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Kernels and Kernel Methods
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Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ Rp.
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...
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Example: support vector machine

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

SVM algorithm

f (x) = sign

(
n∑

i=1

αiyiΦ(xi)
>Φ(x)

)
,

where α1, . . . , αn solve, under the constraints 0 ≤ αi ≤ C:

min
α

(
1
2

n∑
i=1

n∑
i=1

αiαjyiyjΦ(xi)
>Φ(xj)−

n∑
i=1

αi

)
.
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Explicit vector embedding

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

Difficulties
How to define the mapping Φ : X → Rp ?
No obvious vector embedding for strings in general.
How to include prior knowledge about the strings (grammar,
probabilistic model...)?
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Implicit vector embedding with kernels

The kernel trick
Many algorithms just require inner products of the embeddings
We call it a kernel between strings:

K (x , x ′) ∆
= Φ(x)>Φ(x ′)

Examples
SVM
Nearest neighbor:

d(x , x ′)2 = ‖Φ(x)− Φ(x ′) ‖2 = K (x , x) + K (x ′, x ′)− 2K (x , x ′) .

Many other kernel methods (perceptron, regression...)
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Positive Definite Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN et
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi , xj

)
≥ 0.
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Kernels as Inner Products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F
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Examples

Kernels for vectors
Classical kernels for vectors (X = Rp) include:

The linear kernel
Klin

(
x, x′

)
= x>x′ .

The polynomial kernel

Kpoly
(
x, x′

)
=
(

x>x′ + a
)d

.

The Gaussian RBF kernel:

KGaussian
(
x, x′

)
= exp

(
−‖x− x′ ‖2

2σ2

)
.
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Kernel for strings?

A kernel defines an implicit geometry on the space of data,
although data do not need to have any prior geometric/algebric
structure
Kernel engineering is the problem of designing specific kernel for
specific data and specific tasks. Good place to put prior
knowledge!
We will now see on a practical examples different technical tricks
to design kernels.
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Kernels for Biological
Sequences
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Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rp. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel

The 3-spectrum of
x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x, x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)

.

This is formally a sum over |A|k terms, but at most |x | − k + 1
terms are non-zero in Φ (x)
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Substring indexation in practice

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)
Implementation in O(|x| × |x′|) in memory and time for the
substring kernels
The feature space has high dimension (|A|k ), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)
Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x, x′

)
= Φθ0(x)>I(θ0)

−1Φθ0(x
′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.
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Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (under several assumptions).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed
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Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x, x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .
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Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0, 1].
Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Kin et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′
)

.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) , EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x, y) for a = 0, 1 and s = N, B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0
(
z′
)

+ n1 (z) n1
(
z′
)

+ n1 (z) n1
(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑
y,y′∈S∗

KZ ((x, y) , (x, y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s
(
x′
)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x, y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x, y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)

∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi , a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)
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HMM example (protein)
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SCFG for RNA sequences

SFCG rules
S → SS
S → aSa
S → aS
S → a

Marginalized kernel (Kin et al., 2002)
Feature: number of occurrences of each (base,state) combination
Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N → R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C, C) + S(L, L) + S(I, I) + S(A, V ) + 2S(M, M)

+ S(W , W ) + S(F , F ) + S(G, G) + S(V , V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x, y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x, y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x, y, π)

)
,

is symmetric positive definite (Vert et al., 2004).
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LA kernel is p.d.: proof

If K1 and K2 are p.d. kernels for strings, then their convolution
defined by:

K1 ? K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2)

is also p.d. (Haussler, 1999).
LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

where K0, Ka and Kg are three basic p.d. kernels (Vert et al.,
2004).
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LA kernel in practice

Implementation by dynamic programming in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h

om
olo

gs

Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.
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Difference in performance
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Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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Conclusion
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Conclusion

A variety of principles for string kernel design have been
proposed.
Good kernel design is important for each data and each task.
Performance is not the only criterion.
Still an art, although principled ways have started to emerge.
The integration of “higher-order information” is a hot topic! Kernel
methods are promising to combine generative and discriminative
approaches.
Their application goes of course beyond computational biology.
Their application goes of course beyond strings.
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