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Part 1

An overview of Statistical
Learning Theory (SLT)




The pattern recognition problem

Observation : z € X

Class : y € {—1,1}




DET ]S

Character recognition (OCR): z is an image, ¥ is a letter

Face recognition: x is an image, y indicates the presence of a face
in the picture




Probabilistic setting

(X,Y) assumed to be a X x {—1,1}-valued random pair

Unknown joint distribution P




Learning algorithm

S={(X1,Y1),...,(X,,Y,)} P-i.id. is observed

A learning algorithm is a mapping S — f, € F, where F is a set
of classifiers




Empirical risk minimization

Empirical risk of a classifier:

1"
Remp(f) — E Z 1{f(Xz)7éYz}

1=1




Uniform law of large numbers

Let f* s.t. R(f*) =infscxr R(f). Then we have:

A

0 < R(f) = R(f*) < R(f) — Remp(f) + Remp(f*) — R(f*)

< Ssup R(f) = Remp(f) + Remp(f*) - R(f*)
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Equivalence between ERM and ULLN

Theorem 1. [Vapnik and Chervonenkis] One-sided uniform converge
in probability,

lim P {sup (R(f) — Remp(f)) > e} = 0,

Jer

n——+oo
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When does one-sided ULLN hold?

For a given sample S, = {(z1,91),..., (Zn,yn)} let N(F,S,) be
the cardinality of F when restricted to (x1,...,2,). Then Vapnik
showed:
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Other capacity concepts: VC entropy

The VC entropy is Hx(n) = Elog N (F,S,). The convergence

H}-(n)

lim =

n—-4oo n
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Other capacity concepts: annealed entropy

The annealed entropy is H¥"™(n) = log EN (F, S,) (larger than VC
entropy by Jensen). The convergence

lim =

n——+oo n
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Other capacity concepts: growth function

The shattering coefficient is N (F,n) = mazxs N (F,Sy), and the
growth function is Gz(n) = log N (F,n). The convergence

G}“(n) 0

lim

N — 00 n
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VC dimension

The growth function obviously satisfies Gz(n) < nlog(2). The VC
dimension h is the maximum number of points which can be
shattered (separated in 2" ways). Then the following holds:
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Example: VC dimension of hyperplane classifiers

A .
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VC dimension of large margin hyperplane classifiers




18

Conclusion about SLT

Learning algorithms can learn if the capacity of the set of classifiers
they produce is controlled

Vapnik introduced a simple measure of capacity, the VC dimension,
whose finiteness is equivalent to the consistency of the learning




Part 2

Support Vector Machines (SVM)
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Linear classifiers for separable data
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Maximum margin hyperplane

We should maximize ||w]|| under the constraints:
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Dual formulation

We introduce Lagrange multipliers o, ..., o, and consider the
Lagrangian:

1 n
L(w,b,a) = §w’w — Z a; lyi(w.x; +b) —1].

1=1
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Interpretation of Lagrange multipliers

KKT condition:

a; >0 = y;(w.x; + b) = 1: support vectors
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Linear soft margin SVM
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Linear soft margin SVM

Maximize

ol +C ) G,
1=1

under the constraints:
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Dual formulation of soft margin

Expressing the Lagrangian leads to the dual problem:maximize

n n
L(a) = Zai = Z YiYj OGO T T 5,
i=1

E
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Interpretation of the dual variable

O<=a<= C | A T
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SVM classification

w is recovered from a by:

n
w — E oG,
1=1
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Conclusion about linear SVM

SVM find a trade-off between large margin and misclassification

The dual formulation is a quadratic program (convex functional,
linear constraints) easy to solve
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Part 3

Nonlinear SVM and kernels
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Feature space
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Kernel function

Let K : X? — R be defined by:

V(z,2') € X%, K(z,2') = ®(z).®(2).
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Kernel trick

The function to minimize is:

L(a) = ZO@; = Z yiycio () (x5)

E

n n
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Kernel trick

No ® anymore! Only K(.,.) is used!

SVM works implicitly in the feature space through the kernel
function.
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Kernel examples

Polynomial:
K(z,2') = (z.2")°

Gaussian radial basis function
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How to make a kernel?

Theorem 2. [Mercer] A function K : X* — R is a valid kernel if
and only if, for any p € N and (z1,...,x,), the Gram matrix:

K, o =K(z,z")
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Kernel engineering

Design a kernel for a particular application, by including some prior
knowledge (invariance,...)

Translation and rotation invariance for images in OCR
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More kernel tricks

Any algorithm which can be expressed only in terms of dot product
can be kernelized!

kernel-PCA
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Conclusion about kernels

Like other kernel methods, SVM works implicitly in a high-
dimensional feature space

Overfitting is avoided thanks to the choice of large margin
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Part 4

Applications in bioinformatics
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Microarray data analysis

Gene functional classification: Brown et al. (2000), Pavlidis et al.
(2001)

Tissue classification: Mukherje et al. (1999), Furey et al. (2000),
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Proteins

Family prediction: Jaakkoola et al. (1998)

Fold recognition : Ding et al. (2001)
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New kernels for bioinformatics

Fisher kernel (Jaakkoola and Haussler 1998)

Convolution kernels (Haussler 99, Watkins 1999)
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More kernel methods and exotic kernels

Graph-driven feature extraction from microarray data (Vert and
Kanehisa, 2002)
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Graph-driven features extraction

Diffusion kernel K1 = exp(—7L), where L = D — A is the Laplace
matrix of the graph, to encode the graph topology.

Linear kernel Ko between the expression profiles.
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Conclusion
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Conclusion

Sound theoretical foundations and good results in real-world
applications

Modularity: any kernel works with any kernel method




