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Outline

1. The proteome

2. DNA chips, pathway databases...

3. Kernels and RKHS

4. Example: correlation between microarray data and gene network
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Part 1

Proteomics: a primer
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A protein (glutamine synthetase)
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The central dogma : DNA → RNA → protein
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The proteome

• 6,000 genes in the budding yeast, 30-100,000 genes in humans

• complex interactions

• complex regulation

• proteins have many functions: structural, functional, ...
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Proteins can catalyze chemical reactions
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Challenges in proteomics

• Structure, functions of each gene?

• Genetic regulation? System bahaviour?

• Biology is becoming quantitative : need of mathematical

frameworks to manipulate biological concepts.
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Part 2

Characterizing the proteome:
DNA chips, pathways etc...
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Microarrays (DNA chips)

(from Brown and Botstein, Nature Genetics, 1999)



11

Microarrays (ctd.)

• can monitor the quantity of RNA for several thousands genes

simultaneously

• quantity of data increases very fast

• each gene is characterized by an expression profile
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Networks of genes

• genes are vertices of a graph

• protein interaction network (recent technology: yeast two-hybrid

system...)

• pathway network: two genes are linked when they catalyse two

successive reactions
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Protein interaction network

(from Jeong et al., Nature 2001)
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What is a gene?

• a sequence of letters: nucleotides (4 letters) or amino-acids (20

letters)

• a 3D structure

• a node in a network (protein interactions network, metabolic

pathway...)

• an expression profile...
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Question

How to represent the various informations about genes in a coherent

and useful mathematical framework?
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Part 3

Kernels and RKHS
(Reproducible Kernel Hilbert

Space)



17

Kernels on finite space

Let X a finite space (set of genes).

A kernel is a mapping K : X 2→ R such that the Gram matrix:

Kx,x′ = K(x, x′)

is positive semidefinite (all eigenvalues are ≥ 0).

(Intuition: K(., .) measures the similarity between two genes).
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Mercer kernel map

A kernel K can be expressed as an inner product in a feature space:

K =
n∑
i=1

λiφiφ
′
i,

where φi = (φi(x1), . . . , φi(xn)) are eigenvectors.

Let

φ(x) =
(√

λ1φ1(x), . . . ,
√
λnφn(x)

)′
.

Then K(xi, xj) = φ(xi)′φ(xj) .
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RKHS

An other useful way to express a kernel as an inner product.

Consider the mapping ψ : X → R
X defined by:

ψ(x) = K(x, .).

and let H ⊂ RX be the linear span of {K(x, .), x ∈ X}.
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RKHS (ctd.)

Any function f ∈ H can be expanded in the eigenvector basis of K

as:

f =
n∑

i=r+1

aiφi.

where r is the multiplicity of 0 as eigenvalue.

Define an inner product in H as:〈
n∑

i=r+1

aiφi,
n∑

i=r+1

biφi

〉
H

∆=
n∑

i=r+1

aibi
λi
.
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RKHS (ctd.)

Then the space H endowed with the inner product < ., . >H is a

Euclidean space, called Reproducible kernel Hilbert space.

Reproducing property:

〈K(xi, .),K(xj, .)〉 = K(xi, xj),

hence the map x 7→ K(x, .) is a valid feature space representation.

(Proof: write K(x, .) =
∑n
i=1 λiφi(x)φ(.), and use the definition of

the inner product with ai = λiφi(x) and bi = λiφi(x′))
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Dual representation in RKHS

Any function f ∈ H can be expressed in a dual form:

f(.) =
n∑
i=1

αiK(xi, .).

α is the dual coordinate of f = Kα. The inner product in H can be

easily expressed with the dual coordinates:

< f, g >H=
n∑

i,j=1

αiβjK(xi, xj) = α′Kβ.
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What is the link between RKHS and the proteome?

• A kernel K(x, x′) acts as a similarity measure

• Different representation of the genes (sequences, nodes of a graph,

microarray expression) lead to different notions of similarity

• These similarity can be encoded as different kernel functions

• Linear algorithms can be performed implicitly in the feature space.

• The metrics of the RKHS can correspond to useful properties
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Metrics in RKHS

Let f ∈ H be decomposed in the basis of eigenvectors of K:

f =
n∑

i=r+1

aiφi.

The norm is given by:

||f ||2H =
n∑

i=r+1

a2
i

λi
.

A large norm means that f has large components with respect to

the eigenvectors with small eigenvalues.
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Metrics in RKHS (ctd.)

Example: in the continuous case (X = R
d) the eigenvectors of the

Gaussian radial basis kernel:

K(x, x′) = exp
(
−||x− x

′||2

2σ2

)
are the Fourier basis function, and the norm in H is a smoothing

functional:

||f ||H =
∫
R
d
e
σ2

2 ||ω||
2
|f̂(ω)|2dω.
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Part 3

Example: correlation between
microarray data and gene

network
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The problem
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The approach

An interesting feature f : X → R should be:

• smooth with respect to the graph topology

• capture a lot of variations in the profiles (i.e., be strongly correlated

with some the furst principal components)

This can be translated as a canonical correlation analysis (CCA)

problem between two RKHS associated with two kernels.
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Graph kernel

For a graph let:

• A be the adjacency matrix (Ai,j = 1 is xi ∼ xj, 0 otherwise)

• D be the diagonal matrix of vertex degrees

• L = D −A be the Laplacian matrix

L can be thought as a discretized version of the continuous

Laplacian ∆ =
∑

∂
∂xi

.
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Graph kernel (ctd.)

Eigenvectors of L form a Fourier basis of the functions on the

vertices of the graph. Frequency increases with the eigenvalue.

By similarity with the continuous case, let

K = exp(−τL)

be the diffusion kernel. Its eigenvectors are the Fourier basis, the

eigenvalues quickly decrease when the frequency increases. The

corresponding norm ||f ||H is a smoothing functional.
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Example of a graph kernel (1)

1

2

3

4

5

L =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1


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Example of a graph kernel (2)

1

2

3

4

5

K = exp(−L) =


0.49 0.12 0.23 0.10 0.03
0.12 0.49 0.23 0.10 0.03
0.23 0.23 0.24 0.17 0.10
0.10 0.10 0.17 0.31 0.30
0.03 0.03 0.10 0.30 0.52


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Microarray kernel

Consider the linear kernel K(x, x′) = e(x).e(x′), where e(x) ∈ Rp is

the expression profile (centered).

The corresponding RKHS is the set of linear features:

fv(x) = e(x)′v,

for some v ∈ span(e(x), x ∈ X ). The norm in the RKHS is

||f ||H = ||v||, and the variance captured by f is

V (fv) =
∑
x∈X fv(x)2

||v||2
=
||fv||L2(X )

||fv||H
.
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Combining both kernels

Let K1 be the graph kernel, and K2 be the linear kernel, with RKHS

H1 and H2

The problem can be stated as: find a pair of features

(f1, f2) ∈ H1 ×H2 such that:

• ||f1||H1/||f1||L2(X ) be small (f1 be smooth)

• ||f2||H2/||f2||L2(X ) be small (f2 capture a lot of variation in the

profiles)

• f1 and f2 be as correlated as possible.
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Problem formulation

This can be translated as follows:

max
(f1,f2)∈H1×H2

f ′1f2√
f ′1f1 + δ||f1||H1

√
f ′2f2 + δ||f2||H2

where δ is a regularization parameter (trade-off correlation vs.

smoothness / variation captured).
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Dual formulation

Working with the dual coordinates in each feature space, this is

equivalent to:

max
(α,β)∈(RX )2

α′K1K2β

(α′(K2
1 + δK1)α)

1
2 (β′(K2

2 + δK2)β)
1
2

which is equivalent to the generalized eigenvectors problem:(
0 K1K2

K2K1 0

)(
α

β

)
= ρ

(
K2

1 + δK1 0
0 K2

2 + δK2

)(
α

β

)
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Experiment

• Gene network: genes are linked if they are known to catalyse two

successive reactions (data available in Kyoto University’s KEGG

database, www.genome.ad.jp)

• Microarray data: 18 measures for all genes (6,000) of the budding

yeast S. Cerevisiae by Spellman et al. (public data), corresponding

to a cell cyle after release of alpha factor.
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1st CCA scores
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Upper left expression

Time

E
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n

Average expression of the 50 genes with highest s2 − s1.
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Upper left genes

50 genes with highest s2 − s1 belong to:

• Oxidative phosphorylation (10 genes)

• Citrate cycle (7)

• Purine metabolism (6)

• Glycerolipid metabolism (6)

• Sulfur metobolism (5)

• Selenoaminoacid metabolism (4) , etc...
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Upper left genes
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Upper left genes
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Upper left genes
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Lower right expression
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Time

Average expression of the 50 genes with highest s2 − s1.
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Lower right genes

• RNA polymerase (11 genes)

• Pyrimidine metabolism (10)

• Aminoacyl-tRNA biosynthesis (7)

• Urea cycle and metabolism of amino groups (3)

• Oxidative phosphorlation (3)

• ATP synthesis(3) , etc...
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Lower right genes
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Lower right genes
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Lower right genes
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Conclusion
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Conclusion

• New technologies, new data: biology is changing quickly, need for

new mathematical ideas (not only in statistics)

• We proposed a way to encode different kinds of informations about

genes into kernel functions, and to work in the corresponding RKHS

• This is still an over-simplified model of the reality. More interesting

structures might be imagined for the proteome (the idea of gene

itself is more and more controversial...)

• Thank you!


