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Motivations

• Many heterogeneous data about genes : sequences, expression,

evolution, structures, etc...

• More and more data between genes: interactome, pathways,

regulation etc...

• Goal: propose a formalism to compare and link these data.
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Example:
Comparing gene expression and pathway databases

VS

Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there “correlations”?
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Formalism

• N genes

• x1, . . . , xN ∈ X the data about genes

? gene expression: X = Rd

? phylogenetic profile: X = {0, 1}p

? primary sequence: X = A∗

• G = (V,E) a (weighted) graph, with V = (v1, . . . , vN) to represent

the information between genes
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3 related questions

• How to quantify how much the data “fits” the graph?

• How to infer features f : X → R that “fit” the graph (“graph-

driven feature construction”)?

• How to update/correct the graph from the genomic data about

genes (e.g., to add new nodes to the graph)?
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Part 1

Graph-driven feature extraction
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Linear features for X = Rd

When X = Rd, let us consider linear features defined for any w ∈ Rd

by:

∀x ∈ X , fw(x) = w · x.

Principal component analysis (PCA) extract features (w1, . . . , wd)
by:

wi = arg max
w⊥{w1,...,wi−1},||w||=1

v̂ar(fw)

= arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

||w||2.
(1)
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Mapping fw onto the gene network
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Important hypothesis

A feature fw is relevant (“fits the graph”) if it varies ”smoothly” on

the graph

Smooth Rugged
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Graph Laplacian L = D −A
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L =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1


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Smoothness quantification

For a feature f : X → R with unit variance,

h2(f) =
∑
i∼j

(f(xi)− f(xj))
2 = f>Lf

or

h2(f) =
∑

i

f̂2
xi

eβωi = f> exp(βL)f

is small when f is smooth
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Graph-driven PCA

In order to extract features that better “fit” the graph, we can

modify PCA as follows:

wi = arg min
w⊥{w1,...,wi−1},v̂ar(fw)=1

∑
i∼j

(fw(xi)− fw(xj))
2 + λ||w||2

.

The trade-off between catching variance and fitting the data is controlled by the
parameter λ:

• λ → +∞ : PCA

• λ → 0 : second smallest eigenvector of the graph
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Extension to non-linear features

Let us now only suppose that X is a set endowed with a symmetric

positive definite kernel k : X 2 → R, i.e.,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

for any n ≥ 0, (x1, . . . , xn) ∈ X and (a1, . . . , an) ∈ R
Examples:

• k(x, y) = exp(−||x− y||2/(2σ2)) for X = Rd

• string and tree kernels (Watkins 99, Haussler 99, Saigo et al. 04), phylogenetic
tree kernel (Vert 02), Fisher kernel (Jaakkola et al 00), ...



14

Features and RKHS

• A p.d. kernel defines a Hilbert space of functions f : X → R
obtained by completing the span of {k(x, ·), x ∈ X}

• The norm of a function f(x) =
∑n

i=1 cik(xi, x) is:

||f ||2k =
n∑

i,j=1

cicjk(xi, xj).

• This functional space Hk is called the reproducing kernel Hilbert

space (RKHS).
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Kernel PCA

• For X = Rd, let k(x, y) = x · y (linear kernel). Then the hilbert

space of functions Hk is the set of linear functions fw(x) = w · x
with norm:

||f ||2k = ||w||2

• PCA can therefore be reformulated as:

arg min
f⊥{f1,...,fi−1},v̂ar(f)=1

||f ||2k.
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Graph-driven feature extraction in RKHS

• For a general set X endowed with a p.d. kernel k we therefore

have the following graph-driven feature extractor:

fi = arg min
f⊥{f1,...,fi−1},v̂ar(f)=1

∑
i∼j

(f(xi)− f(xj))
2 + λ||f ||2k

.

• The values at the minima (the spectrum) quantifies how much the

graph fits the data
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Solving the problem

• By the representer theorem, fi can be expanded as:

fi(x) =
n∑

j=1

αi,jk(xi, x).

• This shows that

< fi, fj >k= αiKαj

||fi||2k = αiKαi

(2)
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Solving the problem (cont.)

• The problem can then be rewritten:

αi = arg min
α∈Rn,αKV α1=...=αKV αi−1

{
α>KV LKV α + λα>KV α

α>K2
V α

}
where KV is the centered n× n Gram matrix

• It is equivalent to solving the generalized eigenvalue problem:

(LKV + λI)α = µKV α.
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Part 3

Experiments
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database (669 yeast genes)

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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The metabolic gene network
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First pattern of expression

Time

E
xp

re
ss

io
n



23

Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5), etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes
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Related genes
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Second pattern
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Part 4

Inferring new pathways
(with Y.Yamanishi)
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The network inference problem

Given some measurement/observation about the genes (sequences,

structure, expression, ...), infer “the” gene network
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Related approaches

• Bayesian nets for regulatory networks (Friedman et al. 2000)

• Boolean networks (Akutsu, 2000)

• Joint graph method (Marcotte et al, 1999)
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A direct (unsupervised) approach

• Let K(x, y) be a measure of similarity (a kernel) between genes x

and y based on available measurements, e.g.,

K(x, y) = exp
(
−||e(x)− e(y)||2

2σ2

)

• For a set of n genes {x1, . . . , xn}, let K be the n × n matrix of

pairwise similarity (Gram matrix)

• Direct strategy: add edges between genes by decreasing similarity.
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Example of similarity matrix
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Evaluation of the direct approach

The metabolic network of the yeast involves 769 genes. Each gene is

represented by 157 expression measurements. (ROC=0.52)
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The supervised gene inference problem
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The supervised gene inference problem
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The idea in a nutshell

• Use the known network to define a more relevant measure of

similarity

• For any positive definite similarity n × n matrix, there exists

a representation as n-dimensional vectors such that the matrix

similarity is exactly the similarity between vectors.

• In this space, look for projections onto small-dimensional spaces

that better fit the known network.
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}
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A two-step strategy

• First map any gene x onto a vector

Φ(x) = (f1(x), . . . , fd(x))′ ∈ Rd

• Then apply the direct strategy to reconstruct the graph from the

images {Φ(x1), . . . ,Φ(xn)}

• The functions f1, . . . , fd can be learned from the knowledge of the

graph on the first n genes
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Choice of f

• A feature f : X → R is good on the training set if connected genes

have similar value.

• This is exactly what we did in the previous part!

• So use the features already extracted to map new genes onto a

vector space by projection
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Evaluation of the supervised approach: effect of λ

Metabolic network, 10-fold cross-validation, 1 feature
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Evaluation of the supervised approach: number of
features (λ = 2)
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Learning from heterogeneous data

• Suppose several data are available about the genes, e.g., expression,

localization, struture, predicted interaction etc...

• Each data can be represented by a positive definite similarity matrix

K1, . . . ,Kp called kernels

• Kernel can be combined by various operations, e.g., addition:

K =
p∑

i=1

Ki



46

Learning from heterogeneous data (unsupervised)
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Learning from heterogeneous data (supervised)
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Extensions

• The diffusion kernel can be replaced by another graph kernel

• Other formulations can lead to kernel CCA (NIPS 02, ISMB 04)
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Open questions / Ongoing work

• What should be the number of features (problem of embedding a

graph in low dimension)

• Other cost functions

• How to better integrate several similarities? (semi-definite

programming?)
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Conclusion
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Conclusion

• A new approach to feature extractions and supervised network

inference, many possible variants and extensions

• Straightforward generalization to any network (e.g., interactome):

the same data can be used to infer different networks

• Possible connections with other algorithms (SVM, kernel CCA..)


