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Motivations: systems biology

- Gene expression

- Sequence

- Protein structure

- Protein localization, etc...

- Regulatory network

- Signaling pathways

- Metabolic pathways

- Interaction network, etc...
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Mains approaches

1. Direct approach = connect similar proteins.

2. Model-based approach = fit an a priori defined model (Bayesian

network, dynamical system..).

3. Indirect approach = connect pairs of proteins similar to connected

pairs.

Machine learning is present in all 3 approaches.
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Indirect approach

• Classical setting of supervised pattern recognition: “given a training

set of connected and non-connected pairs, learn to predict whether

new pairs are connected or not”.

• Need to extend the representation of points to the representation

of pairs of points.

• Example: a pairwise kernel (Ben-Hur and Noble, 2004):

Kp ((u1, u2), (v1, v2)) = K(u1, v1)K(u2, v2) + K(u1, v2)K(u2, v1)
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Direct approach

• The simplest and most natural approach.

• Define a measure of similarity (e.g., correlation coefficient between

expression profiles) and connect the most similar pairs.

• Usually unsupervised, but..
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Performance of unsupervised direct approach

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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What is wrong?

• What similarity measure between profiles should be use?
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What is wrong?

• What similarity measure between profiles should be use?

• Which network are we expecting to recover?
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Supervised direct approach

• Given a set of known interacting pairs, we can learn how to measure

their similarities before connecting similar pairs

• Typical problem of distance metric learning
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Part 2

Supervised direct inference by
generalized KPCA
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Explicit mapping Φ

• Let x ∈ Rp be a genomic data (e.g., expression profile)
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Explicit mapping Φ

• Let x ∈ Rp be a genomic data (e.g., expression profile)

• Let us consider linear mappings:

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

made of linear features fi(x) = w>
i x

• A feature f : Rp → R is “good” if connected genes in the known

network have similar value.
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“Good” features

• A “good” feature f(x) = w>x should minimize:

R(f) =

∑
i∼j (f(xi)− f(xj))

2 −
∑

i 6∼j (f(xi)− f(xj))
2∑n

i=1 f(xi)2
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“Good” features

• A “good” feature f(x) = w>x should minimize:

R(f) =

∑
i∼j (f(xi)− f(xj))

2 −
∑

i 6∼j (f(xi)− f(xj))
2∑n

i=1 f(xi)2

• Regularisation: for statistical reasons, it is safer to minimize:

min
f(x)=w>x

R(f) + λ
‖w‖2∑n

i=1 f(xi)2
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Influence of λ

• λ → +∞ : PCA

? Useful for noisy, high-dimensional data.

? Used in spectral clustering. The graph does not play any role

(unsupervised)

• λ → 0 : second smallest eigenvector of the graph

? Useful to embed the graph in a Euclidean space (used in graph

partitioning)

? Sensitive to noise. Mapping of points outside of the graph

unstable (overfitting)
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Extracting successive features

• Successive features to form Φ can be obtained by:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ‖w‖2

.
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Extracting successive features

• Successive features to form Φ can be obtained by:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ‖w‖2

.

• Generalizes Principal Component Analysis (PCA)
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Limitations

• How to generalize to non-linear features?

• How to process non-vectorial data (sequences, phylogenetic profiles,

...)
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Overcoming the limitations

• Remember:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ‖w‖2

.

• In order to allow nonlinear features, we need to replace:

? ‖w‖2 by ‖f‖2

? wi ⊥ wj by fi ⊥ fj
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Positive definite kernels

Let X be a set (not necessarily vectors) endowed with a symmetric

measure of similarity k : X 2 → R that satisfies:

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

for any n ≥ 0, (x1, . . . , xn) ∈ X and (a1, . . . , an) ∈ R

• k(x, y) = x · y for X = Rd

• k(x, y) = exp(−‖x− y‖2/(2σ2)) for X = Rd
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Reproducing kernel Hilbert space

• A p.d. kernel defines a Hilbert space of functions f : X → R
obtained by completing the span of {k(x, ·), x ∈ X}

• The norm of a function f(x) =
∑n

i=1 cik(xi, x) is:

‖f‖2
k =

n∑
i,j=1

cicjk(xi, xj).

• This space is called the reproducing kernel Hilbert space (RKHS)
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Example: linear RKHS

For X = Rd and k(x, y) = x · y, we have:

• f(x) =
∑n

i=1 cixi · x = fw(x) with w =
∑n

i=1 cixi.

• ‖f‖2
k =

∑n
i,j=1 cicjxi · xj = ‖w‖2

• If f(x) = w · x and g(x) = v · x then:

< f, g >k= w · v
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Graph-driven feature extraction in RKHS

• For a general set X endowed with a p.d. kernel k we therefore

have the following graph-driven feature extractor:

fi = arg min
f⊥{f1,...,fi−1},v̂ar(f)=1

∑
i∼j

(f(xi)− f(xj))
2 + λ‖f‖2

k

.

• The values at the minima (the spectrum) quantifies how much the

graph fits the data
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Solving the problem

• By the representer theorem, fi can be expanded as:

fi(x) =
n∑

j=1

αi,jk(xi, x).

• This shows that

< fi, fj >k= α>i Kαj

‖fi‖2
k = α>i Kαi

(1)
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Solving the problem (cont.)

• The problem can then be rewritten:

αi = arg min
α∈Rn,αKV α1=...=αKV αi−1=0

{
α>KV LKV α + λα>KV α

α>K2
V α

}
where KV is the centered n×n Gram matrix and L is the Laplacian

of the graph

• It is equivalent to solving the generalized eigenvalue problem:

(LKV + λI)α = µKV α.
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Kernels

Several similarity kernels have been developed recently:

• for phylogenetic profiles (JPV. 2004)

• for gene sequences (Leslie et al. 2003, Saigo et al. 2004, ...)

• for nodes in a network (Kondor et al. 2000)
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Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a positive definite similarity matrix

K1, . . . ,Kp

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki
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Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Part 3

Supervised direct inference by
metric learning pairwise kernel
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Limitations of GKPCA

• Requires the training set to be made of the presence / absence of

edges among a particular subset of genes

• Discrepancy between the objective function and the goal of edge

inference

• Requires the tuning of two regularization parameters (d and λ)
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Objective function

After a linear mapping Φ(x) = Ax the square Euclidean distance is:

dM(x, x′) = (x− x′)>M(x− x′)

= tr
(
M(x− x′)(x− x′)>

)
,

with M = A>A � 0. Direct edge inference is possible if, for

example,

dφ(xi, xj)

{
≤ γ − 1 for xi ∼ xj ,

≥ γ + 1 for xi 6∼ xj .



31

Large-margin metric learning

In the spirit of SVM, this suggests the following optimization

problem:

Minimize ‖M ‖2
Fro + C

∑
(i,j)

ζi,j

subject to ζi,j ≥ 0 , ∀(i, j)
dM(xi, xj) ≤ γ − 1 + ζi,j , i ∼ j

dM(xi, xj) ≥ γ + 1− ζi,j , i 6∼ j

M � 0 .
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SVM formulation

If we relax the constraint M � 0 this is equivalent to a SVM:

Minimize ‖M ‖2
Fro + C

∑
(i,j)

ζi,j

subject to ζi,j ≥ 0 , ∀(i, j)
< M, Di,j >Fro −γ ≤ −1 + ζi,j , i ∼ j

< M, Di,j >Fro −γ ≥ 1− ζi,j , i 6∼ j .
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Inner product for pairs

The inner product between two pairs for this SVM is:

Kp ((x1, x2) , (x3, x4))

= 〈Dx1,x2, Dx3,x4〉Fro

= Trace
(
(x1 − x2) (x1 − x2)

> (x3 − x4) (x3 − x4)
>
)

=
(
(x1 − x2)

> (x3 − x4)
)2

=
(
x>1 x3 − x>1 x4 − x>2 x3 + x>2 x4

)2
.
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Metric learning pairwise kernel

If we start from a kernel Kg between single genes, this formulation is

therefore a SVM to discriminate between connected and

non-connected pairs with the following pairwise kernel:

KMLPK ((x1, x2) , (x3, x4))

= (Kg (x1, x3)−Kg (x1, x4)−Kg (x2, x3) + Kg (x2, x4))
2

.

To be compared, e.g., with the pairwise kernel:

Kp ((x1, x2), (x3, x4)) = K(x1, x3)K(x2, x4) + K(x1, x4)K(x2, x3) .



35

Experimental results

Prediction of the co-complex protein network for the yeast from

various protein data (AUC performance in cross-validation)

Data Kp KMLPK

Co-regulation (Chip-chip) 0.68 0.90

Co-localization 0.83 0.78

PFAM kernel 0.92 0.98

PSI-BLAST kernel 0.94 0.97
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Conclusion
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Conclusion

1. Supervised inference is better than unsupervised

2. Supervised graph inference can be performed by distance metric

learning

3. Different formulations lead to different algorithms. New pairwise

kernel.

4. Data integration with kernels is simple and powerful

5. Few assumptions about the network to infer (works well for the

metabolic network and the protein interaction network)
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