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Outline

1. The proteome

2. DNA chips, pathway databases...




Part 1

Proteomics: a primer







The central dogma : DNA — RNA — protein

FProtein synthesis



The proteome

6,000 genes in the budding yeast, 30-100,000 genes in humans

complex interactions




Proteins can catalyze chemical reactions
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Challenges in proteomics

Structure, functions of each gene?

Genetic regulation? System bahaviour?




Part 2

Characterizing the proteome:
DNA chips, pathways etc...
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Microarrays (DNA chips)
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DMA microarray

(from Brown and Botstein, Nature Genetics, 1999)
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Microarrays (ctd.)

can monitor the quantity of RNA for several thousands genes
simultaneously

quantity of data increases very fast
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Networks of genes

genes are vertices of a graph

protein interaction network (recent technology: yeast two-hybrid
system...)




13

Protein interaction network

(from Jeong et al., Nature 2001)
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What is a gene?

a sequence of letters: nucleotides (4 letters) or amino-acids (20
letters)

a 3D structure
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Question

How to represent the various informations about genes in a coherent
and useful mathematical framework?




Part 3

Kernels and RKHS
(Reproducible Kernel Hilbert




17

Kernels on finite space

Let X" a finite space (set of genes).

A kernel is a mapping K : X? — R such that the Gram matrix:
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Mercer kernel map

A kernel K can be expressed as an inner product in a feature space:

B
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RKHS

An other useful way to express a kernel as an inner product.
Consider the mapping ¢ : X — R defined by:
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RKHS (ctd.)

Any function f € H can be expanded in the eigenvector basis of K

= Z ;i Pi.

1=r—+1

as:
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RKHS (ctd.)

Then the space 'H endowed with the inner product < .,. >4/ Is a
Euclidean space, called Reproducible kernel Hilbert space.

Reproducing property:
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Dual representation in RKHS

Any function f € H can be expressed in a dual form:

f() = ZaiK(azi, ).
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What is the link between RKHS and the proteome?

A kernel K(z,z’) acts as a similarity measure

Different representation of the genes (sequences, nodes of a graph,
microarray expression) lead to different notions of similarity
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Metrics in RKHS

Let f € 'H be decomposed in the basis of eigenvectors of K:

f= Z o

1=r+1
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Metrics in RKHS (ctd.)

Example: in the continuous case (X = R%) the eigenvectors of the
Gaussian radial basis kernel:

/|2
o (=
K(x,x") exp( 503
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Part 3

Example: correlation between
microarray data and gene
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The problem
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The approach

An interesting feature f : X — R should be:

smooth with respect to the graph topology

capture a lot of variations in the profiles (i.e., be strongly correlated
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Graph kernel

For a graph let:

A be the adjacency matrix (A4; ; = 1 is x; ~ x;, 0 otherwise)

D be the diagonal matrix of vertex degrees
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Graph kernel (ctd.)

Eigenvectors of L form a Fourier basis of the functions on the
vertices of the graph. Frequency increases with the eigenvalue.

By similarity with the continuous case, let
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Example of a graph kernel (1)

1
3 /5

A




32

Example of a graph kernel (2)
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Microarray kernel

Consider the linear kernel K(x,x") = e(x).e(x’), where e(x) € RP is
the expression profile (centered).

The corresponding RKHS is the set of linear features:
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Combining both kernels

Let K be the graph kernel, and K5 be the linear kernel, with RKHS
Hl and Hz

The problem can be stated as: find a pair of features
(f1, f2) € H1 x Ha such that:
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Problem formulation

This can be translated as follows:

f1fo

max , -
(f1,f2)EH1XH2 \/flfl + 5||f1||7—£1\/f2f2 + 5||f2||7‘l2
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Dual formulation

Working with the dual coordinates in each feature space, this is
equivalent to:
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Experiment

Gene network: genes are linked if they are known to catalyse two
successive reactions (data available in Kyoto University's KEGG

database, www.genome.ad. jp)




1st CCA scores
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Upper left expression
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Upper left genes

50 genes with highest so — s belong to:

Oxidative phosphorylation (10 genes)

Citrate cycle (7)
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Upper left genes
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Upper left genes
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Lower right expression
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Lower right genes

RNA polymerase (11 genes)

Pyrimidine metabolism (10)




Lower right genes
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Lower right genes
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Conclusion
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Conclusion

New technologies, new data: biology is changing quickly, need for
new mathematical ideas (not only in statistics)

We proposed a way to encode different kinds of informations about
genes into kernel functions, and to work in the corresponding RKHS




