Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings

Jean-Philippe Vert

Bioinformatics Center, Kyoto University,

Japan

Outline

- 1. SVM and kernel methods
- 2. New kernels for bioinformatics
- 3. Example: signal peptide cleavage site prediction

Part 1

SVM and kernel methods

Support vector machines

- ullet Objects to classified x mapped to a feature space
- Largest margin separating hyperplan in the feature space

The kernel trick

• Implicit definition of $x \to \Phi(x)$ through the kernel:

$$K(x,y) \stackrel{def}{=} < \Phi(x), \Phi(y) >$$

The kernel trick

ullet Implicit definition of $x o \Phi(x)$ through the kernel:

$$K(x,y) \stackrel{def}{=} < \Phi(x), \Phi(y) >$$

ullet Simple kernels can represent complex Φ

The kernel trick

• Implicit definition of $x \to \Phi(x)$ through the kernel:

$$K(x,y) \stackrel{def}{=} < \Phi(x), \Phi(y) >$$

- ullet Simple kernels can represent complex Φ
- For a given kernel, not only SVM but also clustering,
 PCA, ICA... possible in the feature space = kernel methods

• "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors

- "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors
- "Exotic" kernels for strings:

- "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors
- "Exotic" kernels for strings:
 - ★ Fisher kernel (Jaakkoola and Haussler 98)

- "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors
- "Exotic" kernels for strings:
 - ★ Fisher kernel (Jaakkoola and Haussler 98)
 - ★ Convolution kernels (Haussler 99, Watkins 99)

- "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors
- "Exotic" kernels for strings:
 - Fisher kernel (Jaakkoola and Haussler 98)
 - ★ Convolution kernels (Haussler 99, Watkins 99)
 - ★ Kernel for translation initiation site (Zien et al. 00)

- "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors
- "Exotic" kernels for strings:
 - Fisher kernel (Jaakkoola and Haussler 98)
 - ★ Convolution kernels (Haussler 99, Watkins 99)
 - ★ Kernel for translation initiation site (Zien et al. 00)
 - ★ String kernel (Lodhi et al. 00)

- "Classical" kernels: polynomial, Gaussian, sigmoid... but the objects \boldsymbol{x} must be vectors
- "Exotic" kernels for strings:
 - ★ Fisher kernel (Jaakkoola and Haussler 98)
 - ★ Convolution kernels (Haussler 99, Watkins 99)
 - ★ Kernel for translation initiation site (Zien et al. 00)
 - ★ String kernel (Lodhi et al. 00)
 - Spectrum kernel (Leslie et al., PSB 2002)

Kernel engineering

Use prior knowledge to build the geometry of the feature space through K(.,.)

Part 2

New kernels for bioinfomatics

The problem

ullet $\mathcal X$ a set of (structured) objects

The problem

- X a set of (structured) objects
- ullet p(x) a probability distribution on ${\mathcal X}$

The problem

- X a set of (structured) objects
- ullet p(x) a probability distribution on ${\mathcal X}$
- How to build K(x,y) from p(x)?

Product kernel

$$K_{prod}(x,y) = p(x)p(y)$$

Product kernel

$$K_{prod}(x,y) = p(x)p(y)$$

Product kernel

$$K_{prod}(x,y) = p(x)p(y)$$

SVM = Bayesian classifier

Diagonal kernel

$$K_{diag}(x,y) = p(x)\delta(x,y)$$

Diagonal kernel

$$K_{diag}(x,y) = p(x)\delta(x,y)$$

Diagonal kernel

$$K_{diag}(x,y) = p(x)\delta(x,y)$$

No learning

Interpolated kernel

If objects are composite: $x = (x_1, x_2)$:

$$K(x,y) = K_{diag}(x_1, y_1) K_{prod}(x_2, y_2)$$

Interpolated kernel

If objects are composite: $x = (x_1, x_2)$:

$$K(x,y) = K_{diag}(x_1, y_1) K_{prod}(x_2, y_2)$$

= $p(x_1) \delta(x_1, y_1) \times p(x_2|x_1) p(y_2|y_1)$

General interpolated kernel

• Composite objects $x = (x_1, \dots, x_n)$

General interpolated kernel

- Composite objects $x = (x_1, \dots, x_n)$
- ullet A list of index subsets: $\mathcal{V} = \{I_1, \dots, I_v\}$ where $I_i \subset \{1, \dots, n\}$

General interpolated kernel

- Composite objects $x = (x_1, \dots, x_n)$
- ullet A list of index subsets: $\mathcal{V} = \{I_1, \dots, I_v\}$ where $I_i \subset \{1, \dots, n\}$
- Interpolated kernel:

$$K_{\mathcal{V}}(x,y) = \frac{1}{|\mathcal{V}|} \sum_{I \in \mathcal{V}} K_{diag}(x_I, y_I) K_{prod}(x_{I^c}, y_{I^c})$$

Rare common subparts

For a given p(x) and p(y), we have:

$$K_{\mathcal{V}}(x,y) = K_{prod}(x,y) \times \frac{1}{|\mathcal{V}|} \sum_{I \in \mathcal{V}} \frac{\delta(x_I, y_I)}{p(x_I)}$$

Rare common subparts

For a given p(x) and p(y), we have:

$$K_{\mathcal{V}}(x,y) = K_{prod}(x,y) \times \frac{1}{|\mathcal{V}|} \sum_{I \in \mathcal{V}} \frac{\delta(x_I, y_I)}{p(x_I)}$$

 \boldsymbol{x} and \boldsymbol{y} get closer in the feature space when they share rare common subparts

ullet Factorization for particular choices of p(.) and ${\cal V}$

- ullet Factorization for particular choices of p(.) and ${\cal V}$
- Example:
 - $\star \mathcal{V} = \mathcal{P}(\{1,\ldots,n\})$ the set of all subsets: $|\mathcal{V}| = 2^n$

- ullet Factorization for particular choices of p(.) and ${\cal V}$
- Example:
 - $\star \mathcal{V} = \mathcal{P}(\{1,\ldots,n\})$ the set of all subsets: $|\mathcal{V}| = 2^n$
 - \star product distribution $p(x) = \prod_{j=1}^{n} p_j(x_j)$.

- ullet Factorization for particular choices of p(.) and ${\cal V}$
- Example:
 - $\star \mathcal{V} = \mathcal{P}(\{1,\ldots,n\})$ the set of all subsets: $|\mathcal{V}| = 2^n$
 - \star product distribution $p(x) = \prod_{j=1}^{n} p_j(x_j)$.
 - \star implementation in O(n)

Part 3

Application: SVM prediction of signal peptide cleavage site

Secretory pathway

Signal peptides

Protein	-1	+1
(1)	MKANAKTIIAGMIALAISHTAMA	EE
(2)	MKQSTIALALLPLLFTPVTKA	RT
(3)	MKATKLVLGAVILGSTLLAG	CS

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase, (3)Pre-lipoprotein

Signal peptides

Protein	-1	+1
(1)	MKANAKTIIAGMIALAISHTAMA	EE
(2)	MKQSTIALALLPLLFTPVTKA	RT
(3)	MKATKLVLGAVILGSTLLAG	CS

(1):Leucine-binding protein, (2):Pre-alkaline phosphatase, (3)Pre-lipoprotein

- 6-12 hydrophobic residues (in yellow)
- (-3,-1) : small uncharged residues

Experiment

• Challenge : classification of aminoacids windows, positive if cleavage occurs between -1 and +1:

$$[x_{-8}, x_{-7}, \dots, x_{-1}, x_1, x_2]$$

Experiment

• Challenge : classification of aminoacids windows, positive if cleavage occurs between -1 and +1:

$$[x_{-8}, x_{-7}, \dots, x_{-1}, x_1, x_2]$$

• 1,418 positive examples, 65,216 negative examples

Experiment

• Challenge : classification of aminoacids windows, positive if cleavage occurs between -1 and +1:

$$[x_{-8}, x_{-7}, \dots, x_{-1}, x_1, x_2]$$

- 1,418 positive examples, 65,216 negative examples
- Computation of a weight matrix: $SVM + K_{prod}$ (naive Bayes) vs $SVM + K_{interpolated}$

Result: ROC curves

 An other way to derive a kernel from a probability distribution

- An other way to derive a kernel from a probability distribution
- Useful when objects can be compared by comparing subparts

- An other way to derive a kernel from a probability distribution
- Useful when objects can be compared by comparing subparts
- Encouraging results on real-world application' "how to improve a weight matrix based classifier"

- An other way to derive a kernel from a probability distribution
- Useful when objects can be compared by comparing subparts
- Encouraging results on real-world application' "how to improve a weight matrix based classifier"
- Future work: more application-specific kernels

Acknowledgement

- Minoru Kanehisa
- Applied Biosystems for the travel grant