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Outline

1. SVM and kernel methods

2. Making a kernel from a graphical model

3. Application: gene function prediction from phylogenetic

profiles
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Part 1

SVM and kernel methods
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Support vector machines

φ

• Objects to classified x mapped to a feature space

• Largest margin separating hyperplan in the feature space
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The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
=< Φ(x),Φ(y) >
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The kernel trick

• Implicit definition of x → Φ(x) through the kernel:

K(x, y)
def
=< Φ(x),Φ(y) >

• Simple kernels can represent complex Φ

• For a given kernel, not only SVM but also clustering,

PCA, ICA... possible in the feature space = kernel

methods
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Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors
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Kernel examples

• “Classical” kernels: polynomial, Gaussian, sigmoid...

but the objects x must be vectors

• “Exotic” kernels for strings:

? Fisher kernel (Jaakkoola and Haussler 98)

? Convolution kernels (Haussler 99, Watkins 99)

? String kernel (Lodhi et al. 00)

? Spectrum, mismatch kernels (Leslie et al.), rational

kernels (Cortes et al.)...
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Kernel engineering

• A fonction K : X 2 → R is a valid kernel on a set X if

it is:

? symmetric : K(x, y) = K(y, x),
? positive semi-definite:

∑
i,j aiajK(xi, xj) ≥ 0 for all

ai ∈ R and xi ∈ X

• Kernel engineering:Use prior knowledge to build the

geometry of the feature space through K(., .)
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Part 2

Making a kernel from a graphical
model
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A general problem

• X a (finite) set



9

A general problem

• X a (finite) set

• p(x) a probability distribution on X



9

A general problem

• X a (finite) set

• p(x) a probability distribution on X

• How to build K(x, y) from p(x)?



9

A general problem

• X a (finite) set

• p(x) a probability distribution on X

• How to build K(x, y) from p(x)?

• Remark: up to translation and scaling, we can restrict

K to be a probability on X × X (P-kernel)
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Product kernel

Kprod(x, y) = p(x)p(y)



10

Product kernel

Kprod(x, y) = p(x)p(y)

x

p(x)

y

p(y)

0
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Product kernel

Kprod(x, y) = p(x)p(y)

x

p(x)

y

p(y)

0

SVM = probability threshold classifier
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Diagonal kernel

Kdiag(x, y) = p(x)δ(x, y)
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Diagonal kernel

Kdiag(x, y) = p(x)δ(x, y)

p(y)

p(x)

p(z)

x

y

z
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Diagonal kernel

Kdiag(x, y) = p(x)δ(x, y)

p(y)

p(x)

p(z)

x

y

z

No learning
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Interpolated kernel

If objects are composite: x = (x1, x2) :

K(x, y) = Kdiag(x1, y1)Kprod(x2, y2)
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Interpolated kernel

If objects are composite: x = (x1, x2) :

K(x, y) = Kdiag(x1, y1)Kprod(x2, y2)

= p(x1)δ(x1, y1)× p(x2|x1)p(y2|y1)

AA

BA
BB

AB

B*

A*
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General interpolated kernel

• Composite objects x = (x1, . . . , xn)
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• A list of index subsets: V = {I1, . . . , Iv}
where Ii ⊂ {1, . . . , n} for i = 1, . . . , v.
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General interpolated kernel

• Composite objects x = (x1, . . . , xn)

• A list of index subsets: V = {I1, . . . , Iv}
where Ii ⊂ {1, . . . , n} for i = 1, . . . , v.

• Interpolated kernel:

KV(x, y) =
1
|V|

∑
I∈V

Kdiag(xI, yI)Kprod(xIc, yIc)
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Examples

• If V = {∅}, then:

KV(x, y) = Kprod(x, y).

• If V = {[1, n]}, then:

KV(x, y) = Kdiag(x, y).
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Rare common subparts

For a given p(x) and p(y), we have:

KV(x, y) = Kprod(x, y)× 1
|V|

∑
I∈V

δ(xI, yI)
p(xI)
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Rare common subparts

For a given p(x) and p(y), we have:

KV(x, y) = Kprod(x, y)× 1
|V|

∑
I∈V

δ(xI, yI)
p(xI)

x and y get closer in the feature space when they share

rare common subparts



16

Implementation

• For many applications, computation time of the kernel

is a limiting factor

• The sum in the interpolated might involve up to 2n

terms...

• Good news: factorization possible for particular choices

of p(.) and V (in particular graphical models)
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Example 1: Weight matrix kernel

X2 X3 X4 X5X1

Independent variables, all subsets:

p(x) =
n∏

i=1

pi(xi)

V = P([1, n])
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Weight matrix kernel: Computation

X2 X3 X4 X5X1

KV(x, y) =
1
2n

n∏
i=1

φi(xi, yi),

with:

φi(xi, yi) =

{
pi(xi) + pi(xi)2 if xi = yi

pi(xi)pi(yi) if xi 6= yi
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Weight matrix kernel: Proof

X2 X3 X4 X5X1

K(x, y) =
1
2n

∑
V⊂[1,n]

∏
i∈V

p(xi)δ(xi, yi)×
∏
i/∈V

p(xi)p(yi)


=

1
2n

n∏
i=1

[p(xi)δ(xi, yi) + p(xi)p(yi)] .



20

Example 2: Markov block kernel

X2 X3 X4 X5X1

Markov model, all blocks:

p(x) = p1(x1)
n∏

i=2

pi(xi|xi−1)

V = {[k, l] : 1 ≤ k ≤ l ≤ n} ∪ {∅}
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Markov block kernel: computation

X2 X3 X4 X5X1

KV(x, y) = φ0(n) + φ1(n) + φ2(n),

with: 
φ0(1) = p1(x1)p1(y1)

φ1(1) = p1(x1)δ(x1, y1)

φ2(1) = 0
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and for i = 2, . . . , n:
φ0(i) = pi(xi|xi−1)pi(yi|yi−1)× φ0(i− 1)

φ1(i) = pi(xi|xi−1)δ(xi, yi)

×
[
φ1(i− 1) + pi(yi|yi−1)

pi(xi)
φ0(i− 1)

]
φ2(i) = pi(xi|xi−1)pi(yi|yi−1)× [φ1(i− 1) + φ2(i− 1)]
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Markov kernel: Proof

• Bijection between the set of intervals and the set of

paths

21 3 4 5 6 7 8

<=> [ 3 , 7 ]

• Factorization along each path

• Classical dynamic programming for the summation
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Example 3: common subtree kernel

X2

X3

X4

X5
X1

Bayesian tree model, all rooted subtrees:

p(x) = pλ(xλ)
∏

s∈T\{λ}

ps(xs|xf(s))

V = {S rooted subtree of T}
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Common subtree kernel: computation

K(x, y) =
∑
S∈V

[∏
s∈S

p(xs|xf(s))δ(xs, ys)

×
∏
s/∈S

p(xs|xf(s)p(ys|yf(s))
]

Can be computed in linear time by one post-order

traversal of the tree (similar to the CTW algorithm by

Willems et al.)
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Common subtree kernel: proof

K(x, y) =
∑
S∈V

[∏
s∈S

f(s)×
∏
s/∈S

g(s)
]

= α(λ) + β(λ),

where:

β(s) =

{
g(s) if s is a leaf

g(s)
∏

s′<s β(s′) otherwise ;

α(s) =

{
f(s) if s is a leaf

f(s)
(∏

s′<s β(s′) +
∏

s′<s α(s′)
)

otherwise .
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Example 4: common subtree kernel with
latent variables

• Same as example 3 but some variables are not observed:

K(xobs, yobs) =
∑
S∈V

∑
zS∈AS

p(zS)p(xobs|zS)p(yobs|zS)

• A bit longer to write, but still possible

• Linear time computation
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Example 5: general common subtree kernel

X1

X2

X3

X5

X4

• Same as example 3 but subtrees not necessarily rooted

• A bit longer to write, but still possible

• Linear time computation (using three states per node)
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Part 3

Application:
Gene functional prediction from

phylogenetic profiles
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Mini introduction

• Genes are small parts of the DNA which encode proteins.

• About 6,000 genes in the baker yeast, 30,000 in human

• The sequence of the genes are (almost) known

(sequencing projets)

• Next big challenge: understand the function of the

genes
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Definition

• The phylogenetic profile of a gene is a vector of bits

which indicates the presence (1) or absence (0) of the

gene in every fully sequenced genome.

Gene human yeast . . . HIV E. coli

YAL001C 1 1 . . . 0 0

YAB002W 0 0 . . . 0 1
... ... ... ... ... ...

• Can be estimated in silico by sequence similarity search
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From profile to function

• Genes are likely to be transmitted together during

evolution when they participate:

? to a common structural complex,

? to a common pathway.

• Consequently genes with similar phylogenetic profiles

are likely to have similar functions

• How to measure the similarity between profiles?
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Naive approach

• Count the number of bits in common:

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

s(x, y) = 5

• Cluster or use k-NN for gene function prediction with

this similarity measure (Pellegrini et al., 1999)
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Limitations of the naive approach

• The set of sequenced organisms has a strong influence

on the similarity score (e.g., eukaryotes are under-

represented)

• A more detailed understanding of when two proteins

were transmitted together or not during evolution could

be useful
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What is not used in the naive approach

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0

The knowledge of the phylogenetic tree.
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Evolution pattern

1

1
1

0

0

1

1

A possible pattern of transmission during evolution

defined by a rooted subtree with nodes labeled 0 or 1.
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Evolution patterns and phylogenetic profiles

1

1

1

0

1

10

1

x 1 1 10 01 10 0 0

Is it the true story? We don’t know, but...
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Probabilistic model of gene transmission

• The phylogenetic tree as a tree graphical model

• Simplified model:

? P (1) = 1− P (0) = 0.9, at the root,

? Along each branch transmission follows the transition

matrix: (
0.9 0.1
0.1 0.9

)
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Probabilistic assignment of evolution
pattern

For a phylogenetic profile x and an evolution pattern e:

• P (e) quantifies how “natural” the pattern is

• P (x|e) quantifies how likely the pattern e is the “true

history” of the profile x
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Representation of a profile in terms of
evolution patterns

• Consider all possible evolution patterns (e1, . . . , eN),
and represent each gene x by the vector:

Φ(x) =


√

P (e1)P (x|e1)
...√

P (eN)P (x|eN)


• This leads to the probabilistic kernel described before
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Comparing two profiles through evolution
patterns

1

1

1

0

1

10

1

0 0 01 1

x

y

1 1 10 0

1 10 0 0

1 10 0 0
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Gene function prediction with SVM

• Profiles for 2465 genes of S. Cerevisiae were computed by BLAST

search (cf Pavlidis et al. 2001), using 24 genomes.

• Consensus phylogenetic tree (cf. Liberles et al. 2002) with

simplified probabilistic model of gene transmission

• SVM trained to predict all functional classes of the MIPS catalog

with at least 10 genes (cross-validation)

• Comparison of the tree kernel with the naive kernel
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Results (ROC 50)

Functional class Naive kernel Tree kernel Difference

Amino-acid transporters 0.74 0.81 + 9%
Fermentation 0.68 0.73 + 7%
ABC transporters 0.64 0.87 + 36%
C-compound transport 0.59 0.68 + 15%
Amino-acid biosynthesis 0.37 0.46 + 24%
Amino-acid metabolism 0.35 0.32 - 9%

Tricarboxylic-acid pathway 0.33 0.48 + 45%
Transport Facilitation 0.33 0.28 - 15%
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A insight into the feature space

• PCA can be performed implicitly in the feature space

with a kernel function: kernel-PCA (Scholkopf et al.

1999)

• Projecting the genes on the first principal components

gives an idea of the shape of the features space
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Naive kernel PCA

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2

PC3

PC4
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Tree kernel PCA

Amino−acid transporters
Fermentation
ABC transporters
C−compound, carbonhydrate transport

PC1

PC2 PC4

PC3
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Conclusion
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Conclusion

• A general method to derive a kernel from a probability

distribution

• Encouraging results

• Some problems and questions: diagonal dominance?

Role of the prior distribution?

• Contributes to a general approach: encode genomic

information into kernel functions.


