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Overview

1. Pattern recognition and Support Vector Machines

2. Remote protein homology detection

3. Analysis of microarray data with pathways information



3

Partie 1

Pattern recognition
and

Support Vector Machines
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The pattern recognition problem
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The pattern recognition problem

• Learn from labelled examples a discrimination rule
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The pattern recognition problem

• Learn from labelled examples a discrimination rule

• Use it to predict the class of new points
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Pattern recognition examples

• Medical diagnosis (e.g., from microarrays)

• Drugability/activity of chemical compouds

• Gene function, structure, localization

• Protein interactions
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Support Vector Machines for pattern recognition
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)



10
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Support Vector Machines for pattern recognition

φ

• Object x represented by the vector ~Φ(x) (feature space)

• Linear separation with large margin in the feature space
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The kernel trick for SVM

• The separation can be found without knowing Φ(x). Only the

following kernel matters:

K(x, y) = ~Φ(x). ~Φ(y)

• Simple kernels K(x, y) can correspond to complex ~Φ

• SVM work with any sort of data as soon as a kernel is defined
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Kernels

• A kernel can be thought of as a measure of similarity.

• There are mathematical conditions to ensure that a function

K(x, y) is a valid kernel (it must be symmetric positive

semidefinite).

• As soon as K(., .) is a valid kernel, SVM can be used for pattern

recognition
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Advantages of SVM

• Works well on real-world applications

• Large dimensions, noise OK

• Can be applied to any kind of data as soon as a kernel is available
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Advantages of kernels

• Kernels can be engineered for a particular type of data (vectors,

strings, graphs, structure, ...)

• Prior knownledge of the problem can be included in the kernel

• Not restricted to SVM: the kernel trick works with many other

kernel methods
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Partie 2

Application: remote protein
homology detection
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The problem
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• Same structure/function but sequence diverged

• Remote homology can not be found by direct sequence similarity
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SCOP database
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?
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• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily from the rest
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A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen

any member of its family before?

• During learning: remove a family and learn the difference between

the superfamily from the rest

• Then, use the model to test each domain of the family removed
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Using SVM

• We need a kernel K(s1, s2) between any two sequences
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Using SVM

• We need a kernel K(s1, s2) between any two sequences

• Idea: can we use classical sequence similarity scores as kernels?
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Local alignment kernel

• For two strings x and y, a local alignment π with gaps is:

ABCD EF−−−G−HI JKL

MNO TUVWXEEPQRGS−I
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Local alignment kernel

• For two strings x and y, a local alignment π with gaps is:

ABCD EF−−−G−HI JKL

MNO TUVWXEEPQRGS−I

• The score is:

s(x, y, π) = s(E,E) + s(F,E) + s(G, G) + s(I, I)− s(gaps)
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Smith-Waterman (SW) score

SW (x, y) = max
π∈Π(x,y)

s(x, y, π)

• This is not a kernel in general

• But the following is a valid kernel:

K
(β)
LA(x, y) =

∑
π∈Π(x,y)

exp (βs(x, y, π)) ,
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SCOP superfamily recognition benchmark
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Partie 3

Analysis of microarray data with
pathways information
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Genes encode proteins which can catalyse chemical
reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+
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Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway
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Microarray technology monitors RNA quantity

(From Spellman et al., 1998)
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Comparing gene expression and protein network
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Pattern of expression
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Pattern smoothness
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• The correlation function with interesting patterns should vary

smoothly on the graph
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Summary
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Data

• Gene network: two genes are linked if the catalyze successive

reactions in the KEGG database

• Expression profiles: 18 time series measures for the 6,000 genes of

yeast, during two cell cycles
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First pattern of expression
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Related metabolic pathways

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metabolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Related genes
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Related genes
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Related genes
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Opposite pattern
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Related genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Related genes
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Related genes



42

Related genes
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Extensions

• Can be used to extract features from expression profiles (preprint

2002)

• Can be generalized to more than 2 datasets and other kernels

• Can be used to extract clusters of genes (e.g., operon detection,

ISMB 03 with Y. Yamanishi, A. Nakaya and M. Kanehisa)
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Conclusion
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Conclusion

• Kernels offer a versatile framework to represent biological data

• SVM and kernel methods work well on real-life problems, in

particular in high dimension and with noise

• Data integration with kernel CCA is possible


