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Context
Machine learning for large-scale data

e Large-scale supervised machine learning: large d, large n

— d : dimension of each observation (input) or number of parameters
— n : number of observations

e Examples: computer vision, advertising, bioinformatics, etc.
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Visual object recognition




Bioinformatics

e Protein: Crucial elements of cell life
e Massive data: 2 millions for humans

e Complex data
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Context
Machine learning for large-scale data

e Large-scale supervised machine learning: large d, large n

— d : dimension of each observation (input), or number of parameters
— n : number of observations

e Examples: computer vision, advertising, bioinformatics, etc.
¢ Ideal running-time complexity: O(dn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951)

e Goal: Present classical algorithms and some recent progress



Scaling to large problems with convex optimization
“Retour aux sources”

e 1950’s: computers not powerful enough

IBM “1620", 1959
CPU frequency: 50 KHz
Price > 100 000 dollars

e 2010’s: Data too massive



Scaling to large problems with convex optimization
“Retour aux sources”

e 1950’s: computers not powerful enough

IBM “1620", 1959
CPU frequency: 50 KHz
Price > 100 000 dollars

e 2010’s: Data too massive

e One pass through the data (Robbins et Monro, 1951)

— Algorithm: | 0, = 0,,_1 — Yl (yn, 0, _ @ ()P ()




Outline

1. Introduction/motivation: Supervised machine learning

— Optimization of finite sums
— Batch gradient descent
— Stochastic gradient descent

2. Stochastic average gradient (SAG)

— Linearly-convergent stochastic gradient method
— Precise convergence rates
— From training cost to testing cost

3. Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

— Optimization over convex hulls
— Application to one-hidden layer neural networks
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e Data: n observations (z;,y;) € X x YV, i=1,...,n

e Prediction function h(z,0) € R parameterized by 0 ¢ R
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Parametric supervised machine learning

e Data: n observations (z;,y;) e X x Y, i=1,...,n
e Prediction function h(z,0) € R parameterized by 0 ¢ R

e Motivating examples
— Linear predictions: h(x,0) = 0'®(x) with features ®(x) € R?
— Neural networks: h(z,0) =000 _o(---0, (6] x)
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Parametric supervised machine learning

e Data: n observations (z;,y;) e X x Y, i=1,...,n
e Prediction function h(z,0) € R parameterized by 0 ¢ R

e (regularized) empirical risk minimization: find f solution of

min _ Z yfw 337,7 ) + AQ(H)

0 cRd

data fitting term + regularizer



Usual losses

e Regression: y € R, prediction § = h(x,0)

— quadratic loss %(y — )2 = %(y — h(z,0))



Usual losses

e Regression: y € R, prediction § = h(x,0)

— quadratic loss %(y — )2 = %(y — h(z,0))

e Classification : y € {—1,1}, prediction § = sign(h(x,0))

— loss of the form ¢(y h(x,0))
— “True” 0-1 loss: £(y h(x,0)) = 1, 1(z,0)<0
— Usual convex losses:

5 :
— 0-1
4 — hinge
square
logistic
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Main motivating examples

e Support vector machine (hinge loss): non-smooth

(Y,h(X0)) =max{l — Yh(X,80),0}
e Logistic regression: smooth

(Y, h(X0)) = log(1 + exp(—Yh(X, 0)))

e Least-squares regression

(Y. h(X0)) = %(Y _ h(X.0))?

e Structured output regression

— See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0||5 = Z;.l:l 16,2

— Numerically well-behaved if h(x,0) = 0'®(x)

— Representer theorem and kernel methods : 6 = > | o, ®(x;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0||5 = Z;.l:l 16,2

— Numerically well-behaved if h(x,0) = 0'®(x)

— Representer theorem and kernel methods : 6 = > | o, ®(x;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)

e Sparsity-inducing norms

. _ —d
— Main example: £1-norm [|0]]y = > _;_, |6}
— Perform model selection as well as regularization

— Non-smooth optimization and structured sparsity
— See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)
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Parametric supervised machine learning

e Data: n observations (z;,y;) e X x Y, i=1,...,n
e Prediction function h(z,0) € R parameterized by 0 ¢ R

e (regularized) empirical risk minimization: find f solution of

min EZ{K(yi,h(xiﬁ)) + AQ(H)} :%Zfi(e)

OcRd N “

data fitting term + regularizer

e Optimization: optimization of regularized risk training cost



Parametric supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, ii.d.
e Prediction function h(z,0) € R parameterized by 0 ¢ R

e (regularized) empirical risk minimization: find f solution of

1 < 1
min — > {l(y h(zi,0)) + MO = fi(0
min -~ {((yi, h(a;. 6) () n;m
data fitting term + regularizer
e Optimization: optimization of regularized risk training cost

e Statistics: guarantees on K, ,){(y, h(x,0)) testing cost
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Finite sums beyond machine learning

e Model fitting

— Same optimization problem: min —ZE i, h(x;, 0 + AQ(0)
HcRd N

— Differences: (1) Typically need high precision for 6
(2) Data (z;,y;) may not be i.i.d.

e Structured regularization

— E.g., total variation Z 0; — 0,

1~]



Smoothness and (strong) convexity

e A function g : RY — R is L-smooth if and only if it is twice
differentiable and

Vo € RY, |eigenvalues|g”(6)]| < L
A smooth A non-smooth
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Smoothness and (strong) convexity

e A function g : RY — R is L-smooth if and only if it is twice
differentiable and

Vo € RY,

eigenvalues|g”(9)]| < L

e Machine learning

— with g(0) = = 321 (ys, h(w:,0))
— Smooth prediction function 6 — h(x;,0) + smooth loss



Smoothness and (strong) convexity

e A twice differentiable function g : R — R is convex
if and only if

V0 € R?, eigenvalues[g”(0)]

WV

0
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Smoothness and (strong) convexity

o A twice differentiable function g : R — R is j-strongly convex
if and only if

V0 € R?, eigenvalues[g”’(0)] > u
A A strongly
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Smoothness and (strong) convexity

e A twice differentiable function g : R — R is p-strongly convex
if and only if

V0 € R?, eigenvalues[g”(0)]

WV

u
— Condition number k = L/ > 1

©

(small kK = L/u) (large k = L/ 1)



Smoothness and (strong) convexity

o A twice differentiable function g : R — R is j-strongly convex
if and only if

V0 € R?, eigenvalues[g”(0)]

WV

14

e Convexity in machine learning

— Convex loss and linear predictions h(z,0) = 0" ®(x)



Smoothness and (strong) convexity

o A twice differentiable function g : R — R is j-strongly convex
if and only if

WV

V0 € R?, eigenvalues[g”’(0)] > u

e Convexity in machine learning

— Convex loss and linear predictions h(z,0) = 0" ®(x)

e Relevance of convex optimization

— Easier design and analysis of algorithms
— Global minimum vs. local minimum vs. stationary points
— Gradient-based algorithms only need convexity for their analysis



Smoothness and (strong) convexity

o A twice differentiable function g : R — R is j-strongly convex
if and only if

V0 € R?, eigenvalues[g”(0)]

WV

14

e Strong convexity in machine learning

= With g(0) = 5 222, (i, h(2,0))
— Strongly convex loss and linear predictions h(x,0) = 0'®(x)



Smoothness and (strong) convexity

o A twice differentiable function g : R — R is j-strongly convex
if and only if

WV

V0 € R?, eigenvalues[g”’(0)] > u

e Strong convexity in machine learning

— Strongly convex loss and linear predictions h(x,0) = 0'®(x)
— Invertible covariance matrix + " | ®(z;)®(z;) ' = n > d (board)
— Even when > 0, © may be arbitrarily small!



Smoothness and (strong) convexity

o A twice differentiable function g : R — R is j-strongly convex
if and only if

V0 € R?, eigenvalues[g”(0)]

WV

14

e Strong convexity in machine learning

— Strongly convex loss and linear predictions h(x,0) = 0'®(x)
— Invertible covariance matrix + " | ®(z;)®(z;) ' = n > d (board)
— Even when > 0, © may be arbitrarily small!

e Adding regularization by £||6||?

— creates additional bias unless 1 is small, but reduces variance
— Typically L/\/n > p > L/n



Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 6; 1 — v g'(0:_1) (line search)

(small kK = L/u) (large Kk = L/ )



Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 6; 1 — v g'(0:_1) (line search)

9(0:) — g(6:) < O(1/1)
g(0;) —g(0,) <O((1—p/L)) = O(e /L)Y if -strongly convex

(small kK = L/u) (large Kk = L/ )



Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢
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— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

e Gradient descent with v = 1/L:

1 1
0p = 0i1— Z(Het—l — C) = 01 — Z(Het—l — Hé’*)
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Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

e Gradient descent with v = 1/L:

1 1
0p = 0i1— Z(Het—l — C) = 01 — Z(Het—l — Hé’*)

1 1
0 — 0. = (I—~H)(O_1—0.) = (I — —H)(8y—0.)
L L
e Strong convexity ;. > 0: eigenvalues of (I — +H)!in [0, (1 — £)']

— Convergence of iterates: ||0; — 0,]|* < (1 — p/L)*"||0y — 0,]|*
— Function values: ¢(6;) — g(6,) < (1 — p/L)* |g(60) — g(6.)]



Gradient descent - Proof for quadratic functions

e Quadratic convex function: g(0) = %HTHH —c'0

— 1 and L are smallest largest eigenvalues of H
— Global optimum 6, = H~ ¢ (or H'c) such that Hf, = ¢

e Gradient descent with v = 1/L:

1 1
0p = 0i1— Z(Het—l — C) = 01 — Z(Het—l — Hé’*)

1 1
0, —0, = (I—=H)0;_1—0,)=UT—~=H)"y—0,)
L L
e Convexity 1 = 0: eigenvalues of (I — +H)" in [0, 1]

— No convergence of iterates: ||0; — 0.]|* < ||0g — 0.]|?
— Function values: g(6;) —g(0«) < max,¢jo, 1, v(l—v/L)?"||0—0.]?
9(0r) — g(0x) < %[0 — 6,2



Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions
— O(e7%%) linear if strongly-convex



Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)
— O(1/t) convergence rate for convex functions
— O(e7 %) linear if strongly-convex
e Newton method: 9t = Ht—l — g”(@t_l)_lg’(é’t_l)

- O(e_p2t) quadratic rate (see board)



Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions
— O(e7¥*) linear if strongly-convex < O(k log 1) iterations

e Newton method: Ht = Ht—l — g”(@t_l)_lg’(é’t_l)

- O(e‘p2t) quadratic rate < O(loglog 1) iterations
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e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)
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2. Cost functions are averages
3. Testing error is more important than training error



Iterative methods for minimizing smooth functions

e Assumption: ¢ convex and L-smooth on R

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions

— O(e7¥*) linear if strongly-convex < complexity = O(nd - log %)
e Newton method: 9t = (975_1 — g”(@t_l)_lg’(é’t_l)

—~ O(e—P2t) quadratic rate < complexity = O((nd* + d?) - loglog 1)

e Key insights for machine learning (Bottou and Bousquet, 2008)

1. No need to optimize below statistical error
2. Cost functions are averages
3. Testing error is more important than training error



Stochastic gradient descent (SGD) for finite sums

- _Is
min g(0) = n;fz(@

e lteration: (975 = Ht—l — W/tfz/(t) (6’t_1)

— Sampling with replacement: i(t) random element of {1,...,n}
— Polyak-Ruppert averaging: 6, = H% ZZ:O 0.



Stochastic gradient descent (SGD) for finite sums

0 cRd

1 n
in g(f) = — ;(0
min o(6) = 3 4.0
e lteration: Ht = Ht—l — W/tfz/(t) (Ht_l)
— Sampling with replacement: i(¢) random element of {1,...,n}

— Polyak-Ruppert averaging: 0; = H% Zf;:o 0.

e Convergence rate if each f; is convex L-smooth and g u-strongly-
convex:

. O(1//1) if v = 1/(LV/t)
Eg(0:) — g(0) < { O(L/(ut)) = O(k/t) if v =1/(ut)

— No adaptivity to strong-convexity in general
— Running-time complexity: O(d - k/¢)



Non-asymptotic analysis (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Ct™¢

e Strongly convex smooth objective functions

— Old: O(1/(ut)) rate achieved without averaging for a = 1
— New: O(1/(ut)) rate achieved with averaging for oo € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C



Non-asymptotic analysis (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = C't™¢

e Strongly convex smooth objective functions

— Old: O(1/(ut)) rate achieved without averaging for a = 1
— New: O(1/(ut)) rate achieved with averaging for oo € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

o Convergence rates for E|0; — 0,|? and E||0, — 0..||?

2
O "Vt

— no averaging: O( ) + O(e "6y — 0.)°

tr H(0,)™ 1
t

160 — 9*!!2)

—1 —2x —24«
+ O ) O =

— averaging:



Robustness to wrong constants for v, = Ct™“

e f(0) =1|0|? with i.i.d. Gaussian noise (d = 1)

o Left: a=1/2
e Right: a =1

a=1/2

log(n)

—»—ggd - C=1/5
-u-ave — C=1/5
—0—sgd - C=1
-&-ave — C=1
—8—sgd - C=5

1 |-B-ave — C=5

log[f(6, )~

e See also http://leon.bottou.org/projects/sgd

—»—gsgd - C=1/5
- % -agve — C=1/5
—0—sgd — C=1
-&-ave — C=1
—8—sgd - C=5

| |-B-ave - C=5




Non-asymptotic analysis (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Ct™¢

e Strongly convex smooth objective functions

— Old: O(1/(ut)) rate achieved without averaging for a = 1
— New: O(1/(ut)) rate achieved with averaging for oo € [1/2, 1]
— Non-asymptotic analysis with explicit constants



Non-asymptotic analysis (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = C't™¢

e Strongly convex smooth objective functions

— Old: O(1/(ut)) rate achieved without averaging for a = 1
— New: O(1/(ut)) rate achieved with averaging for o € [1/2,1]
— Non-asymptotic analysis with explicit constants

e Non-strongly convex smooth objective functions
— Old:  O(t~'/2) rate achieved with averaging for v = 1/2
— New: O(max{t'/273¢/2 ¢=a/2 t@=11) rate achieved without
averaging for o € [1/3, 1]
e Take-home message

— Use a = 1/2 with averaging to be adaptive to strong convexity



Robustness to lack of strong convexity

o Left: f(0) = |0]* between —1 and 1

e Right: f(0) = |0|* between —1 and 1

e affine outside of [—1, 1], continuously differentiable.

power 2

| | —*—sgd - 1/3

-u=-agve —1/3

| | —6—sgd -1/2

-9-ave - 1/2

| |—&—sgd - 2/3
\ [-B-ave - 2/3

sgd -1
ave - 1

power 4

—»—sgd - 1/3
-»-ave — 1/3
——sgd - 1/2
-9-ave - 1/2
—8—sgd - 2/3

as |-B-ave - 2/3

sgd - 1
ave -1




Outline

1. Introduction/motivation: Supervised machine learning

— Optimization of finite sums
— Batch gradient descent
— Stochastic gradient descent

2. Stochastic average gradient (SAG)

— Linearly-convergent stochastic gradient method
— Precise convergence rates
— From training cost to testing cost

3. Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

— Optimization over convex hulls
— Application to one-hidden layer neural networks



Stochastic vs. deterministic methods

e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ2(0)
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— Linear (e.g., exponential) convergence rate in O(e~!/*)
— lteration complexity is linear in n
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Stochastic vs. deterministic methods
e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ2(0)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf (0r_1)

— Linear (e.g., exponential) convergence rate in O(e~!/*)
— lteration complexity is linear in n

e Stochastic gradient descent: 0; = 0;_1 — %fi’(t)(ﬁt_l)

— Sampling with replacement: i(t) random element of {1,...,n}
— Convergence rate in O(k/t)
— lteration complexity is independent of n



Stochastic vs. deterministic methods
e Minimizing g(6 Zf@ ) with fi(0) = €(y;, h(z;,0)) + AQ2(0)

e Batch gradient descent: 6; = 0;_1—~:9'(0:—1) = 0;_ 1——Zf (0r_1)

e Stochastic gradient descent: 0; = 0;_1 — %fi’(t)(é’t_l)
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Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(d) iteration cost
Simple choice of step size
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Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

0y = Nt—1 — ’Ytgl(ﬁt—l) and 7y = 0: + 5t(9t — 9t—1)
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e Generic acceleration (Nesterov, 1983, 2004)

0y = Nt—1 — ’Ytgl(ﬁt—l) and 7y = 0: + 5t(9t — 9t—1)

— Good choice of momentum term §; € [0,1)
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— Optimal rates after t = O(d) iterations (Nesterov, 2004)



Accelerating gradient methods - Related work

e Generic acceleration (Nesterov, 1983, 2004)

0y = Nt—1 — ’Ytgl(ﬁt—l) and 7y = 0: + 5t(9t — 9t—1)

— Good choice of momentum term §; € [0,1)

g(0:) — 9(6.) < O(1/1%)

g(0:) —g(0,) < O(e_t\/m) = O(e t/V*) if p-strongly convex
— Optimal rates after t = O(d) iterations (Nesterov, 2004)
— Still O(nd) iteration cost: complexity = O(nd - \/klog 1)



Accelerating gradient methods - Related work

e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance
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e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance

e Stochastic methods in the dual (SDCA)
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e Constant step-size stochastic gradient

— Solodov (1998); Nedic and Bertsekas (2000)
— Linear convergence, but only up to a fixed tolerance

e Stochastic methods in the dual (SDCA)

— Shalev-Shwartz and Zhang (2013)

— Similar linear rate but limited choice for the f;'s
— Extensions without duality: see Shalev-Shwartz (2016)

e Stochastic version of accelerated batch gradient methods

— Tseng (1998); Ghadimi and Lan (2010); Xiao (2010)
— Can improve constants, but still have sublinear O(1/t) rate
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Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 2 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

o N (T Tt
— [teration: 975 — (975_1 — E;y@ with yf — { t—1

) otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement: n gradients in R? in general

e Linear supervised machine learning: only n real numbers

— If £i(6) = £(yi, ®(x;) " 6), then f/(0) = {'(yi, (x;) " 0) B ()



Running-time comparisons (strongly-convex)

e Assumptions: g(9) ==>"", f;(6)

— Each f; convex L-smooth and g u-strongly convex

Stochastic gradient descent | dX % X %
Gradient descent d % n% X log%
Accelerated gradient descent | dXx n\/% X logé
SAG dx (n+) xlog:

— NB-1: for (accelerated) gradient descent, L. = smoothness constant of g

— NB-2: with non-uniform sampling, L = average smoothness constants of all f;’s



Running-time comparisons (strongly-convex)

e Assumptions: g(9) ==>"", f;(6)

— Each f; convex L-smooth and g u-strongly convex

Stochastic gradient descent | dX % X %
Gradient descent d % n% X log%
Accelerated gradient descent | dXx n\/% X logé
SAG dx (n+) xlog:

e Beating two lower bounds (Nemirovski and Yudin, 1983; Nesterov,
2004): with additional assumptions

(1) stochastic gradient: exponential rate for finite sums
(2) full gradient: better exponential rate using the sum structure



Running-time comparisons (non-strongly-convex)
e Assumptions: g(f) ==>"" | f;(6)

— Each f; convex L-smooth
— |l conditioned problems: g may not be strongly-convex (u = 0)

Stochastic gradient descent | dx  1/&”

Gradient descent dx nje

Accelerated gradient descent | dx n//e

SAG dx +/nj/e

e Adaptivity to potentially hidden strong convexity

e No need to know the local/global strong-convexity constant



Stochastic average gradient
Implementation details and extensions

e Sparsity in the features

— Just-in-time updates = replace O(d) by number of non zeros
— See also Leblond, Pedregosa, and Lacoste-Julien (2016)

e Mini-batches

— Reduces the memory requirement + block access to data

e Line-search

— Avoids knowing L in advance

e Non-uniform sampling

— Favors functions with large variations

e See www.cs.ubc.ca/~schmidtm/Software/SAG.html
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Experimental results (logistic regression)

quantum dataset rcvl dataset
(n =50 000, d = 78) (n =697 641, d = 47 236)
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Objective minus Optimum

Before non-uniform sampling

protein dataset
(n =145 751, d = T74)
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Objective minus Optimum

After non-uniform sampling

protein dataset sido dataset
(n =145 751, d = T74) (n =12 678, d =4 932)

Objective minus Optimum
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From training to testing errors

e rcvl dataset (n = 697 641, d = 47 236)
— NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost
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From training to testing errors

e rcvl dataset (n = 697 641, d = 47 236)
— NB: IAG, SG-C, ASG with optimal step-sizes in hindsight
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Linearly convergent stochastic gradient algorithms

e Many related algorithms

— SAG (Le Roux, Schmidt, and Bach, 2012)

— SDCA (Shalev-Shwartz and Zhang, 2013)

— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— MISO (Mairal, 2015)

— Finito (Defazio et al., 2014b)

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

e Similar rates of convergence and iterations



Linearly convergent stochastic gradient algorithms

e Many related algorithms

— SAG (Le Roux, Schmidt, and Bach, 2012)

— SDCA (Shalev-Shwartz and Zhang, 2013)

— SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
— MISO (Mairal, 2015)

— Finito (Defazio et al., 2014b)

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

e Similar rates of convergence and iterations

e Different interpretations and proofs / proof lengths

— Lazy gradient evaluations
— Variance reduction



Acceleration

e Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and
Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent d X n% x log 1
Accelerated gradient descent | dX n % X log%
SAG(A), SVRG, SDCA, MISO | dx (n + %) X log%
Accelerated versions dx (n + \@) X log%

e Acceleration for special algorithms (e.g., Shalev-Shwartz and
Zhang, 2014; Nitanda, 2014; Lan, 2015; Defazio, 2016)

e Catalyst (Lin, Mairal, and Harchaoui, 2015)

— Widely applicable generic acceleration scheme



SGD minimizes the testing cost!

e Goal: minimize f(0) = E, 4 ,)¢(y, h(x,0))

— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(6,,) — infy ga ()
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SGD minimizes the testing cost!

e Goal: minimize f(0) = E, 4 ,)¢(y, h(x,0))

— Given n independent samples (x;,y;), ¢t = 1,...,n from p(x,y)
— Given a single pass of stochastic gradient descent
— Bounds on the excess testing cost Ef(6,,) — infy ga ()

e Optimal convergence rates: O(1/+4/n) and O(1/(nu))
— Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
— Attained by averaged SGD with decaying step-sizes

e Constant-step-size SGD

— Linear convergence up to the noise level for strongly-convex
problems (Solodov, 1998; Nedic and Bertsekas, 2000)
— Full convergence and robustness to ill-conditioning?



Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares

— Convergence rate in O(1/n) without any dependence on p
— Simple choice of step-size (equal to 1/L) (see board)
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Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares

— Convergence rate in O(1/n) without any dependence on p
— Simple choice of step-size (equal to 1/L)

e Constant-step-size SGD can be made convergent (see board)

— Online Newton correction with same complexity as SGD
— Replace 0,, =0,,_1 — ~vf] (0,,_1)
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— Simple choice of step-size and convergence rate in O(1/n)



Robust averaged stochastic gradient
(Bach and Moulines, 2013)

e Constant-step-size SGD is convergent for least-squares
— Convergence rate in O(1/n) without any dependence on p
— Simple choice of step-size (equal to 1/L)

e Constant-step-size SGD can be made convergent

— Online Newton correction with same complexity as SGD
— Replace 0,, =0,, 1 — ~vf] (0,,_1)

by On, = On—1 — W[fqlz(én—l) + f”(éfn—l)(en—l _ é’n—l)}
— Simple choice of step-size and convergence rate in O(1/n)

e Multiple passes still work better in practice
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— Provable and precise rates
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Perspectives

e Linearly-convergent stochastic gradient methods

— Provable and precise rates
— Improves on two known lower-bounds (by using structure)
— Several extensions / interpretations / accelerations

e Extensions and future work

— Lower bounds for finite sums (Lan, 2015)

— Sampling without replacement (Gurbuzbalaban et al., 2015)

— Bounds on testing errors for incremental methods

— Parallelization (Leblond et al., 2016)

— Non-convex problems (Reddi et al., 2016)

— Other forms of acceleration (Scieur, d’Aspremont, and Bach, 2016)



Outline

1. Introduction/motivation: Supervised machine learning

— Optimization of finite sums
— Batch gradient descent
— Stochastic gradient descent

2. Stochastic average gradient (SAG)

— Linearly-convergent stochastic gradient method
— Precise convergence rates
— From training cost to testing cost

3. Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

— Optimization over convex hulls
— Application to one-hidden layer neural networks



Dealing with constraints

e Regularization: C = {§ € R%, Q() < w}

— Squared f5-norm: Q(0) = Z;l:l 10;]°
— {1-norm: Q(0) = Z;l:l 6]
— Matrix norm: £1-norm of singular values (see board)
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Dealing with constraints

e Regularization: C = {§ € R%, Q() < w}

— Squared f5-norm: Q(0) = Z;-l:l 10;]°
— {1-norm: Q(0) = Z;-l:l 6]
— Matrix norm: £1-norm of singular values (see board)

e Projected gradient descent for rgﬂg g(0) (see board)
c

0, = arg min ||9 — (Ht_l — ’Yg/(et—l))

2
|

— Requires costly “quadratic oracle” arg mingec ||9 — 2|
— Preserved convergence rates

e “Linear oracle” often easier arg rglig 20
c



Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

e Algorithm for mingcc g(0) (see board)
1. Linearization: g(0) > g(6;—1) + g'(0;—1) " (0 — 0;_1)

2. “FW step”: 0;_; € arg IeIliél g (01" (0 —0,_1)
€

3. Line search: 9t — (1 — pt)é’t_l -+ ,Otét—l



Conditional Gradient (a.k.a. Frank-Wolfe algorithm)
e Algorithm for mingcc g(0) (see board)
1. Linearization: g(0) > g(6;—1) + g'(0;—1) " (0 — 0;_1)
2. “FW step”: 0;_; € arg IeIlelél g (0;—1) " (60 —6,_1)
3. Line search: 0; = (1 — p)0;—1 + piBi_1

e “Greedy” optimization
2Ldiam(C)?

— Convergence rate: g(6;) — f(0.) <

— Sparse iterates and £1-norm example (see board)
— see, e.g., Jaggi (2013) and references therein



One-hidden layer neural networks

e Replace the sum Zle n;(w, ), by an integral

f(x) = / () duw)

— dp any signed measure with finite mass (e.g., du(w) = ndw)
— Equivalence when dp is a weighted sum of Diracs: Zle NiOw,



One-hidden layer neural networks

e Replace the sum Zle n;(w, ), by an integral

f(x) = / () duw)

— dp any signed measure with finite mass (e.g., du(w) = ndw)
— Equivalence when dp is a weighted sum of Diracs: Zle NiOw,

e Promote sparsity with total variation of u: / In(w)|dw
Rd

— Several points of views (Barron, 1993; Kurkova and Sanguineti,
2001; Bengio, Le Roux, Vincent, Delalleau, and Marcotte, 20006;
Rosset, Swirszcz, Srebro, and Zhu, 2007)

e /1-norm in infinite dimension = convex problem
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Conditional gradient for neural networks

minE(%y)E(y,/ (w'x)y n(w)dw) such that / In(w)|dw < C
n Rd Rd

e “Frank-Wolfe” step with g(x,y) gradient of the loss for (z,y) at n
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n Rd Rd
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Conditional gradient for neural networks

minE(x,y)f(y,/ (w'x)y n(w)dw) such that / In(w)|dw < C
n Rd Rd

e “Frank-Wolfe” step with g(x,y) gradient of the loss for (z,y) at n

minE(x,y)g(a;,y)/ (w'x)4 n(w)dw such that / In(w)|dw < C
n Rd Rd

n

min/ (]E(x,y)g(x,y)(wa)+)77(w)dw such that / In(w)|dw < C
R4 Rd

n

& min/ h(w)n(w)dw such that / In(w)|dw < C
Rd Rd

e Best additional neuron: maximizing |h(w)| with respect to w

— Incremental learning of neural networks



Conditional gradient for neural networks

e Still not polynomial time
— Incremental step still NP-hard (Bach, 2014)
— Classical binary classification problem (Bengio et al., 2006)
e Precise analysis of number of neurons and sample complexity

— Exponential in dimension O(c~¢) in general to reach precision ¢
— Adaptive to linear structures



Conditional gradient for neural networks

e Still not polynomial time

— Incremental step still NP-hard (Bach, 2014)
— Classical binary classification problem (Bengio et al., 2006)
e Precise analysis of number of neurons and sample complexity

— Exponential in dimension O(c~¢) in general to reach precision ¢
— Adaptive to linear structures

Linear function w'z+b (Vd/e)?
Generalized additive model Z?Zl fi(x;) (Vd/e)*
One-hidden layer neural network Zle nio(w, z+b)  k2(vVd/e)?
Projection pursuit S fi(w] x) kA(vVd/e)*

Subspace dependence g(WTx) (\/E/g)rank(WHB
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e Well understood

— Convex case with a single machine
— Matching lower and upper bounds for variants of SGD
— Non-convex case: SGD for local risk minimization



Conclusions
Optimization for machine learning

e Well understood

— Convex case with a single machine
— Matching lower and upper bounds for variants of SGD
— Non-convex case: SGD for local risk minimization

e Not well understood: many open problems

— Step-size schedules and acceleration
— Dealing with non-convexity (local minima and stationary points)
— Distributed learning (multiple cores, GPUs, and cloud)
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