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Overview

1. Problem formulation

2. Using expression data only




Part 1

Problem formulation







Chemical reactions are often parts of pathways
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From http://www.genome.ad.jp/kegg/pathway



Microarray technology monitors mRNA quantity
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Comparing gene expression and pathway databases

Detect active pathways? Denoise expression data?
Denoise pathway database? Find new pathways?
Are there “correlations”?



A useful first step
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Part 2

Using expression data only
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Motivation

Pathways and biological events involve the coordinated action of
several genes

Co-regulation is an important way to coordinate the action of
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Using microarray only
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PCA formulation

Let f,(i7) be the projection of the i-th profile onto v.

The amount of variation captured by f, is:




Part 3

Using the metabolic database
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Motivation

PCA is useful if there is a small number of strong signal

In concrete applications, we observe a noisy superposition of many
events




The metabolic gene network
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Mapping f, to the metabolic gene network
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Important hypothesis

If v is related to a metabolic activity, then f, should vary
"smoothly” on the graph
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Graph Laplacian L =D — A
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Smoothness quantification

fif

"2() = 5T (=L f

Is large when f is smooth

O
h2(f) = 4 h2(f) = 0.3




Part 3

Combining expression and
metabolic pathways
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Motivation

For a candidate profile v,

hi(fy,) is large when v captures a lot of natural variation among
profiles
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Problem reformulation

Find a function f, and a function f5 such that:

hi(f,) be large

ho(f2) be large
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Solving the problem

This formultation is equivalent to a generalized form of CCA
(Kernel-CCA, Bach and Jordan, 2002), which is solved by the
following generalized eigenvector problem
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Part 4

Experimental results
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database (669 yeast genes)

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes
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Related genes

SELENOAMING ACID METABOLISM

|

) Relenate

Hdrogen

aelenide

3-Phosphoadenylvlaelenate

) Zelenophosphate

30



31

Opposite pattern
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Related genes

ENA POLYME

33



PRFP

Related genes

FYREIMIDINE METABOLIGM

¢ 3
o o

IMalonate ea

orid ine

34



. —_—— ] -
metsholism [ — — — O NEE

Related genes

UREA CYCLE AND METAEBOQOLIEM OF AMING GE

H-ace tyl-
arnithine
6.3.4.16

im0 acid )

R E—
{ Purine |
L metabolizm |

Clutamate

35



36

Second pattern
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Another point of view
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Extensions

Kernel PCA can be used instead of PCA to extract nonlinear
features from expression profiles

Can be used to extract features from expression profiles (NIPS
2002
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Conclusion
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Conclusion

An approach to integrate heterogeneous data (expression profiles
and network)

A particular case of more generic methods (kernel methods)




