Regularization of Kernel Methods by Decreasing the Bandwidth of the Gaussian Kernel

Jean-Philippe Vert (joint work with Régis Vert)

Jean-Philippe.Vert@ensmp.fr

Centre for Computational Biology Ecole des Mines de Paris, ParisTech

Machine Learning Summer School, Taipei, June 28, 2006

Outline

- Motivations
- 2 Main results
- Proofs
 - Learning bound for the R₀ risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- 4 Conclusion

Outline

- Motivations
- Main results
- Proofs
 - Learning bound for the R_0 risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- Conclusion

Gaussian kernel and RKHS

Definition

• The (normalized) Gaussian kernel with bandwidth $\sigma > 0$ on $\mathbb{R}^d \times \mathbb{R}^d$ is:

$$k_{\sigma}(x,x') = rac{1}{\left(\sqrt{2\pi}\sigma
ight)^d} \exp\left(rac{-\parallel x-x'\parallel^2}{2\sigma^2}
ight) \ .$$

 The Gaussian reproducing kernel Hilbert space (RKHS) consists of functions of the form:

$$f(x) = \sum_{i} \alpha_{i} k_{\sigma}(x_{i}, x) ,$$

with norm

$$|f|_{\mathcal{H}_{\sigma}}^{2} = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} k_{\sigma}(x_{i}, x_{j}).$$

Gaussian kernel and RKHS

Definition

• The (normalized) Gaussian kernel with bandwidth $\sigma > 0$ on $\mathbb{R}^d \times \mathbb{R}^d$ is:

$$k_{\sigma}(x,x') = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^d} \exp\left(\frac{-\parallel x - x'\parallel^2}{2\sigma^2}\right) .$$

 The Gaussian reproducing kernel Hilbert space (RKHS) consists of functions of the form:

$$f(x) = \sum_{i} \alpha_{i} k_{\sigma}(x_{i}, x) ,$$

with norm:

$$||f||_{\mathcal{H}_{\sigma}}^{2} = \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} k_{\sigma}(\mathbf{x}_{i}, \mathbf{x}_{j}).$$

Gaussian RKHS

Properties

• For any f in $L_1(\mathbb{R}^d)$, its Fourier transform $\mathcal{F}[f]: \mathbb{R}^d \to \mathbb{R}$ is defined by

$$\mathcal{F}[f](\omega) = \int_{\mathbb{R}^d} e^{-i\langle x,\omega\rangle} f(x) dx.$$

• The RKHS of the Gaussian kernel k_{σ} is:

$$\mathcal{H}_{\sigma} = \left\{ f \in \mathcal{C}_0(\mathbb{R}^d) \ : \ f \in L_1(\mathbb{R}^d) \ ext{and} \ \int_{\mathbb{R}^d} |\mathcal{F}\left[f\right](\omega)|^2 e^{rac{\sigma^2 \|\omega\|^2}{2}} d\omega < \infty
ight\}$$

• For any $f \in \mathcal{H}_{\sigma}$ the RKHS norm of f is a smoothness functional:

$$\|f\|_{\mathcal{H}_{\sigma}}^{2}=rac{1}{(2\pi)^{d}}\int_{\mathbb{R}^{d}}|\mathcal{F}\left[f\right](\omega)|^{2}e^{\frac{\sigma^{2}\|\omega\|^{2}}{2}}d\omega.$$

Learning in Gaussian RKHS

General setting

- Training set $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ for i = 1, ..., n.
- Loss function $L(y, \hat{y})$
- Learn a function $f: \mathbb{R}^d \to \mathbb{R}$ by solving for some regularization parameter $\lambda > 0$:

$$\min_{f \in \mathcal{H}_{\sigma}} \left\{ \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \| f \|_{\mathcal{H}_{\sigma}}^{2} \right\} .$$

Pattern recognition

- $y \in \{-1, +1\}$
- $L(y, u) = \phi(yu)$ where ϕ is usually decreasing

Motivation 1: The effect of regularization

Overfitting

$$\min_{f \in \mathcal{H}_{\sigma}} \left\{ \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{(2\pi)^d} \int_{\mathbb{R}^d} |\mathcal{F}[f](\omega)|^2 e^{\frac{\sigma^2 ||\omega||^2}{2}} d\omega \right\} .$$

- Classical approach: Decrease λ
- Alternative approach: Decrease σ

Asymptotic behavior when $n o\infty$

- Usually $\lambda \to 0$ (Tikhonov and Arsenin, 1977; Silverman, 1982) to obtain consistency
- $\lambda \to 0$ and $\sigma \to 0$ can lead to fast rates (e.g., Steinwart and Scovel, 2004)
- Can we get consistency with $\sigma \rightarrow 0$ only?

Motivation 1: The effect of regularization

Overfitting

$$\min_{f \in \mathcal{H}_{\sigma}} \left\{ \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \frac{\lambda}{(2\pi)^d} \int_{\mathbb{R}^d} |\mathcal{F}[f](\omega)|^2 e^{\frac{\sigma^2 ||\omega||^2}{2}} d\omega \right\} .$$

- Classical approach: Decrease λ
- Alternative approach: Decrease σ

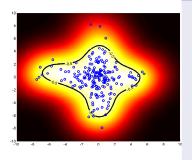
Asymptotic behavior when $n \to \infty$

- Usually $\lambda \to 0$ (Tikhonov and Arsenin, 1977; Silverman, 1982) to obtain consistency
- $\lambda \to 0$ and $\sigma \to 0$ can lead to fast rates (e.g., Steinwart and Scovel, 2004)
- Can we get consistency with $\sigma \to 0$ only?

Motivation 2: One-class SVM

Definition

$$\min_{f \in \mathcal{H}_{\sigma}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \max \left(1 - f\left(x_{i}\right), 0 \right) + \lambda \| f \|_{\mathcal{H}_{\sigma}}^{2} \right\} .$$



Properties

- A popular method for outlier detection
- A particular case of learning in the Gaussian RKHS
- λ determines the ratio of outliers: should not decrease to zero as $n \to \infty$
- Can we get some consistency when $\sigma \rightarrow 0$ instead?

Outline

- Motivations
- 2 Main results
- Proofs
 - Learning bound for the R_0 risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- Conclusion

Setting and notations

- $(X_i, Y_i)_{i=1,\dots,n}$ are i.i.d. $\sim P$ over $\mathbb{R}^d \times \{-1, 1\}$.
- Marginal $P(dx) = \rho(x)dx$.
- $\eta(X): \mathbb{R}^d \to [0,1]$ a measurable version of $P(Y=1 \mid X)$.
- ullet ϕ a convex function, Lipschitz, differentiable at 0 with $\phi'(0) < 0$.
- For any σ , we denote by \hat{f}_{σ} the unique minimizer of the (strictly convex) problem:

$$\min_{f \in \mathcal{H}_{\sigma}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \phi \left(Y_{i} f(X_{i}) \right) + \lambda \| f \|_{\mathcal{H}_{\sigma}}^{2} \right\} .$$

Intuitive behavior

Pointwise limit

• Law of large numbers for measurable *f*:

$$\frac{1}{n}\sum_{i=1}^n\phi\left(Y_if(X_i)\right)\underset{n\to\infty}{\longrightarrow}\mathbb{E}_P\left[\phi\left(Yf(X)\right)\right]\;.$$

• For $f \in \mathcal{H}_{\sigma_1}$:

$$\|f\|_{\mathcal{H}_{\sigma}}^{2} \underset{\sigma \to 0}{\longrightarrow} \|f\|_{L_{2}}^{2}$$

Limit risk

This suggests to consider the following risk for measurable functions:

$$R_{0}(f) = \mathbb{E}_{P}\left[\phi\left(Yf(X)\right)\right] + \lambda \|f\|_{L_{2}}^{2}$$

Intuitive behavior

Pointwise limit

• Law of large numbers for measurable *f*:

$$\frac{1}{n}\sum_{i=1}^n\phi\left(Y_if(X_i)\right)\underset{n\to\infty}{\longrightarrow}\mathbb{E}_P\left[\phi\left(Yf(X)\right)\right]\;.$$

• For $f \in \mathcal{H}_{\sigma_1}$:

$$\|f\|_{\mathcal{H}_{\sigma}}^{2} \underset{\sigma \to 0}{\longrightarrow} \|f\|_{L_{2}}^{2}$$

Limit risk

This suggests to consider the following risk for measurable functions:

$$R_{0}(f) = \mathbb{E}_{P}\left[\phi\left(Yf(X)\right)\right] + \lambda \|f\|_{L_{2}}^{2}.$$

Main result: consistency

Theorem

• If $\sigma = O\left(n^{-\frac{1}{d+\epsilon}}\right)$ for $\epsilon > 0$, then the procedure is consistent for the R_0 risk:

$$R_0\left(\hat{f}_\sigma\right) \underset{n \to \infty}{\longrightarrow} \inf_{f \in \mathcal{M}} R_0(f)$$
 in probability.

• In that case, it is also Bayes consistent:

$$R\left(\hat{f}_{\sigma}\right)\underset{n\to\infty}{\rightarrow}\inf_{f\in\mathcal{M}}R(f)$$
 in probability

where R is the classification error R(f) = P(Yf(X) < 0).

Main result: consistency

Theorem

• If $\sigma = O\left(n^{-\frac{1}{d+\epsilon}}\right)$ for $\epsilon > 0$, then the procedure is consistent for the R_0 risk:

$$R_0\left(\hat{f}_\sigma\right) \underset{n\to\infty}{\longrightarrow} \inf_{f\in\mathcal{M}} R_0(f)$$
 in probability.

In that case, it is also Bayes consistent:

$$R\left(\hat{f}_{\sigma}\right)\underset{n\to\infty}{\longrightarrow}\inf_{f\in\mathcal{M}}R(f)$$
 in probability,

where R is the classification error R(f) = P(Yf(X) < 0).

Main result: asymptotic shape

Theorem

• The function $f_0: \mathbb{R}^d \to \mathbb{R}$ defined for any $x \in \mathbb{R}^d$ by

$$f_0(x) = \operatorname*{arg\,min}_{lpha \in \mathbb{R}} \left\{
ho(x) \left[\eta(x) \phi(lpha) + (1 - \eta(x)) \phi(-lpha)
ight] + \lambda lpha^2
ight\}$$

is measurable and satisfies

$$R_0(f_0)=\inf_{f\in\mathcal{M}}R_0(f)\ .$$

Under the conditions of the previous theorem:

$$\|\hat{\mathit{f}}_{\sigma}-\mathit{f}_{0}\|_{L_{2}} \mathop{
ightarrow}\limits_{n
ightarrow \infty} \mathsf{0} \quad \textit{in probability}.$$

Main result: asymptotic shape

Theorem

• The function $f_0: \mathbb{R}^d \to \mathbb{R}$ defined for any $x \in \mathbb{R}^d$ by

$$f_0(x) = \operatorname*{arg\,min}_{lpha \in \mathbb{R}} \left\{
ho(x) \left[\eta(x) \phi(lpha) + (1 - \eta(x)) \phi(-lpha)
ight] + \lambda lpha^2
ight\}$$

is measurable and satisfies

$$R_0(f_0)=\inf_{f\in\mathcal{M}}R_0(f)\ .$$

Under the conditions of the previous theorem:

$$\|\hat{f}_{\sigma} - f_0\|_{L_2} \underset{n \to \infty}{\longrightarrow} 0$$
 in probability.

Application: two-class SVM

1-SVM

The L_2 limit of the SVM with hinge loss $\phi(u) = \max(1 - u, 0)$ is:

$$f_0(x) = \begin{cases} -1 & \text{if } \eta(x) \le 1/2 - \lambda/\rho(x) ,\\ (\eta(x) - 1/2) \rho(x)/\lambda & \text{if } \eta(x) \in [1/2 - \lambda/\rho(x), 1/2 + \lambda/\rho(x)] ,\\ 1 & \text{if } \eta(x) \ge 1/2 + \lambda/\rho(x) . \end{cases}$$

2-SVM

The L_2 limit of the SVM with square hinge loss $\phi(u) = \max(1 - u, 0)^2$ is:

$$f_0(x) = (2\eta(x) - 1) \frac{\rho(x)}{\lambda + \rho(x)}$$

Application: two-class SVM

1-SVM

The L_2 limit of the SVM with hinge loss $\phi(u) = \max(1 - u, 0)$ is:

$$f_0(x) = \begin{cases} -1 & \text{if } \eta(x) \le 1/2 - \lambda/\rho(x) \ , \\ (\eta(x) - 1/2) \, \rho(x)/\lambda & \text{if } \eta(x) \in [1/2 - \lambda/\rho(x), 1/2 + \lambda/\rho(x)] \ , \\ 1 & \text{if } \eta(x) \ge 1/2 + \lambda/\rho(x) \ . \end{cases}$$

2-SVM

The L_2 limit of the SVM with square hinge loss $\phi(u) = \max(1 - u, 0)^2$ is:

$$f_0(x) = (2\eta(x) - 1) \frac{\rho(x)}{\lambda + \rho(x)}$$

Application: one-class SVM

Limit

The L_2 limit of the one-class SVM with hinge loss is the density truncated to level 2λ and scaled:

$$f_0(x) = \begin{cases} \rho(x)/2\lambda & \text{if } \rho(x) \leq 2\lambda \ 1 & \text{otherwise.} \end{cases}$$

Corollary

One-class SVM thresholded at level $\mu/2\lambda$ is a consistent estimator (w.r.t. the excess-mass risk, cf Hartigan, 1987) of the density level set:

$$C_{\mu} = \left\{ x \in \mathbb{R}^d : \rho(x) \ge \mu \right\}$$

Outline

- Motivations
- Main results
- Proofs
 - Learning bound for the R_0 risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- Conclusion

Overview

1 Learning bound for the R_0 risk: with a probability at least $1 - \epsilon$,

$$R_0\left(\hat{f}_\sigma
ight)-\inf_{g\in\mathcal{M}}R_0(g)\leq C(\epsilon)$$
 .

2 From R_0 to Bayes excess risk: for any measurable function f,

$$R(f) - \inf_{g \in \mathcal{M}} R(g) \leq \psi \left(R_0 \left(\hat{f}_{\sigma} \right) - \inf_{g \in \mathcal{M}} R_0(g) \right) .$$

§ From R_0 excess risk to L_2 convergence: for any measurable function f,

$$\|f - \hat{f}_{\sigma}\|_{L_2}^2 \leq \frac{1}{\lambda} \left[R_0 \left(\hat{f}_{\sigma} \right) - \inf_{g \in \mathcal{M}} R_0(g) \right] .$$

Outline

- Motivations
- Main results
- Proofs
 - Learning bound for the R₀ risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- Conclusion

Objectif

Risks:

$$R_{0}(f) = \mathbb{E}_{P}\left[\phi\left(Yf(X)\right)\right] + \lambda \|f\|_{L_{2}}^{2},$$

$$R_{\sigma}(f) = \mathbb{E}_{P}\left[\phi\left(Yf(X)\right)\right] + \lambda \|f\|_{\mathcal{H}_{\sigma}}^{2},$$

$$\widehat{R}_{\sigma}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi\left(Y_{i}f(X_{i})\right) + \lambda \|f\|_{\mathcal{H}_{\sigma}}^{2}.$$

Minimizers

$$R_{0}^{*} = R_{0}(f_{0}) = \min_{f \in \mathcal{M}} R_{0}(f)$$

$$R_{\sigma}^{*} = R_{\sigma}(f_{\sigma}) = \min_{f \in \mathcal{H}_{\sigma}} R_{\sigma}(f)$$

$$\widehat{R}_{\sigma}^{*} = \widehat{R}_{\sigma}(\widehat{f}_{\sigma}) = \min_{f \in \mathcal{H}_{\sigma}} \widehat{R}_{\sigma}(f)$$

Decomposition of the excess R_0 risk

Decomposition

$$egin{aligned} R_{0}\left(\hat{f}_{\sigma}
ight)-R_{0}\left(f_{0}
ight)&=\left[R_{0}\left(\hat{f}_{\sigma}
ight)-R_{\sigma}\left(\hat{f}_{\sigma}
ight)
ight]\ &+\left[R_{\sigma}\left(\hat{f}_{\sigma}
ight)-R_{\sigma}^{st}
ight]\ &+\left[R_{\sigma}^{st}-R_{\sigma}\left(g
ight)
ight]\ &+\left[R_{\sigma}\left(g
ight)-R_{0}\left(g
ight)
ight]\ &+\left[R_{0}\left(g
ight)-R_{0}\left(f_{0}
ight)
ight] \end{aligned}$$

for any g in \mathcal{H}_{σ} .

Simplification

- $R_0(f) R_{\sigma}(f) = ||f||_{L_2}^2 ||f||_{\mathcal{H}_{\sigma}}^2 \le 0$ for any $f \in \mathcal{H}_{\sigma}$.
- $R_{\sigma}^* R_{\sigma}(g) \le 0$ by definition of R_{σ}^* .

Upper bound on the R_0 risk

After simplification

$$egin{aligned} R_0\left(\hat{f}_\sigma
ight) - R_0\left(f_0
ight) & \leq \left[R_\sigma\left(\hat{f}_\sigma
ight) - R_\sigma^*
ight] & ext{(estimation error)} \ & + \|g\|_{\mathcal{H}_\sigma}^2 - \|g\|_{L_2}^2 & ext{(regularization error)} \ & + \left[R_0\left(g
ight) - R_0\left(f_0
ight)
ight] & ext{(approximation error)} \end{aligned}$$

for any g in \mathcal{H}_{σ} .

Choice of g

- g should be smooth (regularization error)
- g should be close to f₀ (approximation error)
- We choose $g = k_{\sigma_1} * f_0$, with $\sigma_1 \geq \sigma$

Upper bound on the R_0 risk

After simplification

$$egin{aligned} R_0\left(\hat{f}_\sigma
ight) - R_0\left(f_0
ight) & \leq \left[R_\sigma\left(\hat{f}_\sigma
ight) - R_\sigma^*
ight] & ext{(estimation error)} \ & + \|g\|_{\mathcal{H}_\sigma}^2 - \|g\|_{L_2}^2 & ext{(regularization error)} \ & + \left[R_0\left(g
ight) - R_0\left(f_0
ight)
ight] & ext{(approximation error)} \end{aligned}$$

for any g in \mathcal{H}_{σ} .

Choice of a

- g should be smooth (regularization error)
- *g* should be close to f_0 (approximation error)
- We choose $g = k_{\sigma_1} * f_0$, with $\sigma_1 \geq \sigma$

Estimation error bound

Concentration inequality

- Classical bounds of statistical learning theory
- Need an upper bound of the covering number of balls in the Gaussian RKHS (e.g., Steinwart and Scovel, 2004)
- Need a concentration inequality based on local Rademacher complexity (e.g., Bartlett et al., 2005)
- For any $x \ge 1, 0 and <math>\delta > 0$, we have with probability at least $1 e^x$:

$$R_{\sigma}\left(\hat{f}_{\sigma}\right) - R_{\sigma}^* \leq C_1 \left(\frac{1}{\sigma}\right)^{\frac{d[2 + (2 - p)(1 + \delta)]}{2 + p}} \left(\frac{1}{n}\right)^{\frac{2}{2 + p}} + C_2 \left(\frac{1}{\sigma}\right)^{d} \frac{x}{n}.$$

Regularization error bound

Fourier representation of Gaussian RKHS

$$\|f\|_{\mathcal{H}_{\sigma}}^{2} = \frac{1}{(2\pi)^{d}} \int_{\mathbb{R}^{d}} |\mathcal{F}[f](\omega)|^{2} e^{\frac{\sigma^{2} \|\omega\|^{2}}{2}} d\omega.$$

Therefore, for any $0 < \sigma \le \tau$, $\mathcal{H}_{\tau} \subset \mathcal{H}_{\sigma} \subset L_2(\mathbb{R}^d)$.

Lemma

• For any $\sigma > 0$ and $f \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$:

$$k_\sigma * f \in \mathcal{H}_{\sqrt{2}\sigma} \quad \text{ and } \quad \|\, k_\sigma * f \,\|_{\mathcal{H}_{\sqrt{2}\sigma}} = \|\, f \,\|_{L_2} \;.$$

• For any $0 < \sigma \le \sqrt{2}\tau$ and $f \in L_1\left(\mathbb{R}^d\right) \cap L_2\left(\mathbb{R}^d\right)$:

$$k_{\tau} * f \in \mathcal{H}_{\sigma}$$
 and $\|k_{\tau} * f\|_{\mathcal{H}_{\sigma}}^{2} - \|k_{\tau} * f\|_{L_{2}}^{2} \leq \frac{\sigma^{2}}{\tau^{2}} \|f\|_{L_{2}}^{2}$.

Approximation error bound

Lemma

$$R_0 (k_\sigma * f_0) - R_0 (f_0) \le (2\lambda \| f_0 \|_{L_\infty} + LM) \| k_\sigma * f_0 - f_0 \|_{L_1},$$

where L is the Lipschitz constant of ϕ and $M = \sup_{x \in \mathbb{R}^d} \rho(x)$. This shows that the approximation error converges to 0.

Quantitative bound

The modulus of continuity of f in the L_1 -norm is:

$$\omega\left(f,\delta\right) = \sup_{0 \le \|t\| \le \delta} \|f\left(.+t\right) - f\left(.\right)\|_{L_{1}}.$$

For any $\sigma > 0$ the following holds:

$$\| k_{\sigma} * f_0 - f_0 \|_{L_1} \le \left(1 + \sqrt{d} \right) \omega \left(f, \sigma \right)$$

Approximation error bound

Lemma

$$R_0\left(k_\sigma*f_0\right)-R_0\left(f_0\right)\leq \left(2\lambda\|\,f_0\,\|_{L_\infty}+LM\right)\|\,k_\sigma*f_0-f_0\,\|_{L_1}\;,$$

where L is the Lipschitz constant of ϕ and $M = \sup_{x \in \mathbb{R}^d} \rho(x)$. This shows that the approximation error converges to 0.

Quantitative bound

The modulus of continuity of f in the L_1 -norm is:

$$\omega(f,\delta) = \sup_{0 \le ||t|| \le \delta} ||f(.+t) - f(.)||_{L_1}.$$

For any $\sigma > 0$ the following holds:

$$\| k_{\sigma} * f_{0} - f_{0} \|_{L_{1}} \leq \left(1 + \sqrt{d}\right) \omega \left(f, \sigma\right).$$

Summary

Proof of R_0 consistency

Combining the 3 upper bounds on the estimation, regularization and approximation errors we obtain:

$$egin{split} R_0\left(\hat{f}_\sigma
ight) - R_0\left(f_0
ight) & \leq C_1\left(rac{1}{\sigma}
ight)^{rac{a[2+(2-eta)(1+\sigma)]}{2+eta}} \left(rac{1}{n}
ight)^{rac{2}{2+eta}} + C_2\left(rac{1}{\sigma}
ight)^drac{x}{n} \ & + C_3rac{\sigma_1^2}{\sigma^2} + C_4\omega\left(f_0,\sigma_1
ight) \;. \end{split}$$

Convergence to 0 is granted as soon as $\sigma = O\left(n^{-\frac{1}{d+\epsilon}}\right)$ and $\sigma_1 = o(\sigma)$. Terms can be balanced to obtain a bound that depends on the modulus of continuity of f_0 .

Outline

- Motivations
- Main results
- Proofs
 - Learning bound for the R₀ risk
 - From R₀ to Bayes excess risk
 - From R₀ excess risk to L₂ convergence
- 4 Conclusion

Classification calibration

Definition (Bartlett et al., 2006)

For any $(\eta, \alpha) \in [0, 1] \times \mathbb{R}$, let

$$C_{\eta}(\alpha) = \eta \phi(\alpha) + (1 - \eta)\phi(-\alpha)$$
.

The function ϕ is said to be classification-calibrated if for any $\eta \neq 1/2$,

$$\inf_{\alpha \in \mathbb{R}: \alpha(2\eta-1) \leq 0} C_{\eta}(\alpha) > \inf_{\alpha \in \mathbb{R}} C_{\eta}(\alpha).$$

This condition ensures that for each point x, minimizing the conditional ϕ -risk provides a scalar of correct sign. We can then deduce the Bayes consistency of algorithms that minimize the ϕ risk instead of the classification error (Zhang, 2004; Lugosi and Vayatis, 2004; Bartlett et al., 2006).

R-classification calibration

Definition

We can rewrite the R_0 -risk as:

$$R_0(f) = \int_{\mathbb{R}^d} \left\{ \left[\eta(x) \phi(f(x)) + (1 - \eta(x)) \phi(-f(x)) \right] \rho(x) + \lambda f(x)^2 \right\} dx$$

Therefore, for any $(\eta, \rho, \alpha) \in [0, 1] \times (0, +\infty) \times \mathbb{R}$ let

$$C_{\eta,\rho}(\alpha) = C_{\eta}(\alpha) + \frac{\lambda \alpha^2}{
ho}$$
.

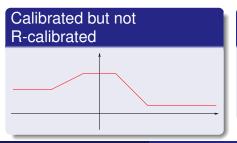
We say that ϕ is R-classification calibrated if for any $\eta \neq 1/2$ and $\rho > 0$:

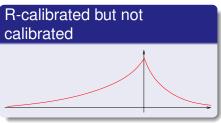
$$\inf_{\alpha \in \mathbb{R}: \alpha(2\eta-1) \leq 0} C_{\eta,\rho}(\alpha) > \inf_{\alpha \in \mathbb{R}} C_{\eta,\rho}(\alpha).$$

Some properties of calibration

Lemma

- $\phi(x)$ is R-calibrated iff $\phi(x) + tx^2$ is calibrated for all t > 0.
- Calibration (resp. R-calibration) does not imply R-calibration (resp. calibration).
- If ϕ is convex the it is calibrated iff it is R-calibrated iff it is differentiable at 0 and $\phi'(0) < 0$.





Relating the R_0 risk to the classification error rate

Sketch

- When $\lambda=0$ Bartlett et al. (2006) provide a control of the excess ϕ -risk by the excess classification error for classification calibrated functions.
- Following the same approach we obtain similar controls for the R_0 risk if ϕ is R-classification calibrated.

Outline

- Motivations
- Main results
- Proofs
 - Learning bound for the R₀ risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- Conclusion

Minimum R₀ risk

Lemma

• For any $(\eta, \rho, \alpha) \in [0, 1] \times [0, +\infty) \times \mathbb{R}$ let

$$G_{\eta,\rho}(\alpha) = \rho \left[\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right] + \lambda \alpha^2.$$

i.e., for any $f \in \mathcal{M}$

$$R_0(f) = \int_{x \in \mathbb{R}^d} G_{\eta(x), \rho(x)}(f(x)) dx$$
.

- If ϕ is convex then $G_{\eta,\rho}$ is strictly convex and admits a unique minimizer $\alpha(\eta,\rho)$.
- $f_0(x) = \alpha (\eta(x), \rho(x))$ is measurable and minimizes R_0 .

From R_0 risk to L_2 distance

Lemma

By strict convexity of $G_{\eta,\rho}$ we obtain, for all (η,ρ,α) :

$$G_{\eta,\rho}(\alpha) - G_{\eta,\rho}(\alpha(\eta,\rho)) \ge \lambda (\alpha - \alpha(\eta,\rho))^2$$
.

Conclusion

By integration we obtain:

$$R_0(f) - R_0(f_0) \ge \lambda \| f - f_0 \|_{L_2}$$
.

Outline

- Motivations
- 2 Main results
- 3 Proofs
 - Learning bound for the *R*₀ risk
 - From R₀ to Bayes excess risk
 - From R_0 excess risk to L_2 convergence
- 4 Conclusion

Conclusion

Conclusion

- Consistency for the R₀ risk is obtained by decreasing the bandwidth of the Gaussian kernel
- The limit function in the L_2 sense is the minimizer of the R_0 risk, given explicitly and uniquely defined for convex ϕ .
- R₀-consistency ensures Bayes consistency for pattern recognition.
- One-class SVM is a consistent density level set estimator
- The convergence speed obtained are not optimal

Reference

R. Vert and J-P. Vert, Consistency and convergence rates of one-class SVMs and related algorithms, J. Mach. Learn. Res. 7:817-854, 2006.