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Overview

1. Pattern recognition and Support Vector Machines

2. Remote protein homology detection
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The pattern recognition problem
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Pattern recognition examples

Medical diagnosis (e.g., from microarrays)

Drugability /activity of chemical compouds
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Support Vector Machines for pattern recognition
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Support Vector Machines for pattern recognition
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The kernel trick for SVM

The separation can be found without knowing ®(x). Only the
following kernel matters:
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LCIES

A kernel can be thought of as a measure of similarity.

There are mathematical conditions to ensure that a function
K(x,y) is a valid kernel (it must be symmetric positive
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Advantages of SVM

Works well on real-world applications

Large dimensions, noise OK
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Advantages of kernels

Kernels can be engineered for a particular type of data (vectors,
strings, graphs, structure, ...)

Prior knownledge of the problem can be included in the kernel
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Application: remote protein
homology detection
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The problem
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SCOP database
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A benchmark experiment

Can we predict the superfamily of a domain if we have not seen
any member of its family before?
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A benchmark experiment

Can we predict the superfamily of a domain if we have not seen
any member of its family before?

During learning: remove a family and learn the difference between




20

Using SVM

We need a kernel K (s1,s2) between any two sequences
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Using SVM

We need a kernel K (s1,s2) between any two sequences

ldea: can we use classical sequence similarity scores as kernels?
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Local alignment kernel

For two strings x and y, a local alignment 7 with gaps is:

ABbCD II:II————(IJ'—HII JKL
MNO EEPORGS—1 TUVWX
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Smith-Waterman (SW) score

SW(x,y) = max s(x,y, )

This is not a kernel in general
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SCOP superfamily recognition benchmark
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Analysis of microarray data with
pathways information







Chemical reactions are often parts of pathways
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Microarray technology monitors RNA quantity
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Comparing gene expression and protein network
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Pattern of expression
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Pattern smoothness
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Summary
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Data

Gene network: two genes are linked if the catalyze successive
reactions in the KEGG database

Expression profiles: 18 time series measures for the 6,000 genes of
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First pattern of expression
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Related metabolic pathways

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Related genes
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Opposite pattern
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Related genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Related genes
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Extensions

Can be used to extract features from expression profiles (preprint
2002)

Can be generalized to more than 2 datasets and other kernels
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Conclusion
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Conclusion

Kernels offer a versatile framework to represent biological data

SVM and kernel methods work well on real-life problems, in
particular in high dimension and with noise




