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Part 1

An overview of Statistical
Learning Theory (SLT)
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The pattern recognition problem

• Observation : x ∈ X

• Class : y ∈ {−1, 1}

• Goal : predict the unknown class of an observation



5

Examples

• Character recognition (OCR): x is an image, y is a letter

• Face recognition: x is an image, y indicates the presence of a face

in the picture

• Text classification: x is a text, y is a category (topic, spam / non

spam...)

• Medical diagnosis: x is a set of features (age, sex, blood type,

genome...), y indicates the risk.
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Probabilistic setting

• (X,Y ) assumed to be a X × {−1, 1}-valued random pair

• Unknown joint distribution P

• A classifier is a mapping f : X → {−1, 1}

• Risk of a classifier: R(f) = P (f(X) 6= Y )
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Learning algorithm

• S = {(X1, Y1), . . . , (Xn, Yn)} P -i.i.d. is observed

• A learning algorithm is a mapping S → fn ∈ F , where F is a set

of classifiers

• Goal: R(fn) as small as possible
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Empirical risk minimization

• Empirical risk of a classifier:

Remp(f) =
1
n

n∑
i=1

1{f(Xi) 6=Yi}

• ERM induction principle: choose

f̂ = arg min
f∈F

Remp(f)

• Question: under which conditions is the algorithm consistent, i.e.,

R(f̂n)→ inff∈F R(f) when n→∞?
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Uniform law of large numbers

Let f∗ s.t. R(f∗) = inff∈F R(f). Then we have:

0 ≤ R(f̂)−R(f∗) ≤ R(f̂)−Remp(f̂) +Remp(f∗)−R(f∗)

≤ sup
f∈F

(
R(f̂)−Remp(f̂)

)
+Remp(f∗)−R(f∗)

The term |Remp(f∗)−R(f∗)| converges in probability to 0, by the

law of large numbers.
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Equivalence between ERM and ULLN

Theorem 1. [Vapnik and Chervonenkis] One-sided uniform convergence

in probability,

lim
n→+∞

P

{
sup
f∈F

(R(f)−Remp(f)) > ε

}
= 0,

for all ε > 0 is a necessary and sufficient condition for nontrivial

consistency of empirical risk minimization.

(remains consistent even after the “best” functions have been

removed).
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When does one-sided ULLN hold?

For a given sample Sn = {(x1, y1), . . . , (xn, yn)} let N (F , Sn) be

the cardinality of F when restricted to (x1, . . . , xn). Then Vapnik

showed:

P

{
sup
f∈F

(R(f)−Remp(f)) > ε

}
≤ 4 exp

(
logE[N (F , Sn)]− mε

2

8

)
If logE[N (F , Sn)] (the annealed entropy) grows sublinearly,

one-sided ULLN holds.
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Other capacity concepts: VC entropy

The VC entropy is HF(n) = E logN (F , Sn). The convergence

lim
n→+∞

HF(n)
n

= 0

is equivalent to uniform two-sided convergence of risk:

∀ε > 0, lim
n→+∞

P

{
sup
f∈F
|R(f)−Remp(f)| > ε

}
= 0

This implies consistency of ERM.
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Other capacity concepts: annealed entropy

The annealed entropy is Hann
F (n) = logEN (F , Sn) (larger than VC

entropy by Jensen). The convergence

lim
n→+∞

Hann
F (n)
n

= 0

is equivalent to exponentially fast convergence for the risk:

P

{
sup
f∈F
|R(f)−Remp(f)| > ε

}
≤ 4 exp

((
Hann
F (n)
n

− ε2
)
.m

)
.
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Other capacity concepts: growth function

The shattering coefficient is N (F , n) = maxSnN (F , Sn), and the

growth function is GF(n) = logN (F , n). The convergence

lim
n→+∞

GF(n)
n

= 0

is equivalent to exponentially fast convergence of risk for all

underlying distributions P .



15

VC dimension

The growth function obviously satisfies GF(n) ≤ n log(2). The VC

dimension h is the maximum number of points which can be

shattered (separated in 2n ways). Then the following holds:

GF(n) ≤ h
(

log
n

h
+ 1
)
.

Therefore:

• the growth function increases linearly up to n = h

• then in increases logarithmically for n > h
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Example: VC dimension of hyperplane classifiers

h = 3

For hyperplanes in dimension N , the VC dimension is h = N + 1.

em This is not interesting in large dimensions
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VC dimension of large margin hyperplane classifiers

γ

γ

The set of hyperplanes classifiers with margin at least γ has a VC

dimension upper bounded by

h ≤ R2

M2

where R is the radius of the smallest sphere containing all x.
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Conclusion about SLT

• Learning algorithms can learn if the capacity of the set of classifiers

they produce is controlled

• Vapnik introduced a simple measure of capacity, the VC dimension,

whose finiteness is equivalent to the consistency of the learning

algorithm

• For hyperplane classifiers, the VC dimension can be controlled

irrespective of the dimension of the space, by controlling the

margin ... no curse of dimensionality?
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Part 2

Support Vector Machines (SVM)
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Linear classifiers for separable data

w.x+b=−1

w.x+b=+1

w.x+b > +1

w.x+b < −1

w.x+b=0

w

The width of the tube is 1
||w||. It should be as large a possible,

according to SLT
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Maximum margin hyperplane

We should maximize ||w|| under the constraints:{
w.xi + b ≥ 1 if y1 = 1,

w.xi + b ≤ −1 if y1 = −1,

which can be rewritten as: minimize ||w||2 under the constraints

∀i ∈ {1, . . . , n}, yi(w.xi + b)− 1 ≥ 0.

This is a classical quadratic program.
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Dual formulation

We introduce Lagrange multipliers α1, . . . , αn and consider the

Lagrangian:

L(w, b, α) =
1
2
w′w −

n∑
i=1

αi [yi(w.xi + b)− 1] .

The dual function is L(α) = infw,bL(w, b, α) can be computed by

differentiating the Lagrangian. This leads to the dual problem:

maximize

L(α) =
n∑
i=1

αi −
n∑

i,j=1

yiyjαiαjxixj,

under the constraints α ≥ 0 and
∑n
i=1 yiαi = 0.
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Interpretation of Lagrange multipliers

KKT condition:

• αi > 0 =⇒ yi(w.xi + b) = 1: support vectors

• αi = 0 =⇒ yi(w.xi + b) ≥ 1 : useless vectors

γ

γ
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Linear soft margin SVM

x1

x2

ζ1

ζ2

Introduce slack variables ζ1, . . . , ζn to allow misclassification.

Trade-off between large margin and misclassification.
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Linear soft margin SVM

Maximize

||w||2 + C

n∑
i=1

ζi,

under the constraints:{
ζi ≥ 0,

yi(w.xi + b) ≥ 1− ζi,

for i = 1, . . . , n.
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Dual formulation of soft margin

Expressing the Lagrangian leads to the dual problem:maximize

L(α) =
n∑
i=1

αi −
n∑

i,j=1

yiyjαiαjxixj,

under the constraints:{
0 ≤ αi ≤ C,∀i ∈ {1, . . . , n},∑n
i=1 yiαi = 0.
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Interpretation of the dual variable

0 <= α <= C

α = 0

α = C
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SVM classification

w is recovered from α by:

w =
n∑
i=1

αixi.

The classification of a new observation x ∈ X is based on the sign

of:

f(x) = w.x+ b(α) =
n∑
i=1

αixi.x+ b(α).

Only support vectors are used!
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Conclusion about linear SVM

• SVM find a trade-off between large margin and misclassification

• The dual formulation is a quadratic program (convex functional,

linear constraints) easy to solve

• The final classifier only uses support vectors (compression..)
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Part 3

Nonlinear SVM and kernels
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Feature space

φ

Φ : X → R
N a non-linear mapping. SVM can be performed in the

feature space.
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Kernel function

Let K : X 2→ R be defined by:

∀(x, x′) ∈ X 2, K(x, x′) = Φ(x).Φ(x′).

K is called a kernel function.
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Kernel trick

The function to minimize is:

L(α) =
n∑
i=1

αi −
n∑

i,j=1

yiyjαiαjΦ(xi)Φ(xj)

=
n∑
i=1

αi −
n∑

i,j=1

yiyjαiαjK(xi, xj)

The classifier is:

f(x) =
n∑
i=1

αiΦ(xi).Φ(x) + b(α) =
n∑
i=1

αiK(xi, x) + b(α).
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Kernel trick

No Φ anymore! Only K(., .) is used!

SVM works implicitly in the feature space through the kernel

function.

Kernels are often more convenient to work with than explicit Φ!
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Kernel examples

• Polynomial:

K(x, x′) = (x.x′)d

• Gaussian radial basis function

K(x, x′) = exp
(
||x− x′||2

2σ2

)

• Sigmoid

K(x, x′) = tanh(κx.x′ + θ)
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How to make a kernel?

Theorem 2. [Mercer] A function K : X 2 → R is a valid kernel if

and only if, for any p ∈ N and (x1, . . . , xp), the Gram matrix:

Kx,x′ = K(x, x′)

is positive semidefinite.

Many similarity functions on general object spaces are valid kernels!

The validity of a candidate kernel can easily be checked!
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Kernel engineering

Design a kernel for a particular application, by including some prior

knowledge (invariance,...)

• Translation and rotation invariance for images in OCR

• Periodicity in coding DNA sequences

• Sharing of rare features
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More kernel tricks

Any algorithm which can be expressed only in terms of dot product

can be kernelized!

• kernel-PCA

• kernel-CCA

• kernel-ICA

• kernel-clustering

• kernel-Fisher discriminant
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Conclusion about kernels

• Like other kernel methods, SVM works implicitly in a high-

dimensional feature space

• Overfitting is avoided thanks to the choice of large margin

• Computation is tractable thanks to the kernel trick

• Good performance in real-wold applications
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Part 4

Applications in bioinformatics
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Microarray data analysis

• Gene functional classification: Brown et al. (2000), Pavlidis et al.

(2001)

• Tissue classification: Mukherje et al. (1999), Furey et al. (2000),

Guyon et al. (2001)
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Proteins

• Family prediction: Jaakkoola et al. (1998)

• Fold recognition : Ding et al. (2001)

• Protein-protein interaction prediction: Bock et al. (2001)

• Secondary structure prediction: Hua et al. (2001)

• Subcellular localization prediction: Hua et al. (2001)
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New kernels for bioinformatics

• Fisher kernel (Jaakkoola and Haussler 1998)

• Convolution kernels (Haussler 99, Watkins 1999)

• Kernel for translation initiation site (Zien et al. 2000)

• String kernel (Lodhi et al. 2000)

• Spectrum kernel (Leslie et al., 2002)

• Interpolated kernel (Vert 2002)
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More kernel methods and exotic kernels

Graph-driven feature extraction from microarray data (Vert and

Kanehisa, 2002)

g1

g1 g1

g1
g1g1g1

g1

g1

g6

g3
g8

g7
g5
g4

g1

g2

Gene network Expression profiles
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Graph-driven features extraction

• Diffusion kernel K1 = exp(−τL), where L = D−A is the Laplace

matrix of the graph, to encode the graph topology.

• Linear kernel K2 between the expression profiles.

• Perform kernel-CCA to extract correlations between the feature

spaces of K1 and K2, i.e., between the topology of the graph and

the expression profiles
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Conclusion
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Conclusion

• Sound theoretical foundations and good results in real-world

applications

• Modularity: any kernel works with any kernel method

• New possibility: engineer kernel for strings, graphs, genes,

molecules,...

• More info: http://www.kernel-machines.org


