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Ligand-Based Virtual Screening

Objective

Build models to predict biochemical properties of small molecules from
their structures.

Structures
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Properties

@ binding to a therapeutic target,
@ pharmacokinetics (ADME),
@ toxicity...
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Issues and solution

Two important steps

@ Map each molecule to a vector of fixed dimension.
© Apply an algorithm for regression or pattern recognition.

Example: 2D structural keys
A vector indexed by a limited set of informative stuctures
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+ NN, PLS, decision tree, ...
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Classical approaches

@ Expressivity of the features (which features are relevant?)

@ Dimension of the vector (memory storage, speed, statistical
issues)
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Classical approaches

Difficulties

@ Expressivity of the features (which features are relevant?)

@ Dimension of the vector (memory storage, speed, statistical
issues)

v

Our approach

Work implicitly in large (potentially infinite!) dimensions:

@ Allows to consider a large number of potentially important
features.

@ No need to store explicitly the vectors (no problem of memory
storage or hash clashes)

@ Use of regularized statistical algorithm to handle the problem of
large dimension
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0 Support Vector Machines and kernels
e 2D Kernel
@ 3D Pharmacophore Kernel

e Conclusion
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0 Support Vector Machines and kernels
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The Machine Learning Paradigm

Objective
Predict a property y for objects x
@ x = molecule, gene sequence, picture, ...
@ y is continuous (regression) or discrete (pattern recognition)
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The Machine Learning Paradigm

Objective
Predict a property y for objects x
@ x = molecule, gene sequence, picture, ...
@ y is continuous (regression) or discrete (pattern recognition)

A two-step approach

@ Training: observe a set

S = {(X1,y1),...,(Xn,Yn)}

of labeled objects, and learn a function f : X — )
@ Test: Given a new object x, predict its label by f(x).
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Examples

In biomedical research..

@ Virtual screening : x is the description of a molecule, y is the
activity / toxicity / drugability ...

@ Medical diagnosis and prognosis: x is a set of features (age,
weight, transcriptome...), y is the risk / type of tumor / expected
evolution of disease.

@ Functional genomics : x is a set of gene features (sequence,
expresssion...), y is the function of the gene

° ..
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What is a SVM?

@ an algorithm for pattern recognition and regression

@ robust in high dimension (e.g., images, texts, microarrays,
fingerprints)
@ handles vectorial or structured data (e.g., sequences, graphs)

@ allows easy integration of heterogeneous data (e.g., gene
sequence and expression, docking score and molecule
structure...)

@ state-of-the-art performance on many real-world applications.
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Simplest SVM
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Simplest SVM
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Linear SVM: implementation

@ After some algebra it is obtained by solving in o € R” the following
quadratic program:

minimize ZZa,a]X Xj — Za,

i=1 j=1
subjectto «; >0, i:1,...,n,

n
> aiyi=0
i=

@ Once «a is found, the classification function is the sign of :

n
= Z Oé,'X,-TX +b.
i=1
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Linear SVM: non-separable case
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Linear SVM: non-separable case
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Linear SVM: non-separable case

Implementation

@ Solution: find a trade-off between large margin and few
misclassification

@ Simple and elegant mathematical translation: replace 0 < «; by
0 < «; < C, for some constant C > 0, in the optimization problem.
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Nonlinear SVM
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Nonlinear SVM
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@ Define a (nonlinear) mapping

¢: X —FCRP,

@ Run a linear SVM in the feature space.
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Nonlinear SVM

@ Define a (nonlinear) mapping

¢: X —FCRP,

@ Run a linear SVM in the feature space.
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Nonlinear SVM

@ Define a (nonlinear) mapping

¢: X —FCRP,

@ Run a linear SVM in the feature space.
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Nonlinear SVM: implementation

@ Solve in o € R":

n n n

minimize ) ") " ajoyd(x) O(x) = D
i=1 j=1 i=

subjectto 0<o;<C, i=1,...,n,

n
Z a;yi=0.
i—1

@ Once « is found, the classification function is the sign of :

f(x) = zn: aj®(x;) T d(x)+ b
i=
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The kernel tricks

Important ideal!

@ To any mapping ¢ : X — F corresponds a kernel function K:

K(x,x') = &(x) " o(x').

@ SVM only need K, rather than ¢:

n n n
minimize Y "> ajosK(xi, X)) = >«
i—1

i=1 j=1
subjectto 0<o; <C, i=1,...,n,

n
Z aiyi=0.
i—1

MINES PARIS  ARMINES.
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Example: polynomial kernel
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For x = (x1,x2) | € R2, let ®(x) = (x2,V2x1 X, X2) € R3:

K(x,x") = Xx2x{2 + 2x1 XpX{ Xb + X2 X2
’ 1\ 2
= (X1X] + X2X3)

= (xx)"
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Kernel examples

For vectors

@ The linear kernel

Kiin (x,X') =x"x".
@ The polynomial kernel
d
Kpoly (X,X') = (xTx’ i a)

@ The Gaussian RBF kernel:

X — X' |2
KGaussian (x7 X/) = exp (_%) :
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Working with kernels

@ There exist conditions to ensure that a function K(x, x’) is a valid
kernel (symmetry, positive definiteness).

© No need to compute the corresponding ®.

© Akernel K can be thought of as a measure of similarity (inner
products) between the data points.
© The kernel trick allows to work implicitly in a (possibly
large-dimensional) feature space, in particular:
e to obtain non-linear versions of linear methods (nonlinear kernels)
e to extend these methods to non-vector data (kernels for general
objects)
@ SVM are designed not to overfit the training data even in infinite
dimension.

© Kernel engineering for complex objects is a hot topic!
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Kernel and kernel methods summary

Performance

@ State-of-the-art in many real-world applications
@ Resistant to large dimensions
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Kernel and kernel methods summary

Performance

@ State-of-the-art in many real-world applications
@ Resistant to large dimensions

Data representation
@ Data do not need to be explicitly vectors

@ A similarity function K(x, x") between data is enough
@ K must be symmetric and positive definite

Jean-Philippe Vert (Mines de Paris) QSAR and Virtual Screening with SVM



Kernel and kernel methods summary

Performance
@ State-of-the-art in many real-world applications

@ Resistant to large dimensions

Data representation

@ Data do not need to be explicitly vectors
@ A similarity function K(x, x") between data is enough
@ K must be symmetric and positive definite

v

Kernels in chemoinformatics

@ We need kernels for molecules!
@ Inner products of classical vector / fingerprint representations will
work, but we can do better. )
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Outline

e 2D Kernel
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Motivation: 2D Fingerprints

Features
A vector indexed by a large set of molecular fragments
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Motivation: 2D Fingerprints

Features

A vector indexed by a large set of molecular fragments
O/ C c—c O——N—¢C c=—c——c=—c——c=—c¢
» o g;g‘ gig:g ...... f——G——3—e——g 00000
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&
|

@ Many features @ Too many features?
@ Easy to detect @ Hashing = clashes
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SVM approach

Z
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Let ®(x) the vector of fragment counts:

@ Long fragments lead to large dimensions :
SVM can learn in high dimension

@ ®(x) is too long to be stored, and hashes induce clashes:
SVM do not need ®(x), they just need the kernel

K(x,x') = ¢(x) "o(x) .

-
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2D fingerprint kernel

@ For any d > 0 let ¢4(x) be the vector of counts of all fragments of
length d:

p1(X) =( #© 4,4, ...)"

)T etc...

do(X) =( #(cc),#(c=0),#(CcN), ...

@ The 2D fingerprint kernel is defined, for A < 1, by

o0

Kop(%,X') = > A6q(x) Tpg(x') .

d=1

@ This is an inner product in the space of 2D fingerprints of infinite
length.
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2D kernel computation

The 2D fingerprint kernel between two molecules x and x’ can be
computed with a worst-case complexity O ((| x| x| x ])3> (much faster
in practice).
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2D kernel computation

The 2D fingerprint kernel between two molecules x and x’ can be
computed with a worst-case complexity O <(| x| x| x 1)3) (much faster
in practice).

@ The complexity is not related to the length of the fragments
considered (although faster computations are possible if the
length is limited).

@ Solves the problem of clashes and memory storage.

@ Allows to work with infinite-length fingerprints without computing
them!

v
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2D kernel computation: Sketch (1/2)

@ Let F(x) be the set of fragments of the molecule x (with repeats).
Let /(f) be the label of fragment f (e.g., ¢ — ¢), and | f| its length.
Then the kernel can be rewritten:

Kop(x, x') Z Z 1( ))\If\

feF(x) feF(x)

@ For any two molecules (graphs) Gy and G,, compute the product
graph G = Gy x Gg:

1 )
1 20 o
X O\. = g ’
2 2 Cq
3

@ There is a bijection between:

e each fragments of G,
e each pair of fragments in G; and G, with same label.
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2D kernel computation: Sketch (2/2)

@ Therefore the kernel can be rewritten:

@ Let A be the adjacency matrix of G. Forany d > 1, [Ad]l.j is the
number of fragments of length d starting in / and ending in j.
@ Therefore the kernel is the sum of the elements of the matrices:

MR LA+ =(-2NA =1,
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
q q
1 o1l 2 o1 4
il il i
No Morgan Indices  O1 Order 1indices o1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible.

@ Faster computation with more labels (less matches implies a
smaller product graph).

03
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Extensions 2: filter out tottering fragments

Tottering fragments

éégigﬁ\ﬁcco

C¥~_0 _Cc—Cc—cC

Solution: graph transform
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Extensions 3: tree-like fragments

c—c
S
© 1 x V(D)
AN
N= 0
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CfN/ © 1 x V(D)
\N:O
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MUTAG dataset

@ aromatic/hetero-aromatic compounds
@ high mutagenic activity /no mutagenic activity
@ 188 compouunds: 125 + /63 -

Results
10-fold cross-validation accuracy

| A

Method | Accuracy
Progol1 81.4%
2D kernel | 91.2%
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e 3D Pharmacophore Kernel
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Space of pharmacophore

3-points pharmacophores

A set of 3 atoms, and 3 inter-atom distances:

7 ={((x1, X2, X3) , (dy, 02, d3)) , x; € {atom types}; d; € R}
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3D fingerprint kernel

Pharmacophore fingerprint

@ Discretize the space of pharmacophores 7 (e.g., 6 atoms or
groups of atoms, 6-7 distance bins) into a finite set 74

@ Count the number of occurrences ¢;(x) of each pharmacophore
bin t in a given molecule x, to form a pharmacophore fingerprint.

A simple 3D kernel is the inner product of pharmacophore fingerprints:

Ko, x) = 3 ai(x)u(x)

tely
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Discretization of the pharmacophore space

Common issues

@ If the bins are too large, then they are not specific enough
@ If the bins are too large, then they are too specific

In all cases, the arbitrary position of boundaries between bins affects
the comparison:

x1 x3

o
— d(x1,x3) < d(x1,X2)

BUT bin(xy) = bin(xz2) # bin(xs)

X2

Jean-Philippe Vert (Mines de Paris)

QSAR and Virtual Screening with SVM



Kernels between pharmacophores

A small trick

Kx.y) = D ¢1(x)de(y)
te7y
= D (3 1bin(p) =H)( S 1(bin(py) =1))
teTy PxEPX) PyEP(Y)
= Z Z 1(bin(px) = bin(py))
PxEP(X) byEP(Y)

v

General pharmacophore kernel

Kx. )= Y Y Ke(pxpy)

PxEP(X) pyEP(Y)

85
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New pharmacophore kernels

@ Discretizing the pharmacophore space is equivalent to taking the
following kernel between individual pharmacophores:

Kp(p1, p2) = 1 (bin(px) = bin(py))

@ For general kernels, there is no need for discretization!

@ For example, is d(p;, p2) is a Euclidean distance between
pharmacophores, take:

Kp (p1,p2) = exp (—d (p1,p2)) -
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Experiments

4 public datasets

@ BZR: ligands for the benzodiazepine receptor
@ COX: cyclooxygenase-2 inhibitors

@ DHFR: dihydrofolate reductase inhibitors

@ ER: estrogen receptor ligands

TRAIN TEST
Pos | Neg | Pos | Neg
BZR 94 | 87 | 63 | 62
COX 87 | 91 | 61 | 64
DHFR | 84 | 149 | 42 | 118
ER 110 | 156 | 70 | 110
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Results (accuracy)

Kernel \ BZR \ COX \ DHFR \ ER
2D (Tanimoto) 712 | 63.0| 769 | 771
3D fingerprint 754 | 67.0 | 769 |78.6
3D not discretized | 76.4 | 69.8 | 81.9 | 79.8
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Outline

e Conclusion

MINES PARIS  ARMINES

Jean-Philippe Vert (Mines de Paris) QSAR and Virtual Screening with SVM



@ SVM is a powerful and flexible machine learning algorithm. The
kernel trick allows the manipulation of non-vectorial objects at the
cost of defining a kernel function.

@ The 2D kernel for molecule extends classical fingerprint-based
approches. It solves the problem of bit clashes, allows infinite
fingerprints and various extensions.

@ The 3D kernel for molecule extends classical pharmacophore

fingerprint-based approaches. It solves the problems of bit
clashes and of discretization.

@ Both kernels improve upon their classical counterparts, and
provide competitive results on benchmark datasets.
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