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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0.
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P.d. kernels are inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=

〈
Φ (x) ,Φ

(
x′

)〉
H .

φ
X F
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Reproducing kernel Hilbert space

Definition
Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product 〈., .〉H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = 〈f , Kx〉H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).
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Equivalence between positive definite and reproducing
kernels

Theorem (Aronszajn, 1950)
K is a p.d. kernel if and only if there exists a RKHS having K as r.k.

Explicit construction of the RKHS
If K is p.d., then the RKHS H is the vector subspace of RX

spanned by the functions {Kx}x∈X (and their pointwise limits).
For any f , g ∈ H0, given by:

f =
∑

i

aiKxi , g =
∑

j

bjKyj ,

the inner product is given by:

〈f , g〉H0
:=

∑
i,j

aibjK
(
xi , yj

)
.
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Example : RKHS of the linear kernel (cont.)


K (x, x′) = x>x′ .
f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5
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Smoothness functional

A simple inequality
By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :∣∣ f (x)− f

(
x′

) ∣∣ = | 〈f , Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ‖ f ‖H).

Important message

Small norm =⇒ slow variations.
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The representer theorem

Theorem (Kimeldorf and Wahba, 1971)
Let X be a set endowed with a p.d. kernel K , HK the
corresponding RKHS, and S = {x1, · · · , xn} ⊂ X a finite set of
points in X .
Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.
Then, any solution to the optimization problem:

min
f∈HK

Ψ(f (x1) , · · · , f (xn) , ‖ f ‖HK ) ,

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi , x) .
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Pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X
Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.
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Empirical risk minimization (ERM)

ERM estimator
Loss function l (f (x) , y) ∈ R small when f (x) is a good predictor
for y
Empirical risk:

Rn(f ) =
1
n

n∑
i=1

l (f (Xi) , Yi) .

The ERM estimator on the functional class F is the solution of:

f̂n = arg min
f∈F

Rn(f ) .

Statistical learning theory : the estimator is consistent when the
“complexity” of the class F is controlled
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ERM in RKHS balls

Principle
Suppose X is endowed with a p.d. kernel
We consider the ball of radius B in the RKHS as function class for
the ERM:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Theoretical justifications exist (upper bounds on the “complexity”
of FB).
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ERM in practice

Reformulation as penalized minimization
We must solve the constrained minimization problem:{

minf∈H
1
n

∑n
i=1 l (f (xi) , yi)

subject to ‖ f ‖H ≤ B .

To make this practical we assume that l is a convex function of f .
The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f∈H

{
1
n

n∑
i=1

l (f (xi) , yi) + λ‖ f ‖2
H

}
,

and complimentary slackness holds (λ = 0 or ‖ f ‖H = B).
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Optimization in RKHS

By the representer theorem, the solution of the unconstrained
problem can be expanded as:

f (x) =
n∑

i=1

αiK (xi , x) .

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1
n

n∑
i=1

l

 n∑
j=1

αjK
(
xi , xj

)
, yi

 + λ

n∑
i,j=1

αiαjK
(
xi , xj

) .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., SVM).

Jean-Philippe Vert (Ecole des Mines) Statistical learning on graphs and groups 15 / 67



Example : support vector machines

The classifier is:

∀x ∈ X , f (x) =
n∑

i=1

αiK (x, xi) ,

where α is the solution of the following QP:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjK
(
xi , xj

)
,

subject to:
0 ≤ yiαi ≤ C, for i = 1, . . . , n .

Example

Jean-Philippe Vert (Ecole des Mines) Statistical learning on graphs and groups 16 / 67



Summary

3 ways to map X to a Hilbert space
1 Explicitly define and compute Φ : X → H
2 Define a p.d. kernel over X
3 Define a RKHS over X

The p.d. kernel is sufficient for a variety of applications in data
analysis and machine learning
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Semigroups

Definition
A semigroup (S, ◦) is a nonempty set S equipped with an
associative composition ◦ and a neutral element e.
A semigroup with involution (S, ◦, ∗) is a semigroup (S, ◦) together
with a mapping ∗ : S → S called involution satisfying:

1 (s ◦ t)∗ = t∗ ◦ s∗, for s, t ∈ S.
2 (s∗)∗ = s for s ∈ S.

Examples
Any group (G, ◦) is a semigroup with involution when we define
s∗ = s−1.
Any abelian semigroup (S,+) is a semigroup with involution when
we define s∗ = s, the identical involution.
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Positive definite functions on semigroups

Definition
Let (S, ◦, ∗) be a semigroup with involution. A function φ : S → R is
called positive definite if the function:

∀s, t ∈ S, K (s, t) = φ (s∗ ◦ t)

is a p.d. kernel on S.

Example: translation invariant kernels(
Rd ,+,−

)
is an abelian group with involution. A function φ : Rd → R is

p.d. if the function
K (x , y) = φ(x − y)

is p.d. on Rd (translation invariant kernels).
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Semicharacters

Definition
A funtion ρ : S → C on an abelian semigroup with involution (S,+, ∗) is
called a semicharacter if

1 ρ(0) = 1,
2 ρ(s + t) = ρ(s)ρ(t) for s, t ∈ S,
3 ρ (s∗) = ρ(s) for s ∈ S.

The set of semicharacters on S is denoted by S∗.
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Integral representation of p.d. functions

Definition
An function α : S → R on a semigroup with involution is called an
absolute value if (i) α(e) = 1, (ii)α(s ◦ t) ≤ α(s)α(t), and (iii)
α (s∗) = α(s).

A function f : S → R is called exponentially bounded if there exists an
absolute value α and a constant C > 0 s.t. | f (s) | ≤ Cα(s) for s ∈ S.

Theorem
Let (S,+, ∗) an abelian semigroup with involution. A function φ : S → R is p.d.
and exponentially bounded (resp. bounded) if and only if it has a
representation of the form:

φ(s) =

∫
S∗

ρ(s)dµ(ρ) .

where µ is a Radon measure with compact support on S∗ (resp. on Ŝ, the
set of bounded semicharacters).
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Example 1: (R+, +, Id)

P.d. functions
S = (R+,+, Id) is an abelian semigroup.
The set of bounded semicharacters is exactly the set of functions:

s ∈ R+ 7→ ρa(s) = e−as ,

for a ∈ [0,+∞]

A function φ : R+ → R is p.d. and bounded if and only if it has the
form:

φ(s) =

∫ ∞

0
e−asdµ(a) + bρ∞(s)

where µ ∈Mb
+ (R+) and b ≥ 0.

φ is p.d., bounded and continuous iff it is the Laplace transform of
a measure in Mb

+ (R).
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Example 2: characterization of p.d. t.i. kernels

Theorem (Bochner)

A function κ(x − y) on Rd is positive definite if and only if it is the
Fourier transform of a function κ̂(ω) symmetric, positive, and tending to
0 at infinity.

Examples

KGaussian (x , y) = e−
(x−y)2

2σ2 ,

KLaplace (x , y) =
1
2

e−γ| x−y | ,

KFilter (x , y) =
sin (Ω(x − y))

π(x − y)
.
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Example 3: Semigroup kernels for finite measures
(1/6)

We assume that data to be processed are “bags-of-points”, i.e.,
sets of points (with repeats) of a space U .
Example : a finite-length string as a set of k -mers.
How to define a p.d. kernel between any two bags that only
depends on the union of the bags?
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Example 3: Semigroup kernels for finite measures
(2/6)

Semigroup of bounded measures
We can represent any bag-of-point x as a finite measure on U :

x =
∑

i

aiµxi ,

where ai is the number of occurrences on xi in the bag and µx is
a basic measure centered on x .
The measure that represents the union of two bags is the sum of
the measures that represent each individual bag.
This suggests to look at the semigroup

(
Mb

+ (U) ,+, Id
)

of
bounded Radon measures on U and to search for p.d. functions φ
on this semigroup.
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Example 3: Semigroup kernels for finite measures
(3/6)

Semicharacters
For any Borel measurable function f : U → R the function
ρf : Mb

+ (U) → R defined by:

ρf (µ) = eµ[f ]

is a semicharacter on
(
Mb

+ (U) ,+
)
.

Conversely, ρ is continuous semicharacter (for the topology of
weak convergence) if and only if there exists a continuous function
f : U → R such that ρ = ρf .
No such characterization for non-continuous characters, even
bounded.
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Example 3: Semigroup kernels for finite measures
(4/6)

Corollary
Let U be a Hausdorff space. For any Radon measure µ ∈Mc

+ (C (U))
with compact support on the Hausdorff space of continuous
real-valued functions on U endowed with the topology of pointwise
convergence, the following function K is a continuous p.d. kernel on
Mb

+ (U) (endowed with the topology of weak convergence):

K (µ, ν) =

∫
C(X )

eµ[f ]+ν[f ]dµ(f ) .

Remarks
The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)
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Example 3: Semigroup kernels for finite measures
(5/6)

Example : entropy kernel
Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

h(x) = −
∫
U

x ln x .

Then the following entropy kernel is a p.d. kernel on X for all
β > 0:

K
(
x, x′

)
= e−βh( x+x

2 ) .

Remark: only valid for densities (e.g., for a kernel density
estimator from a bag-of-parts)
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Example 3: Semigroup kernels for finite measures
(6/6)

Examples : inverse generalized variance kernel

Let U = Rd and MV
+ (U) be the set of finite measure µ with

second order moment and non-singular variance

Σ(µ) = µ
[
xx>

]
− µ [x ] µ [x ]> .

Then the following function is a p.d. kernel on MV
+ (U), called the

inverse generalized variance kernel:

K
(
µ, µ′

)
=

1

det Σ
(

µ+µ′

2

) .
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Application of semigroup kernel

Weighted linear PCA of two different measures, with the first PC
shown. Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two
values.
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Kernelization of the IGV kernel

Motivations
Gaussian distributions may be poor models.
The method fails in large dimension

Solution
1 Regularization:

Kλ

(
µ, µ′

)
=

1

det
(
Σ

(
µ+µ′

2

)
+ λId

) .

2 Kernel trick: the non-zero eigenvalues of UU> and U>U are the
same =⇒ replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).
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Illustration of kernel IGV kernel
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Semigroup kernel remarks

Motivations
A very general formalism to exploit an algebric structure of the
data.
Kernel IVG kernel has given good results for character recognition
from a subsampled image.
The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.
The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.
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Example: web
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Example: social network
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Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.
Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to make a kernel on a graph
X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X .
How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj
are “close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth” on
the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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First approach : Geometric

A direct approach
Remember : for X = Rn, the Gaussian RBF kernel is:

K
(
x, x′

)
= exp

(
−d

(
x, x′

)2
/2σ2

)
,

where d (x, x′) is the Euclidean distance.
If X is a graph, let d (x, x′) be the shortest-path distance between
x and x′.
Problem: the shortest-path distance is not a Hilbert distance...

Jean-Philippe Vert (Ecole des Mines) Statistical learning on graphs and groups 41 / 67



Second approach : Functional

Idea
Define a priori a smoothness functional on the functions
f : X → R.
Show that it defines a RKHS and identify the corresponding kernel
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Notations

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1


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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = A− D.

1

2

3

4

5

L = A− D =


−1 0 1 0 0
0 −1 1 0 0
1 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1


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Properties of the Laplacian

Lemma
Let L = A− D be the Laplacian of the graph:

For any f : X → R,

Ω(f ) :=
∑
i∼j

(
f (xi)− f

(
xj

))2
= −f>Lf

−L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}
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Our first graph kernel

Theorem

The set H =
{

f ∈ Rm :
∑m

i=1 fi = 0
}

endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj

))2

is a RKHS whose reproducing kernel is (−L)∗, the pseudo-inverse of
the graph Laplacian.
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Third approach: The diffusion equation

Lemma
For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp
(
−‖x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x, 0) = δx0(x).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = Lft

which admits the following solution:

ft = f0etL

This suggest to consider:

K = etL

which is indeed symmetric positive semi-definite. We call it the
diffusion kernel or heat kernel.
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Example: complete graph

Ki,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .
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Example: closed chain

Ki,j =
1
m

m−1∑
ν=0

exp
[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)
m

.
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Spectrum of the diffusion kernel

Let 0 = λ1 > −λ2 ≥ . . . ≥ −λm be the eigenvalues of the
Laplacian:

L =
m∑

i=1

(−λi)uiu>i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi uiu>i
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Norm in the diffusion RKHS

For any function f ∈ Rm, let:

f̂i = u>i f

be the Fourier coefficients of f (projection of f onto the eigenbasis
of K ).
The RKHS norm of f is then:

‖ f ‖2
Kt

= f>K−1f =
m∑

i=1

etλi f̂ 2
i .
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)uiu>i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ + ε
, ε > 0

K =
m∑

i=1

1
λi + ε

uiu>i = (−L + εI)−1

‖ f ‖2
K = f>K−1f =

∑
i∼j

(
f (xi)− f

(
xj

))2
+ ε

m∑
i=1

f (xi)
2 .
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Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f∈RX

∑
i∼j

(
fi − fj

)2 s.t.
∑

i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2
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Applications 2: search on a graph

Let x1, . . . , xq a set of q nodes (the query). How to find “similar”
nodes (and rank them)?
One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . , q.

Jean-Philippe Vert (Ecole des Mines) Statistical learning on graphs and groups 56 / 67



Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Example 4: Tumor classification from microarray data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

Interpretation: the weight βi quantifies the influence of gene i for
the classification

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!
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Prior knowledge

We know the functions of many genes, and how they interact
together.
This can be represented as a graph of genes, where connected
genes perform some action together
Prior knowledge: constraint the weights of genes that work
together to be similar
Mathematically: constrain the norm of the weight vector in the
RKHS of the diffusion kernel.
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Comparison
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Conclusion

Implicit Hilbert space embedding through positive definite kernels
State-of-the-art machine learning algorithms based on
optimization in reproducing kernel Hilbert spaces
P.d. kernels on groups and graphs allow the extension of these
algorithms to non-vectorial data
Making p.d. kernel for particular objects is a hot topic in machine
learning!
Many potential applications!
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