Data mining the proteome in reproducible kernel Hilbert spaces

Jean-Philippe Vert

Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org

Research Institute for Mathematical Sciences, Kyoto University, Japan, July 12, 2002.

Outline

- 1. The proteome
- 2. DNA chips, pathway databases...
- 3. Kernels and RKHS
- 4. Example: correlation between microarray data and gene network

Part 1

Proteomics: a primer

A protein (glutamine synthetase)

The central dogma : DNA \rightarrow RNA \rightarrow protein

The proteome

- 6,000 genes in the budding yeast, 30-100,000 genes in humans
- complex interactions
- complex regulation
- proteins have many functions: structural, functional, ...

Proteins can catalyze chemical reactions

Challenges in proteomics

- Structure, functions of each gene?
- Genetic regulation? System bahaviour?
- Biology is becoming quantitative : need of mathematical frameworks to manipulate biological concepts.

Part 2

Characterizing the proteome: DNA chips, pathways etc...

Microarrays (DNA chips)

(from Brown and Botstein, Nature Genetics, 1999)

Microarrays (ctd.)

- can monitor the quantity of RNA for several thousands genes simultaneously
- quantity of data increases very fast
- each gene is characterized by an expression profile

Networks of genes

- genes are vertices of a graph
- protein interaction network (recent technology: yeast two-hybrid system...)
- pathway network: two genes are linked when they catalyse two successive reactions

Protein interaction network

(from Jeong et al., Nature 2001)

What is a gene?

- a sequence of letters: nucleotides (4 letters) or amino-acids (20 letters)
- a 3D structure
- a node in a network (protein interactions network, metabolic pathway...)
- an expression profile...

Question

How to represent the various informations about genes in a coherent and useful mathematical framework?

Part 3

Kernels and RKHS (Reproducible Kernel Hilbert Space)

Kernels on finite space

Let \mathcal{X} a finite space (set of genes).

A kernel is a mapping $K:\mathcal{X}^2 o\mathbb{R}$ such that the Gram matrix:

$$K_{x,x'} = K(x,x')$$

is positive semidefinite (all eigenvalues are ≥ 0).

(Intuition: K(.,.) measures the similarity between two genes).

Mercer kernel map

A kernel K can be expressed as an inner product in a feature space:

$$K = \sum_{i=1}^{n} \lambda_i \phi_i \phi_i',$$

where $\phi_i = (\phi_i(x_1), \dots, \phi_i(x_n))$ are eigenvectors.

Let

$$\phi(x) = \left(\sqrt{\lambda_1}\phi_1(x), \dots, \sqrt{\lambda_n}\phi_n(x)\right)'.$$

Then $K(x_i, x_j) = \phi(x_i)'\phi(x_j)$.

RKHS

An other useful way to express a kernel as an inner product. Consider the mapping $\psi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$ defined by:

$$\psi(x) = K(x,.).$$

and let $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be the linear span of $\{K(x,.), x \in \mathcal{X}\}$.

RKHS (ctd.)

Any function $f \in \mathcal{H}$ can be expanded in the eigenvector basis of K as:

$$f = \sum_{i=r+1}^{n} a_i \phi_i.$$

where r is the multiplicity of 0 as eigenvalue.

Define an inner product in ${\cal H}$ as:

$$\left\langle \sum_{i=r+1}^{n} a_i \phi_i, \sum_{i=r+1}^{n} b_i \phi_i \right\rangle_{\mathcal{H}} \stackrel{\triangle}{=} \sum_{i=r+1}^{n} \frac{a_i b_i}{\lambda_i}.$$

RKHS (ctd.)

Then the space \mathcal{H} endowed with the inner product $< ., .>_{\mathcal{H}}$ is a Euclidean space, called Reproducible kernel Hilbert space.

Reproducing property:

$$\langle K(x_i,.), K(x_j,.) \rangle = K(x_i,x_j),$$

hence the map $x \mapsto K(x,.)$ is a valid feature space representation.

(Proof: write $K(x,.) = \sum_{i=1}^{n} \lambda_i \phi_i(x) \phi(.)$, and use the definition of the inner product with $a_i = \lambda_i \phi_i(x)$ and $b_i = \lambda_i \phi_i(x')$)

Dual representation in RKHS

Any function $f \in \mathcal{H}$ can be expressed in a dual form:

$$f(.) = \sum_{i=1}^{n} \alpha_i K(x_i, .).$$

 α is the dual coordinate of $f = K\alpha$. The inner product in \mathcal{H} can be easily expressed with the dual coordinates:

$$< f, g>_{\mathcal{H}} = \sum_{i,j=1}^{n} \alpha_i \beta_j K(x_i, x_j) = \alpha' K \beta.$$

What is the link between RKHS and the proteome?

- ullet A kernel K(x,x') acts as a similarity measure
- Different representation of the genes (sequences, nodes of a graph, microarray expression) lead to different notions of similarity
- These similarity can be encoded as different kernel functions
- Linear algorithms can be performed implicitly in the feature space.
- The metrics of the RKHS can correspond to useful properties

Metrics in RKHS

Let $f \in \mathcal{H}$ be decomposed in the basis of eigenvectors of K:

$$f = \sum_{i=r+1}^{n} a_i \phi_i.$$

The norm is given by:

$$||f||_{\mathcal{H}}^2 = \sum_{i=r+1}^n \frac{a_i^2}{\lambda_i}.$$

A large norm means that f has large components with respect to the eigenvectors with small eigenvalues.

Metrics in RKHS (ctd.)

Example: in the continuous case $(\mathcal{X} = \mathbb{R}^d)$ the eigenvectors of the Gaussian radial basis kernel:

$$K(x, x') = \exp\left(-\frac{||x - x'||^2}{2\sigma^2}\right)$$

are the Fourier basis function, and the norm in \mathcal{H} is a smoothing functional:

$$||f||_{\mathcal{H}} = \int_{\mathbb{R}^d} e^{\frac{\sigma^2}{2}||\omega||^2} |\hat{f}(\omega)|^2 d\omega.$$

Part 3

Example: correlation between microarray data and gene network

The problem

Gene network

Expression profiles

Are there "correlations"?

The approach

An interesting feature $f: \mathcal{X} \to \mathbb{R}$ should be:

- smooth with respect to the graph topology
- capture a lot of variations in the profiles (i.e., be strongly correlated with some the furst principal components)

This can be translated as a canonical correlation analysis (CCA) problem between two RKHS associated with two kernels.

Graph kernel

For a graph let:

- A be the adjacency matrix $(A_{i,j} = 1 \text{ is } x_i \sim x_j, 0 \text{ otherwise})$
- D be the diagonal matrix of vertex degrees
- L = D A be the Laplacian matrix

L can be thought as a discretized version of the continuous Laplacian $\Delta = \sum \frac{\partial}{\partial x_i}$.

Graph kernel (ctd.)

Eigenvectors of L form a Fourier basis of the functions on the vertices of the graph. Frequency increases with the eigenvalue.

By similarity with the continuous case, let

$$K = \exp(-\tau L)$$

be the diffusion kernel. Its eigenvectors are the Fourier basis, the eigenvalues quickly decrease when the frequency increases. The corresponding norm $||f||_{\mathcal{H}}$ is a smoothing functional.

Example of a graph kernel (1)

Example of a graph kernel (2)

Microarray kernel

Consider the linear kernel K(x,x')=e(x).e(x'), where $e(x)\in\mathbb{R}^p$ is the expression profile (centered).

The corresponding RKHS is the set of linear features:

$$f_v(x) = e(x)'v,$$

for some $v \in span(e(x), x \in \mathcal{X})$. The norm in the RKHS is $||f||_{\mathcal{H}} = ||v||$, and the variance captured by f is

$$V(f_v) = \frac{\sum_{x \in \mathcal{X}} f_v(x)^2}{||v||^2} = \frac{||f_v||_{L^2(\mathcal{X})}}{||f_v||_{\mathcal{H}}}.$$

Combining both kernels

Let K_1 be the graph kernel, and K_2 be the linear kernel, with RKHS \mathcal{H}_1 and \mathcal{H}_2

The problem can be stated as: find a pair of features $(f_1, f_2) \in \mathcal{H}_1 \times \mathcal{H}_2$ such that:

- $||f_1||_{\mathcal{H}_1}/||f_1||_{L^2(\mathcal{X})}$ be small $(f_1$ be smooth)
- \bullet $||f_2||_{\mathcal{H}_2}/||f_2||_{L^2(\mathcal{X})}$ be small $(f_2$ capture a lot of variation in the profiles)
- f_1 and f_2 be as correlated as possible.

Problem formulation

This can be translated as follows:

$$\max_{(f_1, f_2) \in \mathcal{H}_1 \times \mathcal{H}_2} \frac{f_1' f_2}{\sqrt{f_1' f_1 + \delta ||f_1||_{\mathcal{H}_1}} \sqrt{f_2' f_2 + \delta ||f_2||_{\mathcal{H}_2}}}$$

where δ is a regularization parameter (trade-off correlation vs. smoothness / variation captured).

Dual formulation

Working with the dual coordinates in each feature space, this is equivalent to:

$$\max_{(\alpha,\beta)\in(\mathbb{R}^{\mathcal{X}})^2} \frac{\alpha' K_1 K_2 \beta}{\left(\alpha' (K_1^2 + \delta K_1)\alpha\right)^{\frac{1}{2}} \left(\beta' (K_2^2 + \delta K_2)\beta\right)^{\frac{1}{2}}}$$

which is equivalent to the generalized eigenvectors problem:

$$\begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \rho \begin{pmatrix} K_1^2 + \delta K_1 & 0 \\ 0 & K_2^2 + \delta K_2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Experiment

- Gene network: genes are linked if they are known to catalyse two successive reactions (data available in Kyoto University's KEGG database, www.genome.ad.jp)
- Microarray data: 18 measures for all genes (6,000) of the budding yeast S. Cerevisiae by Spellman et al. (public data), corresponding to a cell cyle after release of alpha factor.

1st CCA scores

Upper left expression

Average expression of the 50 genes with highest $s_2 - s_1$.

50 genes with highest $s_2 - s_1$ belong to:

- Oxidative phosphorylation (10 genes)
- Citrate cycle (7)
- Purine metabolism (6)
- Glycerolipid metabolism (6)
- Sulfur metobolism (5)
- Selenoaminoacid metabolism (4), etc...

Lower right expression

Average expression of the 50 genes with highest $s_2 - s_1$.

- RNA polymerase (11 genes)
- Pyrimidine metabolism (10)
- Aminoacyl-tRNA biosynthesis (7)
- Urea cycle and metabolism of amino groups (3)
- Oxidative phosphorlation (3)
- ATP synthesis(3) , etc...

Conclusion

Conclusion

- New technologies, new data: biology is changing quickly, need for new mathematical ideas (not only in statistics)
- We proposed a way to encode different kinds of informations about genes into kernel functions, and to work in the corresponding RKHS
- This is still an over-simplified model of the reality. More interesting structures might be imagined for the proteome (the idea of gene itself is more and more controversial...)
- Thank you!