
Practical session: Introduction to SVM in R

Jean-Philippe Vert

In this session you will

• Learn how manipulate a SVM in R with the package kernlab

• Observe the effect of changing the C parameter and the kernel

• Test a SVM classifier for cancer diagnosis from gene expression data

1 Linear SVM

Here we generate a toy dataset in 2D, and learn how to train and test a SVM.

1.1 Generate toy data

First generate a set of positive and negative examples from 2 Gaussians.

n <- 150 # number of data points
p <- 2 # dimension

sigma <- 1 # variance of the distribution
meanpos <- 0 # centre of the distribution of positive examples
meanneg <- 3 # centre of the distribution of negative examples
npos <- round(n/2) # number of positive examples
nneg <- n-npos # number of negative examples

Generate the positive and negative examples
xpos <- matrix(rnorm(npos*p,mean=meanpos,sd=sigma),npos,p)
xneg <- matrix(rnorm(nneg*p,mean=meanneg,sd=sigma),npos,p)
x <- rbind(xpos,xneg)

Generate the labels
y <- matrix(c(rep(1,npos),rep(-1,nneg)))

Visualize the data
plot(x,col=ifelse(y>0,1,2))
legend("topleft",c(’Positive’,’Negative’),col=seq(2),pch=1,text.col=seq(2))

Now we split the data into a training set (80%) and a test set (20%):

Prepare a training and a test set
ntrain <- round(n*0.8) # number of training examples
tindex <- sample(n,ntrain) # indices of training samples
xtrain <- x[tindex,]
xtest <- x[-tindex,]
ytrain <- y[tindex]

1

ytest <- y[-tindex]
istrain=rep(0,n)
istrain[tindex]=1

Visualize
plot(x,col=ifelse(y>0,1,2),pch=ifelse(istrain==1,1,2))
legend("topleft",c(’Positive Train’,’Positive Test’,’Negative Train’,’Negative Test’),

col=c(1,1,2,2),pch=c(1,2,1,2),text.col=c(1,1,2,2))

1.2 Train a SVM

Now we train a linear SVM with parameter C=100 on the training set

load the kernlab package
library(kernlab)

train the SVM
svp <- ksvm(xtrain,ytrain,type="C-svc",kernel=’vanilladot’,C=100,scaled=c())

Look and understand what svp contains

General summary
svp

Attributes that you can access
attributes(svp)

For example, the support vectors
alpha(svp)
alphaindex(svp)
b(svp)

Use the built-in function to pretty-plot the classifier
plot(svp,data=xtrain)

Question 1 Write a function plotlinearsvm=function(svp,xtrain) to plot the points and
the decision boundaries of a linear SVM, as in Figure 1. To add a straight line to a plot, you
may use the function abline.

1.3 Predict with a SVM

Now we can use the trained SVM to predict the label of points in the test set, and we analyze
the results using variant metrics.

Predict labels on test
ypred = predict(svp,xtest)
table(ytest,ypred)

Compute accuracy
sum(ypred==ytest)/length(ytest)

Compute at the prediction scores
ypredscore = predict(svp,xtest,type="decision")

2

−1 0 1 2 3 4 5 6

−
2

0
2

4

xr

yr

●

● ●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Figure 1: A linear SVM with decision boundary f(x) = 0. Dotted lines correspond to the level
sets f(x) = 1 and f(x) = −1 Support vectors are in black.

3

Check that the predicted labels are the signs of the scores
table(ypredscore > 0,ypred)

Package to compute ROC curve, precision-recall etc...
library(ROCR)

pred <- prediction(ypredscore,ytest)

Plot ROC curve
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot(perf)

Plot precision/recall curve
perf <- performance(pred, measure = "prec", x.measure = "rec")
plot(perf)

Plot accuracy as function of threshold
perf <- performance(pred, measure = "acc")
plot(perf)

1.4 Cross-validation

Instead of fixing a training set and a test set, we can improve the quality of these estimates
by running k-fold cross-validation. We split the training set in k groups of approximately the
same size, then iteratively train a SVM using k − 1 groups and make prediction on the group
which was left aside. When k is equal to the number of training points, we talk of leave-one-out
(LOO) cross-validatin. To generate a random split of n points in k folds, we can for example
create the following function:

cv.folds <- function(n,folds=3)
randomly split the n samples into folds
{
split(sample(n),rep(1:folds,length=length(y)))
}

Question 2 Write a function cv.ksvm <- function(x,y,folds=3,...) which returns a
vector ypred of predicted decision score for all points by k-fold cross-validation.
Question 3 Compute the various performance of the SVM by 5-fold cross-validation. Alter-
natively, the ksvm function can automatically compute the k-fold cross-validation accuracy:

svp <- ksvm(x,y,type="C-svc",kernel=’vanilladot’,C=1,scaled=c(),cross=5)
print(cross(svp))

Question 4 Compare the 5-fold CV estimated by your function and ksvm.

1.5 Effect of C

The C parameters balances the trade-off between having a large margin and separating the
positive and unlabeled on the training set. It is important to choose it well to have good
generalization.
Question 5 Plot the decision functions of SVM trained on the toy examples for different
values of C in the range 2^seq(-10,15). To look at the different plots you can use the function
par(ask=T) that will ask you to press a key between successive plots.
Question 6 Plot the 5-fold cross-validation error as a function of C.

4

Question 7 Do the same on data with more overlap between the two classes, e.g., re-generate
toy data with meanneg <- 1.

2 Nonlinear SVM

Sometimes linear SVM are not enough. For example, generate a toy dataset where positive and
negative examples are mixture of two Gaussians which are not linearly separable.
Question 8 May a toy example that looks like Figure 2, and test a linear SVM with different
values of C.

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

−2 0 2 4

−
2

0
2

4

x1

x2

● Positive
Negative

Figure 2: A toy examples where linear SVM will fail.

To solve this problem, we should instead use a nonlinear SVM. This is obtained by simply
changing the kernel parameter. For example, to use a Gaussian RBF kernel with σ = 1 and
C = 1:

Train a nonlinear SVM
svp <- ksvm(x,y,type="C-svc",kernel=’rbf’,kpar=list(sigma=1),C=1)

Visualize it
plot(svp,data=x)

5

You should obtain something that look like Figure 3. Much better than the linear SVM, no?

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

4

5

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

SVM classification plot

x2

x1

Figure 3: A nonlinear SVM with Gaussian RBF kernel.

The nonlinear SVM has now two parameters: σ and C. Both play a role in the generalization
capacity of the SVM.
Question 9 VIsualize and compute the 5-fold cross-validation error for different values of C
and σ. Observe their influence.

A useful heuristic to choose σ is implemented in kernlab. It is based on the quantiles of
the distances between the training point.

Train a nonlinear SVM with automatic selection of sigma by heuristic
svp <- ksvm(x,y,type="C-svc",kernel=’rbf’,C=1)
Visualize it
plot(svp,data=x)

Question 10 Train a nonlinear SVM with various of C with automatic determination of σ.
In fact, many other nonlinear kernels are implemented. Check the documentation of kernlab

to see them:

?kernels

Question 11 Test the polynomial, hyperbolic tangent, Laplacian, Bessel and ANOVA kernels
on the toy examples.

6

3 Application: cancer diagnosis from gene expression data

As a real-world application, let us test the ability of SVM to predict the class of a tumour
from gene expression data. We use a publicly available dataset of gene expression data for 128
different individuals with acute lymphoblastic leukemia (ALL).

Load the ALL dataset
library(ALL)
data(ALL)

Inspect them
?ALL
show(ALL)
print(summary(pData(ALL)))

Here we focus on predicting the type of the disease (B-cell or T-cell). We get the expression
data and disease type as follows

x <- t(exprs(ALL))
y <- substr(ALL$BT,1,1)

Question 12 Test the ability of a SVM to predict the class of the disease from gene expres-
sion. Check the influence of the parameters.

Finally, we may want to predict the type and stage of the diseases. We are then confronted
with a multi-class classification problem, since the variable to predict can take more than two
values:

y <- ALL$BT
print(y)

Fortunately, kernlab implements automatically multi-class SVM by an all-versus-all strategy
to combine several binary SVM.
Question 13 Test the ability of a SVM to predict the class and the stage of the disease from
gene expression.

7

