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ARMINES contribution to ESBIC

@ Develop methods for analysis of gene expression data

@ Develop methods for integration of heterogeneous data, in
particular expression and pathways

@ Integrate these tools in the ESBIC standards
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Outline

0 Classification and interpretation of microarray data

e Including pathway information
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Classification and interpretation of microarray data

Classical setting

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Classification and interpretation of microarray data

Classical setting

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more)
different classes (e.g., different tumors)

@ Design a classifier to automatically assign a class to future
samples from their expression profile

@ Interpret biologically the differences between the classes
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Classification and interpretation of microarray data

Linear classifiers

The approach

@ Each sample is represented by a vector x = (xy,...,Xp)
where p > 10° is the number of probes

@ Classification: given the set of labeled sample, learn a
linear decision function:

p
f(X)=>_ BiXi+ o,
i=1
that is positive for one class, negative for the other

@ Interpretation: the weight 3; quantifies the influence of
gene i for the classification
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Classification and interpretation of microarray data

Linear classifiers

@ No robust estimation procedure exist for 100 samples in
10° dimensions!

@ It is necessary to reduce the complexity of the problem
with prior knowledge.
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Classification and interpretation of microarray data

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in
high dimension is to constrain the norm of 3, e.g.:

@ Euclidean norm (support vector machines, ridge
regression): || B2 = Y%, 52
@ Li-norm (lasso regression) : || B[t = 37, | Bi|

@ Good performance in
classification

@ Limited interpretation
(small weights)

@ No prior biological
knowledge
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Classification and interpretation of microarray data

Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20)
whose expression are enough for classification. Interpretation
is then about the selected genes.

Pros Cons

@ Good performance in @ The gene selection
classification process is usually not
@ Useful for biomarker robust
selection @ Wrong interpretation is
@ Apparently easy the rule (too much
interpretation correlation between
genes)
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Including pathway information

Pathway interpretation

@ Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling,
regulatory)

@ Many pathways are already known

@ How to use this prior knowledge to constrain the weights to
have an interpretation at the level of pathways?

4
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Including pathway information

Pathway interpretation
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Bad example

@ The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)

@ We project the classifier
weight learned by a
SVM

@ Good classification
accuracy, but no
possible interpretation!
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Including pathway information

Pathway interpretation

Good example

@ The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)

@ We project the classifier
weight learned by a
spectral SVM

@ Good classification

accuracy, and good
interpretation!
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Including pathway information

Spectral SVM

Short description

@ Pre-process each microarray profile to filter out the high
frequencies with respect to the known pathways. This
involves discrete Fourier transforms + spectral graph
theory.

@ Perform classical SVM on the smoothed expression
profiles
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Including pathway information

More details

OO http://fr.arxiv.org/PS_cache/q-bio/pdf/0603/0603030.pdf
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Abstract

Microarrays have becor
microarray analysis results (typically a list of
the standard approach is to map a posteriori
the level of pathways. Ho
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Including pathway information

Discussion

You will always have an interpretable model because you
enforce it. Can we trust is?

@ Any method must use prior knowledge because of the
n << p problem.

@ In many cases the “true” classifier is more likely to have a
pathway interpretation than to be based on a few genes
only.

There are many cases where smoothness is not expected on

the pathway (negative regulation...)

@ We just enforce a global smoothness, local jumps are
possible (although penalized).

@ As more data are available, a more precise estimation is
possible.
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Including pathway information

Conclusion

@ Manipulating gene expression data is difficult for statistical
reasons.

@ Inclusion of prior knowledge is required (e.g., feature
selection)

@ Known pathways form a natural prior knowledge

@ This results in classifiers with good accuracy and
interpretability.
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Including pathway information

Ongoing and future work

@ Validation on tumour data
@ Extension to non-smooth assumption (inhibition...)
@ Integration with other softwares
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Including pathway information
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