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Today’s outline

1. Overview

2. Tissue classification




Overview




Types of problems

high dimensional (sequences, microarray data)

very small or very large data sets




Types of data

sequences (of nucleotides or amino-acids)

microarray expression data




Tissue classification from
microarray data




The problem

Main goal : classification of tissue sample (e.g., type of cancer)
based on microarray data (diagnosis)

Secondary goal: Find genes potentially responsible for the
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Data

Leukemia dataset: two types of leukemia (47 ALL and 25 ALL),
7,129 gene expression, 38 training and 34 test samples

Ovarian cancer dataset: 16 normal vs 15 cancerous tissues, 97,802
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Classification with SVM

a linear kernel gives the best results.

Almost perfect classification...
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Gene selection with the Fisher-like score

(Mukherjee 1998, Furey 2000): genes are ranked according to

F(g) =

pi(g) — u—l(g)‘
o019+ 0-1(9) |

Performance seems to increase (with 50-1,000 genes selected)
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Gene selection using SVM weights (Guyon et al.
2002)

Genes are ranked based on their weight learned by a SVM

Genes are removed one by one (or by chunks), and a SVM is re-run
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Conclusion

diagnosis seems possible from microarray data but:

* larger-scale systematic experiments must be conducted (in the
ovarian datasets, the origin of the cell is largely different between
cancerous and normal cells..)

* SVM are “expected to have good performances when data




Gene function prediction from
microarray data
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The problem

Goal : prediction of the function of uncharacterized genes

Unbalanced problem: each class contains few genes compared to
the total number of genes (many negative examples)
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Data

2,467 genes of the yeast S. Cerevisiae with known function (in the
MIPS functional catalog)

79 expression measurement (Spellman et al., 1998).
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Results

Linear, polynomial and Gaussian kernels

Compared with Parzen windows, Fisher's linear discriminant,
decision trees
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Heterogeneous information (Pavlidis et al. 2001)

Combining microarray data with phylogenetic profiles to improve
gene function prediction

The phylogenetic profile of a gene is a vector.

* Each dimension corresponds to one fully sequenced organism
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Integration of heterogeneous data

Early: concatenate expression € and profile p into a single vector

Intermediate: form a kernel by adding the microarray kernel and
the profile kernel:
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Results

Intermediate integration gives the best results...

but integration of both data types fails to improve performance on
4 out of 27 classes (when one data set performs poorly compared

to the other).
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Conclusion

SVM performs better than other classical learning algorithms.

Interesting data integration by summing up two kernels (based on
the prior knowledge that correlations within each data set are more
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Protein subcellular localization
prediction




The problem
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Predict protein localization from sequence.
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Data

997 prokaryotic sequences divided in 3 classes: cytoplasmic (688),
periplasmic (202) and extracellular (107).

2427 eukaryotic sequences divided into 4 classes : nuclear (1097),
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SVM approach

Each sequence is transformed into a 20-dimensional vector (amino-
acid composition)

Multiclass problem: 1-versus-all approach
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Results

Best performance with Gaussian kernel.

Comparison with other composition-based methods: (accuracy with
a Jackknife test):
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Conclusion

SVM perform better than other composition-based methods.

Integration with signal recognition is possible and might increase
performance (K. Park, personal communication)




Protein secondary structure
prediction




The problem

Predict local structure from sequence (ex: prion)
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Data

Non-redundant sets of proteins (RS126 and CB513) with known
3D structure.

3 states: helix, sheet and coill.
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SVM approach

Multiple sequence alignment is performed for each sequence
(available in the HSSP database)

Each position is encoded into a vector using a sliding window of
size [. Dimension: 21 x .
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Results

1-vs-all with max score gives the best result (can be improved by a
jury decision from all methods)

SOV index on the RS126 dataset (sevenfold cross-validation):




Protein fold prediction
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The problem

Fold = common 3D pattern with the same major secondary
structure elements in the same arrangement and with the same
topological connections.




39

References

C. Ding and | Dubchak. Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics, 17:349-358, 2001.




40

Approach

Multiclass problem:

x l-vs-all:  predict all folds with positive scores (multiclass
prediction)
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Protein vectorization

Each protein is transformed into a 125-dimensional vector by
extracting features from the amino-acid sequence:

AA composition

secondary structure
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Results

Prediction on 27 SCOP folds

Both unique 1-vs-all and all-vs-all are significantly better than
1-vs-all (because false positive are removed).




Protein superfamily prediction
with the Fisher kernel
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The problem

Goal: detecting remote protein homology (sequence similarities
that direct methods like BLAST don't detect)

Use the SCOP classification. A superfamily is a set of proteins with
a common 3D structure believed to have evolutionary relationship
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How to represent protein sequences as vectors?

The Fisher score (Jaakkola et al.)

Vector of pairwise similarities (Liao and Noble)
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The Fisher score of HMM

A set of HMM for various families (e.g., immunoglobulins) is given
(using existing databases).

Any HMM H defines the probability P(x|, H, 8) of any sequence x
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Computing the Fisher score

For a classical HMM, let

P(x|s,0) = 045 the probability of emitting a residue = while in
state s.

P(s'|s.T) = 74,5 the transition probability from the current state s
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Computing the Fisher score (ctd.)

This probability can be computed by the classical forward-backward

algorithm, which also gives the posterior expectations &(x, s) of
visiting state x and generating residue x.

Derivating the preceding equation gives:
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Using the Fisher score with SVM
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Vector of similarities

The similarity between any two protein sequences can be computed
using the Smith-Waterman algorithm.

Let f(x,y) the log of the P-value of the Smith-Waterman score
between two sequence x and y.
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Comparison of both approaches
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Results

Experiment: for 33 SCOP family, recognize the superfamily by only
using sequences in other families (simulate a remote protein
homology problem).

1. Pairwise similarity +- SVM
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Discussion and conclusion
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Summary

The examples we saw today all involve 4 important steps subject to
discussion:

Expressing the problem as a binary classification problem
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Conclusion

SVM have been tested on many bioinformatics problems in recent
years

In many cases SVM outperform other classification methods

However comparison is sometimes difficult because not all problems

are stated as a clean machine learning problem




