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Part 1

Problem formulation
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)



7

Comparing gene expression and pathway databases

VS

Detect active pathways? Denoise expression data?

Denoise pathway database? Find new pathways?

Are there “correlations”?
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A useful first step
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Part 1

Using expression data only
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Motivation

• Pathways and biological events involve the coordinated action of

several genes

• Co-regulation is an important way to coordinate the action of

several genes

• Systematic variations in the set of gene expression profiles might

be an indicator of an underlying biological phenomenon
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Principal component analysis (PCA)
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PCA finds the directions (profiles) explaining the largest amount of

variations among expression profiles.
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PCA notations

• N genes, P experimental conditions

• ei ∈ RP the expression profile of gene i = 1, . . . , N .

• The expression profiles are centered:
∑N

i=1 ei = 0

• For a candidate profile v ∈ Rp, fv(i) = v>ei the projection of ei

onto v



13

PCA classical formulation

• The amount of variation captured by fv is:

||fv||2L2
=

N∑
i=1

fv(i)2

• The norm of v is

||fv||2H1
=

P∑
i=1

v2
i

• PCA solves:

max
||fv||H1

=1
||fv||2L2

= max
fv

||fv||2L2

||fv||2H1
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PCA conclusion

• For any candidate profile v ∈ Rp,

h1(v) =
||fv||2L2

||fv||2H1

is a first indicator of how relevant v is: the larger the better

• In the absence of other information, maximizing h(v) is natural:

this is PCA



15

Part 3

Using the metabolic database
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Motivation

• PCA is useful if there is a small number of strong signal

• In concrete applications, we observe a noisy superposition of many

events

• Using a prior knowledge of metabolic networks can help denoising

the information detected by PCA
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The metabolic gene network
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Link two genes when they can catalyze two successive reactions
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Mapping fv to the metabolic gene network

−0.8

+0.8
+0.2

−0.4

+0.1

g8

g3 g7

g6
g5g4

g1

g1

g5
g6

g7
g3
g4

g2

g2

+0.4
−0.7
+0.5

g8
−0.8

−0.7

−0.4

+0.1
+0.2

+0.4

+0.5

+0.8

Does it look interesting or not?
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Important hypothesis

If v is related to a metabolic activity, then fv should vary

”smoothly” on the graph

Smooth Rugged
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Graoh Laplacian
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How smooth is f?

• Local quantification:

f>Lf =
∑
i∼j

(fi − fj)
2

(
=
∫

∂f

∂x

2

dx

)

• Spectral quantification:

||f ||2H2
= f> exp(L)f =

N∑
j=1

f̂je
λj

(
=
∫

f̂(ω)eω2
dω

)
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Smoothness quantification

h2(f) =
||f ||2L2

||f ||2H2

is large when f is smooth

h(f) = 2.5 h(f) = 34.2
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Part 3

Combining expression and
metabolic pathways
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Motivation

For a candidate profile v,

• h1(fv) is large when v captures a lot of natural variation among

profiles

• h2(fv) is large when fv is smooth on the graph

Try to maximize both terms in the same time
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Problem reformulation

Find a function fv and a function f2 such that:

• h1(fv) = ||fv||L2/||fv||H1 be large

• h2(f2) = ||f2||L2/||f2||H2 be large

• fv and f2 be correlated :

f>v f2

||fv||L2||f2||L2

be large
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Problem reformulation (2)

The three goals can be combined in the following problem:

max
fv,f2

f>v f2(
||fv||2L2 + δ||fv||2H1

)1
2
(
||f2||2L2 + δ||f2||2H2

)1
2

where the parameter δ controls the trade-off between

relevance/smoothness on the one hand, correlation on the other

hand.
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Solving the problem

This formultation is equivalent to a generalized form of CCA

(Kernel-CCA, Bach and Jordan, 2002), which is equivalent to the

following generalized eigenvector problem(
0 K1K2

K2K1 0

)(
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

)(
α

β

)
where [K1]i,j = e>i ej and K2 = exp(−L).

Then, fv = K1α and f2 = K2β.
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Part 4

Experimental results
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes



39

Related genes



40

Conclusion
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Conclusion

• An approach to integrate heterogeneous data (expression profiles

and network)

• A particular case of more generic methods (kernel methods)

• Generalization to other types of data and more than two datasets

is possible (see ISMB’s paper with Yamanishi)


