
Practical session: Introduction to SVM in R

Jean-Philippe Vert

In this session you will

• Learn how manipulate a SVM in R with the package kernlab

• Observe the effect of changing the C parameter and the kernel

• Test a SVM classifier for cancer diagnosis from gene expression data

1 Linear SVM

Here we generate a toy dataset in 2D, and learn how to train and test a SVM.

1.1 Generate toy data

First generate a set of positive and negative examples from 2 Gaussians.

n <- 150 # number of data points
p <- 2 # dimension

sigma <- 1 # variance of the distribution
meanpos <- 0 # centre of the distribution of positive examples
meanneg <- 3 # centre of the distribution of negative examples
npos <- round(n/2) # number of positive examples
nneg <- n-npos # number of negative examples

# Generate the positive and negative examples
xpos <- matrix(rnorm(npos*p,mean=meanpos,sd=sigma),npos,p)
xneg <- matrix(rnorm(nneg*p,mean=meanneg,sd=sigma),npos,p)
x <- rbind(xpos,xneg)

# Generate the labels
y <- matrix(c(rep(1,npos),rep(-1,nneg)))

# Visualize the data
plot(x,col=ifelse(y>0,1,2))
legend("topleft",c(’Positive’,’Negative’),col=seq(2),pch=1,text.col=seq(2))

Now we split the data into a training set (80%) and a test set (20%):

## Prepare a training and a test set ##
ntrain <- round(n*0.8) # number of training examples
tindex <- sample(n,ntrain) # indices of training samples
xtrain <- x[tindex,]
xtest <- x[-tindex,]
ytrain <- y[tindex]
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ytest <- y[-tindex]
istrain=rep(0,n)
istrain[tindex]=1

# Visualize
plot(x,col=ifelse(y>0,1,2),pch=ifelse(istrain==1,1,2))
legend("topleft",c(’Positive Train’,’Positive Test’,’Negative Train’,’Negative Test’),

col=c(1,1,2,2),pch=c(1,2,1,2),text.col=c(1,1,2,2))

1.2 Train a SVM

Now we train a linear SVM with parameter C=100 on the training set

# load the kernlab package
library(kernlab)

# train the SVM
svp <- ksvm(xtrain,ytrain,type="C-svc",kernel=’vanilladot’,C=100,scaled=c())

Look and understand what svp contains

# General summary
svp

# Attributes that you can access
attributes(svp)

# For example, the support vectors
alpha(svp)
alphaindex(svp)
b(svp)

# Use the built-in function to pretty-plot the classifier
plot(svp,data=xtrain)

Question 1 Write a function plotlinearsvm=function(svp,xtrain) to plot the points and
the decision boundaries of a linear SVM, as in Figure 1. To add a straight line to a plot, you
may use the function abline.

1.3 Predict with a SVM

Now we can use the trained SVM to predict the label of points in the test set, and we analyze
the results using variant metrics.

# Predict labels on test
ypred = predict(svp,xtest)
table(ytest,ypred)

# Compute accuracy
sum(ypred==ytest)/length(ytest)

# Compute at the prediction scores
ypredscore = predict(svp,xtest,type="decision")
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Figure 1: A linear SVM with decision boundary f(x) = 0. Dotted lines correspond to the level
sets f(x) = 1 and f(x) = −1 Support vectors are in black.
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# Check that the predicted labels are the signs of the scores
table(ypredscore > 0,ypred)

# Package to compute ROC curve, precision-recall etc...
library(ROCR)

pred <- prediction(ypredscore,ytest)

# Plot ROC curve
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot(perf)

# Plot precision/recall curve
perf <- performance(pred, measure = "prec", x.measure = "rec")
plot(perf)

# Plot accuracy as function of threshold
perf <- performance(pred, measure = "acc")
plot(perf)

1.4 Cross-validation

Instead of fixing a training set and a test set, we can improve the quality of these estimates
by running k-fold cross-validation. We split the training set in k groups of approximately the
same size, then iteratively train a SVM using k − 1 groups and make prediction on the group
which was left aside. When k is equal to the number of training points, we talk of leave-one-out
(LOO) cross-validatin. To generate a random split of n points in k folds, we can for example
create the following function:

cv.folds <- function(n,folds=3)
## randomly split the n samples into folds
{
split(sample(n),rep(1:folds,length=length(y)))
}

Question 2 Write a function cv.ksvm <- function(x,y,folds=3,...) which returns a
vector ypred of predicted decision score for all points by k-fold cross-validation.
Question 3 Compute the various performance of the SVM by 5-fold cross-validation. Alter-
natively, the ksvm function can automatically compute the k-fold cross-validation accuracy:

svp <- ksvm(x,y,type="C-svc",kernel=’vanilladot’,C=1,scaled=c(),cross=5)
print(cross(svp))

Question 4 Compare the 5-fold CV estimated by your function and ksvm.

1.5 Effect of C

The C parameters balances the trade-off between having a large margin and separating the
positive and unlabeled on the training set. It is important to choose it well to have good
generalization.
Question 5 Plot the decision functions of SVM trained on the toy examples for different
values of C in the range 2^seq(-10,15). To look at the different plots you can use the function
par(ask=T) that will ask you to press a key between successive plots.
Question 6 Plot the 5-fold cross-validation error as a function of C.
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Question 7 Do the same on data with more overlap between the two classes, e.g., re-generate
toy data with meanneg <- 1.

2 Nonlinear SVM

Sometimes linear SVM are not enough. For example, generate a toy dataset where positive and
negative examples are mixture of two Gaussians which are not linearly separable.
Question 8 May a toy example that looks like Figure 2, and test a linear SVM with different
values of C.
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Figure 2: A toy examples where linear SVM will fail.

To solve this problem, we should instead use a nonlinear SVM. This is obtained by simply
changing the kernel parameter. For example, to use a Gaussian RBF kernel with σ = 1 and
C = 1:

# Train a nonlinear SVM
svp <- ksvm(x,y,type="C-svc",kernel=’rbf’,kpar=list(sigma=1),C=1)

# Visualize it
plot(svp,data=x)
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You should obtain something that look like Figure 3. Much better than the linear SVM, no?
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Figure 3: A nonlinear SVM with Gaussian RBF kernel.

The nonlinear SVM has now two parameters: σ and C. Both play a role in the generalization
capacity of the SVM.
Question 9 VIsualize and compute the 5-fold cross-validation error for different values of C
and σ. Observe their influence.

A useful heuristic to choose σ is implemented in kernlab. It is based on the quantiles of
the distances between the training point.

# Train a nonlinear SVM with automatic selection of sigma by heuristic
svp <- ksvm(x,y,type="C-svc",kernel=’rbf’,C=1)
# Visualize it
plot(svp,data=x)

Question 10 Train a nonlinear SVM with various of C with automatic determination of σ.
In fact, many other nonlinear kernels are implemented. Check the documentation of kernlab

to see them:

?kernels

Question 11 Test the polynomial, hyperbolic tangent, Laplacian, Bessel and ANOVA kernels
on the toy examples.
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3 Application: cancer diagnosis from gene expression data

As a real-world application, let us test the ability of SVM to predict the class of a tumour
from gene expression data. We use a publicly available dataset of gene expression data for 128
different individuals with acute lymphoblastic leukemia (ALL).

# Load the ALL dataset
library(ALL)
data(ALL)

# Inspect them
?ALL
show(ALL)
print(summary(pData(ALL)))

Here we focus on predicting the type of the disease (B-cell or T-cell). We get the expression
data and disease type as follows

x <- t(exprs(ALL))
y <- substr(ALL$BT,1,1)

Question 12 Test the ability of a SVM to predict the class of the disease from gene expres-
sion. Check the influence of the parameters.

Finally, we may want to predict the type and stage of the diseases. We are then confronted
with a multi-class classification problem, since the variable to predict can take more than two
values:

y <- ALL$BT
print(y)

Fortunately, kernlab implements automatically multi-class SVM by an all-versus-all strategy
to combine several binary SVM.
Question 13 Test the ability of a SVM to predict the class and the stage of the disease from
gene expression.
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