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Overview

1. Problem formulation

2. Using expression data only




Part 1

Problem formulation







Chemical reactions are often parts of pathways
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Microarray technology monitors RNA quantity
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Comparing gene expression and pathway databases
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Detect active pathways? Denoise expression data?
Denoise pathway database? Find new pathways?
Are there “correlations”?



A useful first step




Part 1

Using expression data only
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Motivation

Pathways and biological events involve the coordinated action of
several genes

Co-regulation is an important way to coordinate the action of
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Principal component analysis (PCA)
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PCA notations

N genes, P experimental conditions

e; € RY the expression profile of gene i =1,..., N.
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PCA classical formulation

The amount of variation captured by f, is:
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PCA conclusion

For any candidate profile v € RP?,
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Part 3

Using the metabolic database
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Motivation

PCA is useful if there is a small number of strong signal

In concrete applications, we observe a noisy superposition of many
events




The metabolic gene network
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Mapping f, to the metabolic gene network
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Important hypothesis

If v is related to a metabolic activity, then f, should vary
"smoothly” on the graph
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Graoh Laplacian
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How smooth is 7

Local quantification:
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Smoothness quantification
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Is large when f is smooth
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h(f) = 2.5 h(f) = 34.2




Part 3

Combining expression and
metabolic pathways
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Motivation

For a candidate profile v,

hi(fy,) is large when v captures a lot of natural variation among
profiles
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Problem reformulation

Find a function f, and a function f5 such that:

ha(fv) = || follz2/|follm, be large

ha(f2) = || f2llz2/ || follm, be large
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Problem reformulation (2)

The three goals can be combined in the following problem:
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Solving the problem

This formultation is equivalent to a generalized form of CCA
(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the
following generalized eigenvector problem
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Part 4

Experimental results
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes

AULFUE METAEOQLISK : REDUC TION AND FIXATION
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Related genes
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Opposite pattern
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Related genes
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Conclusion
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Conclusion

An approach to integrate heterogeneous data (expression profiles
and network)

A particular case of more generic methods (kernel methods)




