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5. The ACT estimator is finally:
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Part 2

Adaptive Context Trees :
Applications
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Unsupervised Text clustering (2)

Text Number Extracted from
1-5 Wintson Churchill ( The Crossing)
6-10 Joseph Conrad ( The Arrow of gold)

11-15 Arthur Conan Doyle ( The hound of the Baskervilles)
16-20 Karl Marx (Manifesto of the communist party)
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Distance between text n.23 (Spinoza) and other texts

ext clustering (1.03 threshold)
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Automatic text generation

talk.politics.mideast:

assoclattements in the greeks who be neven
exclub no bribedom of spread marinary s
trooperties savi tack acter i ruthh jake bony

soc.religion.christian:
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Biological sequences?

The same method can be applied to cluster or classify
proteins, DNA etc...
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Biological sequences?

The same method can be applied to cluster or classify
proteins, DNA etc...

Approach already tested with good results for protein
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ACT with HMM?
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Definition of a CT-HMM (2)
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How to guess the hidden state sequence?

let = (...,x0,...,xNy) a observed sequence,
generated by an unknown model supposed to be well
approached by a CT-HMM.

The classical approach (E-M algorithm) does not work
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A mixture approach
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Application : E Coli genome segmentation
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Part 3

From modelling to classification
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