Kernel methods in Computational Biology: Two examples

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris Computational Biology group

INSA Toulouse, May 20, 2003.

Overview

- 1. Pattern recognition and Support Vector Machines
- 2. Remote protein homology detection
- 3. Analysis of microarray data with pathways information

Partie 1

Pattern recognition and Support Vector Machines

The pattern recognition problem

The pattern recognition problem

• Learn from labelled examples a discrimination rule

The pattern recognition problem

- Learn from labelled examples a discrimination rule
- Use it to predict the class of new points

Pattern recognition examples

- Medical diagnosis (e.g., from microarrays)
- Drugability/activity of chemical compouds
- Gene function, structure, localization
- Protein interactions

• Object x represented by the vector $\vec{\Phi(x)}$ (feature space)

- Object x represented by the vector $\vec{\Phi(x)}$ (feature space)
- Linear separation with large margin in the feature space

- Object x represented by the vector $\vec{\Phi(x)}$ (feature space)
- Linear separation with large margin in the feature space

The kernel trick for SVM

• The separation can be found without knowing $\Phi(x)$. Only the following kernel matters:

$$K(x,y) = \vec{\Phi(x)} \cdot \vec{\Phi(y)}$$

- Simple kernels K(x,y) can correspond to complex $\vec{\Phi}$
- SVM work with any sort of data as soon as a kernel is defined

Kernels

- A kernel can be thought of as a measure of similarity.
- There are mathematical conditions to ensure that a function K(x,y) is a valid kernel (it must be symmetric positive semidefinite).
- ullet As soon as K(.,.) is a valid kernel, SVM can be used for pattern recognition

Advantages of SVM

- Works well on real-world applications
- Large dimensions, noise OK
- Can be applied to any kind of data as soon as a kernel is available

Advantages of kernels

- Kernels can be engineered for a particular type of data (vectors, strings, graphs, structure, ...)
- Prior knownledge of the problem can be included in the kernel
- Not restricted to SVM: the kernel trick works with many other kernel methods

Partie 2

Application: remote protein homology detection

The problem

- Same structure/function but sequence diverged
- Remote homology can not be found by direct sequence similarity

SCOP database

A benchmark experiment

• Can we predict the superfamily of a domain if we have not seen any member of its family before?

A benchmark experiment

- Can we predict the superfamily of a domain if we have not seen any member of its family before?
- During learning: remove a family and learn the difference between the superfamily from the rest

A benchmark experiment

- Can we predict the superfamily of a domain if we have not seen any member of its family before?
- During learning: remove a family and learn the difference between the superfamily from the rest
- Then, use the model to test each domain of the family removed

Using SVM

ullet We need a kernel $K(s_1,s_2)$ between any two sequences

Using SVM

- We need a kernel $K(s_1, s_2)$ between any two sequences
- Idea: can we use classical sequence similarity scores as kernels?

Local alignment kernel

• For two strings x and y, a local alignment π with gaps is:

Local alignment kernel

• For two strings x and y, a local alignment π with gaps is:

• The score is:

$$s(x, y, \pi) = s(E, E) + s(F, E) + s(G, G) + s(I, I) - s(gaps)$$

Smith-Waterman (SW) score

$$SW(x,y) = \max_{\pi \in \Pi(x,y)} s(x,y,\pi)$$

- This is not a kernel in general
- But the following is a valid kernel:

$$K_{LA}^{(\beta)}(x,y) = \sum_{\pi \in \Pi(x,y)} \exp(\beta s(x,y,\pi)),$$

SCOP superfamily recognition benchmark

Partie 3

Analysis of microarray data with pathways information

Genes encode proteins which can catalyse chemical reations

Nicotinamide Mononucleotide Adenylyltransferase With Bound Nad+

Chemical reactions are often parts of pathways

From http://www.genome.ad.jp/kegg/pathway

Microarray technology monitors RNA quantity

(From Spellman et al., 1998)

Comparing gene expression and protein network

Are there "correlations"?

Expression profiles

Pattern of expression

 In yellow: a candidate pattern, and the correlation coefficient with each gene profile

Pattern smoothness

 The correlation function with interesting patterns should vary smoothly on the graph

Summary

Data

- Gene network: two genes are linked if the catalyze successive reactions in the KEGG database
- Expression profiles: 18 time series measures for the 6,000 genes of yeast, during two cell cycles

First pattern of expression

Related metabolic pathways

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metabolism (5)
- Selenoaminoacid metabolism (4), etc...

Opposite pattern

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3), etc...

Extensions

- Can be used to extract features from expression profiles (preprint 2002)
- Can be generalized to more than 2 datasets and other kernels
- Can be used to extract clusters of genes (e.g., operon detection, $ISMB\ 03$ with Y. Yamanishi, A. Nakaya and M. Kanehisa)

Conclusion

Conclusion

- Kernels offer a versatile framework to represent biological data
- SVM and kernel methods work well on real-life problems, in particular in high dimension and with noise
- Data integration with kernel CCA is possible