrum marginalized kernel on observed data

@ The marginalized kernel for observed data is:

Y Kz ((x.y),(x.)) P(y|x) P (Y'|X)

y,y eS*
= Z Z Na s (2) Na s (2)| P(ylx)P (y’|x’)
yy'eS* | (a,8)eAxS
— Z (Da’s (X) q)a’s (XI) 5
(a,8)eAxS
with
dys (X Z P(y|x) nas(X,y)

yes*
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Computation of the 1-spectrum marginalized kernel

Gas(X) =D P(YX)Nas(X,y)
yes*

= Z P (y|x) {25()073)5(”’5)}
i=1

yes*

=Y 6 (xa) { ) P(vx)a(y,-,s)}
i=1

yes*
n

= 6(x,a)P(yi=slx).
i=1

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand
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HMM example (protein)

N times
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SCFG for RNA sequences

@ S— SS

@ S— aSa
@ S— as
e S—a

Marginalized kernel (Kin et al., 2002)

@ Feature: number of occurrences of each (base,state) combination
@ Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

@ Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

@ Kernels for RNA sequences based on SCFG (Kin et al., 2002)

@ Kernels for graphs based on random walks on graphs (Kashima et
al., 2003)

@ Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2006)

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 75/126



Marginalized kernels: example

e A set of 74 human tRNA
T sequences is analyzed using
jﬁrl a kernel for sequences (the
o o T second-order marginalized
. 4"..°v . °oe kernel based on SCFG). This
* set of tRNAs contains three
o ° PCl classes, called Ala-AGC
° o S o (white circles), Asn-GTT
8 8880 (black circles) and Cys-GCA
o % (plus symbols) (from Tsuda
° et al., 2002).
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Further reading

Marginalized kernels

[@ K. Tsuda, T. Kin, and K. Asai.
Marginalized Kernels for Biological Sequences.
Bioinformatics, 18:5S268—-S275, 2002.

[@ T.Kin, K. Tsuda, and K. Asai.
Marginalized kernels for RNA sequence data analysis.
In GIW 2002, pages 112—122, 2002.

@ H. Kashima, K. Tsuda, and A. Inokuchi.
Marginalized Kernels between Labeled Graphs.
In ICML03, pages 321-328, 2003.

[@ J.-P. Vert, R. Thurman, and W. S. Noble.
Kernels for gene regulatory regions.
In NIPS’05, volume 18, pages 1401—-1408, 2006.
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ﬂ Kernels and kernel methods

e Kernels for biological sequences

@ Derive from a similarity measure

e Kernels on graphs
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Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWEGV
Xo> = CLIVMMNRLMWE GV

Find a good alignment:

CGGSLIAMM-——-WEGV

R R
C——-LIVMMNRLMWEGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RA*A
@ a gap penalty function g : N — R

Any alignment is then scored as follows

CGGSLIAMM-——-WEGV

R R
C—-—-LIVMMNRLMWEGV

$s4(m) = S(C, C) + S(L, L) + S(I, 1) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)

v

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 80/126



Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := B e”%%?‘y) Ss,g().

@ It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := B Q%%?‘y) Ss,g().

@ It is symmetric, but not positive definite...

v

LA kernel
The local alignment kernel:

KD (xy)= Y exp(Bssg(x.y.m),
wen(x,y)

is symmetric positive definite (Vert et al., 2004).
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LA kernel is p.d.: proof

@ If Ki and K> are p.d. kernels for strings, then their convolution
defined by:

Kix Ko(x,y) = > Ki(X1,y1)Ka(X2, ¥2)
X1 Xo=X,y1Y2=Y

is also p.d. (Haussler, 1999).

@ LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

LA _ZK *( K(ﬁ))(ni)*Ky)*Ko.

where Ky, K5 and K are three basic p.d. kernels (Vert et al.,
2004).

v
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LA kernel in practice

@ Implementation by dynamic programming in O(|x| x [x'|)
0:01

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)

v
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Further reading

Convolution kernels

[3 D.Haussler.
Convolution Kernels on Discrete Structures.
Technical Report UCSC-CRL-99-10, UC Santa Cruz, 1999.

[3] C. Watkins.
Dynamic alignment kernels.
In A.J. Smola, P.L. Bartlett, B. Schélkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 39-50. MIT
Press, Cambridge, MA, 2000.

[@ J.-P. Vert, H. Saigo, and T. Akutsu.
Local alignment kernels for biological sequences.
In B. Schélkopf, K. Tsuda, and J.P. Vert, editors, Kernel Methods in
Computational Biology, pages 131-154. MIT Press, 2004.

v

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 84/126



ﬂ Kernels and kernel methods

e Kernels for biological sequences

@ Application: remote homology detection

e Kernels on graphs
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Remote homology

%
o
\Oqo OQQ/ O\oqo
S a5 &
& X &
%Oé\ ﬂi&% il
< C

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison
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SCOP database

SCOP

Fold
Super family Cijé ED
Family \@ éo C&Pé) CE O ED

Renot e honol ogs  C ose honol ogs
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A benchmark experiment

@ Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.
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Difference in performance

vv T T T

T
SVM-LA —+—
SVM-pairwise ---<---
SVM-Mismatch ---
50 SVM-Fisher -

0 %

40 |49

e

No. of families with given performance
[FH]

10

ROC50

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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@ Kernels and kernel methods
e Kernels for biological sequences

e Kernels on graphs
@ Motivations
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

o ©
°
°
O °
® 9
°
o © o ¢
°
© o
O o ©
o o b

@ We need a kernel K (x, x) between nodes of the graph.

@ Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to make a kernel on a graph

@ X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X'.
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General remarks

Strategies to make a kernel on a graph

@ X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X'.
@ How to “translate” the graph topology into the kernel?
e Direct geometric approach: K;; should be “large” when x; and x;
are “close” to each other on the graph?
e Functional approach: || f||x should be “small” when f is “smooth” on
the graph?
e Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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First approach : Geometric

A direct approach
@ Remember : for ¥ = R", the Gaussian RBF kernel is:

K (x,x) = exp (—d (x,x’)2/202) ;

where d (x,x’) is the Euclidean distance.

@ If X is a graph, let d (x, x’) be the shortest-path distance between
x and x’.

@ Problem: the shortest-path distance is not a Hilbert distance
(except for special graphs, e.g., trees)...
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@ Kernels and kernel methods
e Kernels for biological sequences

e Kernels on graphs

@ Construction by regularization
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Functional approach

@ Define a priori a smoothness functional on the functions
f: X —=R.

@ Show that it defines a RKHS and identify the corresponding kernel
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1
3 5
4

2
00100 1000 0
00100 01000
A=| 11010, D=|00300
0010 1 00020
00010 0000 1
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = A — D.

1
3 5
4
2
1 0 1 0 0
0 -1 1 0 0
L=A-D=| 1 1 -3 1 0
0 0 1 -2 A1
0o 0 0 1 -1
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Properties of the Laplacian

Lemma

Let L = A— D be the Laplacian of the graph:
@ Foranyf: X — R,

Qf) =Y (F(x;) — £ (%)) = ~fTLf

irvj
@ —L is a symmetric positive semi-definite matrix

@ 0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector1 =(1,...,1)

@ Theimage of L is

Im(L) = {feR’”:Zm:f-_O}
i=1
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Our first graph kernel

The setH = {f e R™: Y"1". f; = 0} endowed with the norm:

> (k) — £ (%))

i~

Q(f)

is a RKHS whose reproducing kernel is (—L)*, the pseudo-inverse of
the graph Laplacian.
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0.88 —0.12 008 —0.32 —0.52
—012 0.88 008 -0.32 —052
(-L)*=| 008 008 028 -012 —0.32
~0.32 -032 -012 048 0.28
~052 -052 -032 028 1.08
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@ Kernels and kernel methods
e Kernels for biological sequences

e Kernels on graphs

@ The diffusion kernel
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The diffusion equation

Lemma

For any xo € RY, the function:

1 Ix —xo |2
KXO (X, t) = Kt (XO,X) = (4—d eXp (—4—1_ .

is solution of the diffusion equation:

%KXO (X, t) = AKXO (X, t) .

with initial condition Ky, (X, 0) = dx,(X).
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Discrete diffusion equation

@ For finite-dimensional f; € R™, the diffusion equation becomes:

0
—f = Lf,
o't t

which admits the following solution:

f = fet

@ This suggest to consider:
K=el

which is indeed symmetric positive semi-definite. We call it the
diffusion kernel or heat kernel.

v
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Example: complete graph

14+(m—1)e~m P
I8

m
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Example: closed chain
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@ Kernels and kernel methods
e Kernels for biological sequences

e Kernels on graphs

@ Harmonic analysis on graphs
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Spectrum of the diffusion kernel

@ Let0O=X{ > -\ > ... > —\p be the eigenvalues of the
Laplacian:

m
L= Z(—)\,’)U,'U,T (A >0)
i=1
@ The diffusion kernel K; is an invertible matrix because its
eigenvalues are strictly positive:

m

Ki=>_ e Muu!
i—1
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Norm in the diffusion RKHS

@ For any function f € R™, let:

= ul'f

=~

be the Fourier coefficients of f (projection of f onto the eigenbasis
of K).

@ The RKHS norm of f is then:

m
If12, = TK"F =3 e™P2.

i=1

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 111/126



Generalization

This observation suggests to define a whole family of kernels:
m
K = Z I’()\,')U,'U,-T
i=1

associated with the following RKHS norms:

m 7

f2

f 2 :E /‘ i
H ”Kr . r(A/‘)

where r : RT™ — R} is a non-increasing function.
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Example : regularized Laplacian

r(\) = . >0

m
’
K= —uu =(-L+el!
;)\Hreu,u, (—L+el)

LA = TR = 37 (1 06) = £ ()% 4+ €3 F(xP.
] i=1
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@ Kernels and kernel methods
e Kernels for biological sequences

e Kernels on graphs

@ Applications
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Applications 1: graph partitioning

@ A classical relaxation of graph partitioning is:

i fi—£)° sty 2=1
,rgﬂg;iwj(: )" st f

@ This can be rewritten

mex 3 st |flh <

@ This is principal component analysis in the RKHS (“kernel PCA”)

v
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Applications 2: search on a graph

@ Let xq,..., x4 asetof g nodes (the query). How to find “similar”
nodes (and rank them)?

@ One solution:

mfianHH st. f(x)>1fori=1,...,q.
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Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray
data

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)
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Application 4: Tumor classification from microarray
data

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

@ Design a classifier to automatically assign a class to future
samples from their expression profile

@ Interpret biologically the differences between the classes
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Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy,..., Xp) where
p > 10° is the number of probes

@ Classification: given the set of labeled sample, learn a linear
decision function:

p
f(x)=>_ Bixi+ Bo ,
i=1
@ Interpretation: the weight g; quantifies the influence of gene i for
the classification

@ No robust estimation procedure exist for 100 samples in 10°
dimensions!

Jean-Philippe Vert (Ecole des Mines) Kernels for Strings and Graphs 120/126



Prior knowledge

@ We know the functions of many genes, and how they interact
together.

@ This can be represented as a graph of genes, where connected
genes perform some action together

@ Prior knowledge: constraint the weights of genes that work
together to be similar

@ Mathematically: constrain the norm of the weight vector in the
RKHS of the diffusion kernel.
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Comparison

N Glycan
biosynthesis

Glycolysis /
Gluconeogenesis

Porphyri Protein
orpayrin Sulfur

chlorophy! metabolism

Nitrogen,
asparagine
metabolism

Biosynthesis of steroids,
ergosterol metabolism

Lysine
biosynthesis phosphorylation,
TCA cycle

Phenylalanine, tyrosine and .
tryptophan biosynthesis Purine
metabolism
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Further reading

Kernels on graphs

[§ R.I. Kondor and J. Lafferty.
Diffusion Kernels on Graphs and Other Discrete Input.
In ICML 2002, 2002.

Applications

[§ F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot and J.-P. Vert
Classification of Microarray Data using Gene Networks.
BMC Bioinformatics, 8:35, 2007.
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Conclusion
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Conclusion (1/2)

Kernel design

@ A variety of principles for string and graph kernel design have
been proposed.

@ Good kernel design is important for each data and each task.
Performance is not the only criterion.

@ Still an art, although principled ways have started to emerge.

@ The integration of “higher-order information” is a hot topic! Kernel
methods are promising to combine generative and discriminative
approaches.

@ Their application goes of course beyond computational biology.
@ Their application goes of course beyond strings and graphs.
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Conclusion (2/2)

Challenges

@ How to choose “the” best kernel for a given task, or to learn
simultaneously with different kernels?

@ How to extend the methods to non p.d. and non symmetric
kernels?

@ How to design scalable kernel methods to process millions of
points?
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