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SVM and kernel methods




Support vector machines
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Kernel examples

“Classical” kernels: polynomial, Gaussian, sigmoid...
but the objects £ must be vectors

“Exotic” kernels for strings:

x Fisher kernel (Jaakkoola and Haussler 98)




Kernel engineering

Use prior knowledge to build the geometry of the feature
space through K(.,.)
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New kernels for bioinfomatics




The problem

X a set of (structured) objects
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Product kernel

Kprod(x,y) = p(x)p(y)
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Product kernel

Kprod(x,y) = p(x)p(y)
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Diagonal kernel

Kdiag(wa y) — p($)5($, y)
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Diagonal kernel
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Diagonal kernel

Kdiag(wy y) — p($)5(CE, y)
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Interpolated kernel

If objects are composite: x = (x1,x2)

K(QZ‘, y) — Kdz'ag(xla yl)Kprod(x% y2)
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General interpolated kernel

Composite objects x = (x1,...,Ty)
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Rare common subparts

For a given p(x) and p(y), we have:

1 5513[,[
Z( yr)

KV(may) — Kprod(xay) X N
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Rare common subparts

For a given p(x) and p(y), we have:

1 o(xy,
Ky(ib,y) — Kprod(xay) X _Z (p;lyl)

Y,
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Implementation

Factorization for particular choices of p(.) and V
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Application:
SVM prediction of signal peptide
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Secretory pathway




Signal peptides

Protein

-1

(1)
(2)
€)

MKANAKTITAGMIALAISHTAMA
MKQSTIALALLPLLFTPVTKA
MKATKLVLGAVILGSTLLAG

EE. ..
RT. ..
CS...
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Signal peptides

Protein -1 +1
(1) | MKANAKTITIAGMIALAISHTAMA EE...
(2) MKQSTIALALLPLLFTPVTKA RT...
©) MKATKLVLGAVILGSTLLAG CS...

1):Leucine-binding protein, (2):Pre-alkaline
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Experiment

Challenge : classification of aminoacids windows,
positive if cleavage occurs between -1 and +1:

z g, 7,...,0L_1,%1,T2]
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Result: ROC curves
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Conclusion
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distribution
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Conclusion

An other way to derive a kernel from a probability
distribution

Useful when objects can be compared by comparing
subparts
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