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SVM and kernel methods




Support vector machines
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Kernel examples

“Classical” kernels: polynomial, Gaussian, sigmoid...
but the objects £ must be vectors

“Exotic” kernels for strings:

* Fisher kernel (Jaakkoola and Haussler 98




Kernel engineering

A fonction K : X? — R is a valid kernel on a set X if
It IS:

x symmetric : K(z,y) = K(y,x),




Part 2

Making a kernel from a graphical
model




A general problem

X a (finite) set
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Product kernel

Kproa(z,y) = p(2)p(Y)
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Product kernel

Kprod(x,y) = p(x)p(y)
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Product kernel

Kprod(x,y) = p(x)p(y)
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Diagonal kernel

Kdiag(wa y) — p($)5(33, y)
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Diagonal kernel
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Diagonal kernel
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Interpolated kernel

If objects are composite: x = (x1,x2)

K(QZ‘, y) — Kdz'ag(xla yl)Kprod(xQ; y2)
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Interpolated kernel
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General interpolated kernel

Composite objects x = (x1,...,Ty)
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Examples

If V = {0}, then:

KV(ma y) — Kprod(xv y)
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Rare common subparts

For a given p(x) and p(y), we have:

1 5513[,]
Z( yr)

KV(may) — Kprod(xay) X N
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Rare common subparts

For a given p(x) and p(y), we have:

1 o(xy,
Ky(ib,y) — Kprod(xay) X _Z (p;lyl)

Y,
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Implementation

For many applications, computation time of the kernel
is a limiting factor
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Example 1: Weight matrix kernel

& ® &)

Independent variables, all subsets:
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Weight matrix kernel: Computation

& ® &)

Kv(CB, y) — % H ¢z(ajza yZ)7




Weight matrix kernel: Proof

® O ©® 6 6

K(CE,y) :in Z

[ [p(z)o(ivi) x | [ p(z)p(v:)
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Example 2: Markov block kernel

=)= =)=

Markov model, all blocks:
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Markov block kernel: computation
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and for: =2,...,n:

[ Go(i)
¢1(7)

Pi(TilTi—1)pi(Yilyi—1) X ¢po(i — 1)
pi(xi|xi—1)0(x4i, ¥i)

< [on(i = 1) + PO g 1))
¢2(1) = pi(xilTi—1)pi(Yilyi—1) X [@1(2 — 1) + ¢2(z — 1)]

N




Markov kernel: Proof

Bijection between the set of intervals and the set of
paths
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Example 3: common subtree kernel
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Common subtree kernel: computation

K(z,y) = > | [Tplesw)o(, ue)

SeY seSs
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Common subtree kernel: proof

K(z,y) = > T 76) x [T a(9)| = o) + 80,

SeV ses s¢S

where:
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Example 4: common subtree kernel with
latent variables

Same as example 3 but some variables are not observed:
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Example 5: general common subtree kernel
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Part 3

Application:
Gene functional prediction from
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Mini introduction

Genes are small parts of the DNA which encode proteins.

About 6,000 genes in the baker yeast, 30,000 in human
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Definition

The phylogenetic profile of a gene is a vector of bits
which indicates the presence (1) or absence (0) of the
gene in every fully sequenced genome.

Gene human yeast ... HIV E. coli
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From profile to function

Genes are likely to be transmitted together during
evolution when they participate:

* to a common structural complex,
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Naive approach

Count the number of bits in common:
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Limitations of the naive approach

The set of sequenced organisms has a strong influence
on the similarity score (e.g., eukaryotes are under-
represented)
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What is not used in the naive approach
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Evolution pattern
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Evolution patterns and phylogenetic profiles
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Probabilistic model of gene transmission

The phylogenetic tree as a tree graphical model

Simplified model:




39

Probabilistic assighnment of evolution
pattern

For a phylogenetic profile x and an evolution pattern e:
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Representation of a profile in terms of
evolution patterns

Consider all possible evolution patterns (eq,...,en),
and represent each gene x by the vector:
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Comparing two profiles through evolution
patterns
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Gene function prediction with SVM

Profiles for 2465 genes of S. Cerevisiae were computed by BLAST
search (cf Pavlidis et al. 2001), using 24 genomes.

Consensus phylogenetic tree (cf. Liberles et al. 2002) with
simplified probabilistic model of gene transmission




Results (ROC 50)

Functional class Naive kernel Tree kernel Difference
Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%

0 N AR 19/

A lll._
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A insight into the feature space

PCA can be performed implicitly in the feature space
with a kernel function: kernel-PCA (Scholkopf et al.
1999)
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Naive kernel PCA

PC2 PC
CC%




Tree kernel PCA

pc2 A
.o Q?OVO
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PC1 ++ g1
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Conclusion




48

Conclusion

A general method to derive a kernel from a probability
distribution

Encouraging results




