Optimization for Machine Learning From Stochastic to Conditional Gradient

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Ecole des Mines - March 2018

Context Machine learning for large-scale data

- Large-scale supervised machine learning: large d, large n
 - -d: dimension of each observation (input) or number of parameters
 - -n: number of observations
- Examples: computer vision, advertising, bioinformatics, etc.

Advertising

Visual object recognition

Bioinformatics

- Protein: Crucial elements of cell life
- Massive data: 2 millions for humans
- Complex data

Context Machine learning for large-scale data

- Large-scale supervised machine learning: large d, large n
 - -d: dimension of each observation (input), or number of parameters
 - -n: number of observations
- **Examples**: computer vision, advertising, bioinformatics, etc.
- Ideal running-time complexity: O(dn)

Context Machine learning for large-scale data

- Large-scale supervised machine learning: large d, large n
 - -d: dimension of each observation (input), or number of parameters
 - -n: number of observations
- Examples: computer vision, advertising, bioinformatics, etc.
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
- Goal: Present classical algorithms and some recent progress

Scaling to large problems with convex optimization "Retour aux sources"

• 1950's: computers not powerful enough

IBM "1620", 1959 CPU frequency: 50 KHz Price > 100 000 dollars

• 2010's: Data too massive

Scaling to large problems with convex optimization "Retour aux sources"

• 1950's: computers not powerful enough

IBM "1620", 1959 CPU frequency: 50 KHz Price > 100 000 dollars

- 2010's: Data too massive
- One pass through the data (Robbins et Monro, 1951)
 - Algorithm: $\theta_n = \theta_{n-1} \gamma_n \ell'(y_n, \theta_{n-1}^\top \Phi(x_n)) \Phi(x_n)$

Outline

1. Introduction/motivation: Supervised machine learning

- Optimization of finite sums
- Batch gradient descent
- Stochastic gradient descent

2. Stochastic average gradient (SAG)

- Linearly-convergent stochastic gradient method
- Precise convergence rates
- From training cost to testing cost

3. Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

- Optimization over convex hulls
- Application to one-hidden layer neural networks

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- ullet Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- Motivating examples
 - Linear predictions: $h(x,\theta) = \theta^{\top} \Phi(x)$ with features $\Phi(x) \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- Motivating examples
 - Linear predictions: $h(x,\theta) = \theta^{\top} \Phi(x)$ with features $\Phi(x) \in \mathbb{R}^d$
 - Neural networks: $h(x,\theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$$

data fitting term + regularizer

Usual losses

• **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = h(x, \theta)$

– quadratic loss
$$\frac{1}{2}(y-\hat{y})^2 = \frac{1}{2}(y-h(x,\theta))^2$$

Usual losses

- **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = h(x, \theta)$
 - quadratic loss $\frac{1}{2}(y-\hat{y})^2=\frac{1}{2}(y-h(x,\theta))^2$
- Classification : $y \in \{-1, 1\}$, prediction $\hat{y} = \text{sign}(h(x, \theta))$
 - loss of the form $\ell(y h(x, \theta))$
 - "True" 0-1 loss: $\ell(y\,h(x,\theta))=1_{y\,h(x,\theta)<0}$
 - Usual convex losses:

Main motivating examples

Support vector machine (hinge loss): non-smooth

$$\ell(Y, h(X\theta)) = \max\{1 - Yh(X, \theta), 0\}$$

• Logistic regression: smooth

$$\ell(Y, h(X\theta)) = \log(1 + \exp(-Yh(X, \theta)))$$

Least-squares regression

$$\ell(Y, h(X\theta)) = \frac{1}{2}(Y - h(X, \theta))^2$$

- Structured output regression
 - See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved if $h(x, \theta) = \theta^{\top} \Phi(x)$
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved if $h(x, \theta) = \theta^{\top} \Phi(x)$
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

Sparsity-inducing norms

- Main example: ℓ_1 -norm $\|\theta\|_1 = \sum_{j=1}^d |\theta_j|$
- Perform model selection as well as regularization
- Non-smooth optimization and structured sparsity
- See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012a,b)

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

Optimization: optimization of regularized risk training cost

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta) \right\} = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Optimization: optimization of regularized risk training cost
- Statistics: guarantees on $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$ testing cost

Finite sums beyond machine learning

Model fitting

- Same optimization problem: $\min_{\theta \in \mathbb{R}^d} \ \frac{1}{n} \sum_{i=1}^n \ell \big(y_i, h(x_i, \theta) \big) + \lambda \Omega(\theta)$

Finite sums beyond machine learning

Model fitting

- Same optimization problem: $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell \big(y_i, h(x_i, \theta) \big) + \lambda \Omega(\theta)$
- Differences: (1) Typically need high precision for θ
 - (2) Data (x_i, y_i) may not be i.i.d.

Finite sums beyond machine learning

Model fitting

- Same optimization problem: $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell \big(y_i, h(x_i, \theta) \big) + \lambda \Omega(\theta)$
- Differences: (1) Typically need high precision for θ
 - (2) Data (x_i, y_i) may not be i.i.d.

• Structured regularization

– E.g., total variation $\sum_{i \sim j} |\theta_i - \theta_j|$

ullet A function $g:\mathbb{R}^d o \mathbb{R}$ is $L ext{-smooth}$ if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^d, | \text{eigenvalues}[g''(\theta)] | \leqslant L$$

ullet A function $g:\mathbb{R}^d o \mathbb{R}$ is $L ext{-smooth}$ if and only if it is twice differentiable and

$$\forall \theta \in \mathbb{R}^d, | \text{eigenvalues}[g''(\theta)] | \leqslant L$$

Machine learning

- with $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Smooth prediction function $\theta \mapsto h(x_i, \theta)$ + smooth loss

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $\left[g''(\theta)\right] \geqslant 0$

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

ullet A twice differentiable function $g:\mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

- Condition number $\kappa = L/\mu \geqslant 1$

(small
$$\kappa = L/\mu$$
)

(large
$$\kappa = L/\mu$$
)

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

- Convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$

• A twice differentiable function $g:\mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

Convexity in machine learning

- With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
- Convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$

• Relevance of convex optimization

- Easier design and analysis of algorithms
- Global minimum vs. local minimum vs. stationary points
- Gradient-based algorithms only need convexity for their analysis

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

- Strong convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Strongly convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

- Strong convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Strongly convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$
 - Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} \Rightarrow n \geqslant d$ (board)
 - Even when $\mu > 0$, μ may be arbitrarily small!

$$\forall \theta \in \mathbb{R}^d$$
, eigenvalues $[g''(\theta)] \geqslant \mu$

- Strong convexity in machine learning
 - With $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, h(x_i, \theta))$
 - Strongly convex loss and linear predictions $h(x,\theta) = \theta^{\top} \Phi(x)$
 - Invertible covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} \Rightarrow n \geqslant d$ (board)
 - Even when $\mu > 0$, μ may be arbitrarily small!
- ullet Adding regularization by $rac{\mu}{2} \| heta \|^2$
 - creates additional bias unless μ is small, but reduces variance
 - Typically $L/\sqrt{n}\geqslant \mu\geqslant L/n$

- **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$ (line search)

- **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$ (line search)

$$\begin{split} g(\theta_t) - g(\theta_*) &\leqslant O(1/t) \\ g(\theta_t) - g(\theta_*) &\leqslant O((1-\mu/L)^t) = O(e^{-t(\mu/L)}) \text{ if } \mu\text{-strongly convex} \end{split}$$

(small
$$\kappa = L/\mu$$
)

(large
$$\kappa = L/\mu$$
)

- Quadratic convex function: $g(\theta) = \frac{1}{2}\theta^{\top}H\theta c^{\top}\theta$
 - μ and L are smallest largest eigenvalues of H
 - Global optimum $\theta_* = H^{-1}c$ (or $H^{\dagger}c$) such that $H\theta_* = c$

- Quadratic convex function: $g(\theta) = \frac{1}{2}\theta^{\top}H\theta c^{\top}\theta$
 - μ and L are smallest largest eigenvalues of H
 - Global optimum $\theta_* = H^{-1}c$ (or $H^{\dagger}c$) such that $H\theta_* = c$
- Gradient descent with $\gamma = 1/L$:

$$\theta_{t} = \theta_{t-1} - \frac{1}{L}(H\theta_{t-1} - c) = \theta_{t-1} - \frac{1}{L}(H\theta_{t-1} - H\theta_{*})$$

$$\theta_{t} - \theta_{*} = (I - \frac{1}{L}H)(\theta_{t-1} - \theta_{*}) = (I - \frac{1}{L}H)^{t}(\theta_{0} - \theta_{*})$$

- Quadratic convex function: $g(\theta) = \frac{1}{2}\theta^{\top}H\theta c^{\top}\theta$
 - μ and L are smallest largest eigenvalues of H
 - Global optimum $\theta_* = H^{-1}c$ (or $H^\dagger c$) such that $H\theta_* = c$
- Gradient descent with $\gamma = 1/L$:

$$\theta_{t} = \theta_{t-1} - \frac{1}{L}(H\theta_{t-1} - c) = \theta_{t-1} - \frac{1}{L}(H\theta_{t-1} - H\theta_{*})$$

$$\theta_{t} - \theta_{*} = (I - \frac{1}{L}H)(\theta_{t-1} - \theta_{*}) = (I - \frac{1}{L}H)^{t}(\theta_{0} - \theta_{*})$$

- Strong convexity $\mu > 0$: eigenvalues of $(I \frac{1}{L}H)^t$ in $[0, (1 \frac{\mu}{L})^t]$
 - Convergence of iterates: $\|\theta_t \theta_*\|^2 \leq (1 \mu/L)^{2t} \|\theta_0 \theta_*\|^2$
 - Function values: $g(\theta_t) g(\theta_*) \leq (1 \mu/L)^{2t} [g(\theta_0) g(\theta_*)]$

- Quadratic convex function: $g(\theta) = \frac{1}{2}\theta^{\top}H\theta c^{\top}\theta$
 - μ and L are smallest largest eigenvalues of H
 - Global optimum $\theta_* = H^{-1}c$ (or $H^\dagger c$) such that $H\theta_* = c$
- Gradient descent with $\gamma = 1/L$:

$$\theta_{t} = \theta_{t-1} - \frac{1}{L}(H\theta_{t-1} - c) = \theta_{t-1} - \frac{1}{L}(H\theta_{t-1} - H\theta_{*})$$

$$\theta_{t} - \theta_{*} = (I - \frac{1}{L}H)(\theta_{t-1} - \theta_{*}) = (I - \frac{1}{L}H)^{t}(\theta_{0} - \theta_{*})$$

- Convexity $\mu = 0$: eigenvalues of $(I \frac{1}{L}H)^t$ in [0, 1]
 - No convergence of iterates: $\|\theta_t \theta_*\|^2 \leq \|\theta_0 \theta_*\|^2$
 - Function values: $g(\theta_t) g(\theta_*) \leqslant \max_{v \in [0,L]} v (1 v/L)^{2t} \|\theta_0 \theta_*\|^2$ $g(\theta_t) g(\theta_*) \leqslant \frac{L}{t} \|\theta_0 \theta_*\|^2$

- ullet **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-t/\kappa})$ linear if strongly-convex

- **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-t/\kappa})$ linear if strongly-convex
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $O(e^{-\rho 2^t})$ quadratic rate (see board)

- ullet **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $O(e^{-t/\kappa})$ linear if strongly-convex $\Leftrightarrow O(\kappa \log \frac{1}{\varepsilon})$ iterations
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ quadratic rate $\Leftrightarrow O(\log\log\frac{1}{\epsilon})$ iterations

- **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $-O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity $=O(nd \cdot \kappa \log \frac{1}{\epsilon})$
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ quadratic rate \Leftrightarrow complexity $=O((nd^2+d^3)\cdot\log\log\frac{1}{\varepsilon})$

- **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $-O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity $=O(nd \cdot \kappa \log \frac{1}{\varepsilon})$
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ quadratic rate \Leftrightarrow complexity $=O((nd^2+d^3)\cdot\log\log\frac{1}{\varepsilon})$
- Key insights for machine learning (Bottou and Bousquet, 2008)
 - 1. No need to optimize below statistical error
 - 2. Cost functions are averages
 - 3. Testing error is more important than training error

- ullet **Assumption**: g convex and L-smooth on \mathbb{R}^d
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1})$
 - O(1/t) convergence rate for convex functions
 - $-O(e^{-t/\kappa})$ linear if strongly-convex \Leftrightarrow complexity $=O(nd \cdot \kappa \log \frac{1}{\varepsilon})$
- Newton method: $\theta_t = \theta_{t-1} g''(\theta_{t-1})^{-1}g'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ quadratic rate \Leftrightarrow complexity $=O((nd^2+d^3)\cdot\log\log\frac{1}{\varepsilon})$
- Key insights for machine learning (Bottou and Bousquet, 2008)
 - 1. No need to optimize below statistical error
 - 2. Cost functions are averages
 - 3. Testing error is more important than training error

Stochastic gradient descent (SGD) for finite sums

$$\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

- Iteration: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$

Stochastic gradient descent (SGD) for finite sums

$$\min_{\theta \in \mathbb{R}^d} g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

- Iteration: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Polyak-Ruppert averaging: $\bar{\theta}_t = \frac{1}{t+1} \sum_{u=0}^t \theta_u$
- Convergence rate if each f_i is convex L-smooth and g μ -strongly-convex:

$$\mathbb{E}g(\bar{\theta}_t) - g(\theta_*) \leqslant \begin{cases} O(1/\sqrt{t}) & \text{if } \gamma_t = 1/(L\sqrt{t}) \\ O(L/(\mu t)) = O(\kappa/t) & \text{if } \gamma_t = 1/(\mu t) \end{cases}$$

- No adaptivity to strong-convexity in general
- Running-time complexity: $O(d \cdot \kappa/\varepsilon)$

Non-asymptotic analysis (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_t = Ct^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(1/(\mu t))$ rate achieved without averaging for $\alpha = 1$
- New: $O(1/(\mu t))$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Forgetting of initial conditions
- Robustness to the choice of C

Non-asymptotic analysis (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_t = Ct^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(1/(\mu t))$ rate achieved without averaging for $\alpha = 1$
- New: $O(1/(\mu t))$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Forgetting of initial conditions
- Robustness to the choice of C
- Convergence rates for $\mathbb{E}\|\theta_t \theta_*\|^2$ and $\mathbb{E}\|\bar{\theta}_t \theta_*\|^2$
 - no averaging: $O\left(\frac{\sigma^2 \gamma_t}{\mu}\right) + O(e^{-\mu t \gamma_t}) \|\theta_0 \theta_*\|^2$
 - $-\text{ averaging: } \frac{\operatorname{tr} H(\theta_*)^{-1}}{t} + \mu^{-1} O(t^{-2\alpha} + t^{-2+\alpha}) + O\Big(\frac{\|\theta_0 \theta_*\|^2}{\mu^2 t^2}\Big)$

Robustness to wrong constants for $\gamma_t = Ct^{-\alpha}$

- $f(\theta) = \frac{1}{2} |\theta|^2$ with i.i.d. Gaussian noise (d=1)
- Left: $\alpha = 1/2$
- Right: $\alpha = 1$

• See also http://leon.bottou.org/projects/sgd

Non-asymptotic analysis (Bach and Moulines, 2011)

- Stochastic gradient descent with learning rate $\gamma_t = Ct^{-\alpha}$
- Strongly convex smooth objective functions
 - Old: $O(1/(\mu t))$ rate achieved without averaging for $\alpha = 1$
 - New: $O(1/(\mu t))$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants

Non-asymptotic analysis (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_t = Ct^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(1/(\mu t))$ rate achieved without averaging for $\alpha = 1$
- New: $O(1/(\mu t))$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants

Non-strongly convex smooth objective functions

- Old: $O(t^{-1/2})$ rate achieved with averaging for $\alpha = 1/2$
- New: $O(\max\{t^{1/2-3\alpha/2},t^{-\alpha/2},t^{\alpha-1}\})$ rate achieved without averaging for $\alpha\in[1/3,1]$

Take-home message

- Use $\alpha = 1/2$ with averaging to be adaptive to strong convexity

Robustness to lack of strong convexity

- Left: $f(\theta) = |\theta|^2$ between -1 and 1
- Right: $f(\theta) = |\theta|^4$ between -1 and 1
- ullet affine outside of [-1,1], continuously differentiable.

Outline

1. Introduction/motivation: Supervised machine learning

- Optimization of finite sums
- Batch gradient descent
- Stochastic gradient descent

2. Stochastic average gradient (SAG)

- Linearly-convergent stochastic gradient method
- Precise convergence rates
- From training cost to testing cost

3. Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

- Optimization over convex hulls
- Application to one-hidden layer neural networks

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \big(y_i, h(x_i, \theta) \big) + \lambda \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate in $O(e^{-t/\kappa})$
 - Iteration complexity is linear in n

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \big(y_i, h(x_i, \theta) \big) + \lambda \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \big(y_i, h(x_i, \theta) \big) + \lambda \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate in $O(e^{-t/\kappa})$
 - Iteration complexity is linear in n

- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Convergence rate in $O(\kappa/t)$
 - Iteration complexity is independent of n

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$

• Stochastic gradient descent: $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$

• Goal = best of both worlds: Linear rate with O(d) iteration cost Simple choice of step size

• Goal = best of both worlds: Linear rate with O(d) iteration cost Simple choice of step size

• Generic acceleration (Nesterov, 1983, 2004)

$$\theta_t = \eta_{t-1} - \gamma_t g'(\eta_{t-1})$$
 and $\eta_t = \theta_t + \delta_t (\theta_t - \theta_{t-1})$

• Generic acceleration (Nesterov, 1983, 2004)

$$\theta_t = \eta_{t-1} - \gamma_t g'(\eta_{t-1})$$
 and $\eta_t = \theta_t + \delta_t(\theta_t - \theta_{t-1})$

- Good choice of momentum term $\delta_t \in [0,1)$

$$g(\theta_t) - g(\theta_*) \leqslant O(1/t^2)$$

 $g(\theta_t) - g(\theta_*) \leqslant O(e^{-t\sqrt{\mu/L}}) = O(e^{-t/\sqrt{\kappa}})$ if μ -strongly convex

- Optimal rates after t = O(d) iterations (Nesterov, 2004)

• Generic acceleration (Nesterov, 1983, 2004)

$$\theta_t = \eta_{t-1} - \gamma_t g'(\eta_{t-1})$$
 and $\eta_t = \theta_t + \delta_t(\theta_t - \theta_{t-1})$

- Good choice of momentum term $\delta_t \in [0,1)$

$$g(\theta_t) - g(\theta_*) \leqslant O(1/t^2)$$

 $g(\theta_t) - g(\theta_*) \leqslant O(e^{-t\sqrt{\mu/L}}) = O(e^{-t/\sqrt{\kappa}})$ if μ -strongly convex

- Optimal rates after t = O(d) iterations (Nesterov, 2004)
- Still O(nd) iteration cost: complexity = $O(nd \cdot \sqrt{\kappa} \log \frac{1}{\varepsilon})$

- Constant step-size stochastic gradient
 - Solodov (1998); Nedic and Bertsekas (2000)
 - Linear convergence, but only up to a fixed tolerance

• Constant step-size stochastic gradient

- Solodov (1998); Nedic and Bertsekas (2000)
- Linear convergence, but only up to a fixed tolerance

Stochastic methods in the dual (SDCA)

- Shalev-Shwartz and Zhang (2013)
- Similar linear rate but limited choice for the f_i 's
- Extensions without duality: see Shalev-Shwartz (2016)

• Constant step-size stochastic gradient

- Solodov (1998); Nedic and Bertsekas (2000)
- Linear convergence, but only up to a fixed tolerance

Stochastic methods in the dual (SDCA)

- Shalev-Shwartz and Zhang (2013)
- Similar linear rate but limited choice for the f_i 's
- Extensions without duality: see Shalev-Shwartz (2016)

• Stochastic version of accelerated batch gradient methods

- Tseng (1998); Ghadimi and Lan (2010); Xiao (2010)
- Can improve constants, but still have sublinear O(1/t) rate

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

functions
$$g = \frac{1}{n} \sum_{i=1}^{n} f_i$$
 f_1 f_2 f_3 f_4 \cdots f_{n-1} f_n gradients $\in \mathbb{R}^d$ $\frac{1}{n} \sum_{i=1}^{n} y_i^t$ y_i^t y_1^t y_2^t y_3^t y_4^t \cdots y_{n-1}^t y_n^t

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$-\text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

functions
$$g = \frac{1}{n} \sum_{i=1}^{n} f_i$$
 f_1 f_2 f_3 f_4 \cdots f_{n-1} f_n gradients $\in \mathbb{R}^d$ $\frac{1}{n} \sum_{i=1}^{n} y_i^t$ y_1^t y_2^t y_3^t y_4^t \cdots y_{n-1}^t y_n^t

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

functions
$$g = \frac{1}{n} \sum_{i=1}^{n} f_i$$
 f_1 f_2 f_3 f_4 \cdots f_{n-1} f_n gradients $\in \mathbb{R}^d$ $\frac{1}{n} \sum_{i=1}^{n} y_i^t$ y_1^t y_2^t y_3^t y_4^t \cdots y_{n-1}^t y_n^t

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

• Stochastic version of incremental average gradient (Blatt et al., 2008)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$- \text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

- Stochastic version of incremental average gradient (Blatt et al., 2008)
- Extra memory requirement: n gradients in \mathbb{R}^d in general
- ullet Linear supervised machine learning: only n real numbers

- If
$$f_i(\theta) = \ell(y_i, \Phi(x_i)^{\top}\theta)$$
, then $f_i'(\theta) = \ell'(y_i, \Phi(x_i)^{\top}\theta) \Phi(x_i)$

Running-time comparisons (strongly-convex)

- Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth and g μ -strongly convex

Stochastic gradient descent	$d \times$	$\frac{L}{\mu}$	×	$\frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\frac{L}{\mu}$	$\times \log$	$g\frac{1}{\varepsilon}$
Accelerated gradient descent	$d \times$	$n\sqrt{\frac{L}{\mu}}$	$\times \log$	$g\frac{1}{\varepsilon}$
SAG	$d \times$	$(n + \frac{L}{\mu})$	$\times \log$	$g\frac{1}{\varepsilon}$

- NB-1: for (accelerated) gradient descent, $L={\sf smoothness}$ constant of g
- NB-2: with non-uniform sampling, L= average smoothness constants of all f_i 's

Running-time comparisons (strongly-convex)

- Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth and g μ -strongly convex

Stochastic gradient descent	$d \times$	$\frac{L}{\mu}$	$\times \frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\frac{L}{\mu}$	$\times \log \frac{1}{\varepsilon}$
Accelerated gradient descent	$d \times$	$n\sqrt{\frac{L}{\mu}}$	$\times \log \frac{1}{\varepsilon}$
SAG	$d \times$	$(n + \frac{L}{\mu})$	$\times \log \frac{1}{\varepsilon}$

- **Beating two lower bounds** (Nemirovski and Yudin, 1983; Nesterov, 2004): with additional assumptions
- (1) stochastic gradient: exponential rate for finite sums
- (2) full gradient: better exponential rate using the sum structure

Running-time comparisons (non-strongly-convex)

- Assumptions: $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$
 - Each f_i convex L-smooth
 - III conditioned problems: g may not be strongly-convex ($\mu = 0$)

Stochastic gradient descent	$d \times$	$1/\varepsilon^2$
Gradient descent	$d \times$	n/arepsilon
Accelerated gradient descent	$d \times$	$n/\sqrt{\varepsilon}$
SAG	$d \times$	\sqrt{n}/ε

- Adaptivity to potentially hidden strong convexity
- No need to know the local/global strong-convexity constant

Stochastic average gradient Implementation details and extensions

Sparsity in the features

- Just-in-time updates \Rightarrow replace O(d) by number of non zeros
- See also Leblond, Pedregosa, and Lacoste-Julien (2016)

Mini-batches

Reduces the memory requirement + block access to data

• Line-search

- Avoids knowing L in advance

Non-uniform sampling

- Favors functions with large variations
- See www.cs.ubc.ca/~schmidtm/Software/SAG.html

Experimental results (logistic regression)

quantum dataset
$$(n = 50\ 000,\ d = 78)$$

rcv1 dataset
$$(n = 697 641, d = 47 236)$$

Experimental results (logistic regression)

quantum dataset $(n = 50\ 000,\ d = 78)$

rcv1 dataset (n = 697 641, d = 47 236)

Before non-uniform sampling

protein dataset
$$(n = 145 751, d = 74)$$

sido dataset
$$(n = 12 678, d = 4 932)$$

After non-uniform sampling

protein dataset
$$(n = 145 751, d = 74)$$

sido dataset
$$(n = 12 678, d = 4 932)$$

From training to testing errors

- rcv1 dataset (n = 697 641, d = 47 236)
 - NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Training cost

From training to testing errors

- rcv1 dataset (n = 697 641, d = 47 236)
 - NB: IAG, SG-C, ASG with optimal step-sizes in hindsight

Linearly convergent stochastic gradient algorithms

Many related algorithms

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SDCA (Shalev-Shwartz and Zhang, 2013)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- MISO (Mairal, 2015)
- Finito (Defazio et al., 2014b)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

— . . .

Similar rates of convergence and iterations

Linearly convergent stochastic gradient algorithms

Many related algorithms

- SAG (Le Roux, Schmidt, and Bach, 2012)
- SDCA (Shalev-Shwartz and Zhang, 2013)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- MISO (Mairal, 2015)
- Finito (Defazio et al., 2014b)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014a)

- ...

• Similar rates of convergence and iterations

- Different interpretations and proofs / proof lengths
 - Lazy gradient evaluations
 - Variance reduction

Acceleration

• Similar guarantees for finite sums: SAG, SDCA, SVRG (Xiao and Zhang, 2014), SAGA, MISO (Mairal, 2015)

Gradient descent	$d \times$	$n\frac{L}{\mu}$	$\times \log \frac{1}{\varepsilon}$
Accelerated gradient descent	$d\times$	$n\sqrt{\frac{L}{\mu}}$	$\times \log \frac{1}{\varepsilon}$
SAG(A), SVRG, SDCA, MISO	$d \times$	$(n + \frac{L}{\mu})$	$\times \log \frac{1}{\varepsilon}$
Accelerated versions	$d\times (n$	$+\sqrt{n\frac{L}{\mu}}$	$\times \log \frac{1}{\varepsilon}$

- Acceleration for special algorithms (e.g., Shalev-Shwartz and Zhang, 2014; Nitanda, 2014; Lan, 2015; Defazio, 2016)
- Catalyst (Lin, Mairal, and Harchaoui, 2015)
 - Widely applicable generic acceleration scheme

SGD minimizes the testing cost!

- Goal: minimize $f(\theta) = \mathbb{E}_{p(x,y)} \ell(y, h(x,\theta))$
 - Given n independent samples (x_i, y_i) , $i = 1, \ldots, n$ from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}f(\bar{\theta}_n) \inf_{\theta \in \mathbb{R}^d} f(\theta)$

SGD minimizes the testing cost!

- Goal: minimize $f(\theta) = \mathbb{E}_{p(x,y)} \ell(y, h(x,\theta))$
 - Given n independent samples (x_i, y_i) , $i = 1, \ldots, n$ from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E} f(\bar{\theta}_n) \inf_{\theta \in \mathbb{R}^d} f(\theta)$
- Optimal convergence rates: $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes

SGD minimizes the testing cost!

- Goal: minimize $f(\theta) = \mathbb{E}_{p(x,y)} \ell(y, h(x,\theta))$
 - Given n independent samples (x_i, y_i) , $i = 1, \ldots, n$ from p(x, y)
 - Given a single pass of stochastic gradient descent
 - Bounds on the excess testing cost $\mathbb{E}f(\bar{\theta}_n) \inf_{\theta \in \mathbb{R}^d} f(\theta)$
- Optimal convergence rates: $O(1/\sqrt{n})$ and $O(1/(n\mu))$
 - Optimal for non-smooth losses (Nemirovski and Yudin, 1983)
 - Attained by averaged SGD with decaying step-sizes

• Constant-step-size SGD

- Linear convergence up to the noise level for strongly-convex problems (Solodov, 1998; Nedic and Bertsekas, 2000)
- Full convergence and robustness to ill-conditioning?

Robust averaged stochastic gradient (Bach and Moulines, 2013)

- Constant-step-size SGD is convergent for least-squares
 - Convergence rate in O(1/n) without any dependence on μ
 - Simple choice of step-size (equal to 1/L) (see board)

Robust averaged stochastic gradient (Bach and Moulines, 2013)

- Constant-step-size SGD is convergent for least-squares
 - Convergence rate in O(1/n) without any dependence on μ
 - Simple choice of step-size (equal to 1/L)
- Constant-step-size SGD can be made convergent (see board)
 - Online Newton correction with same complexity as SGD
 - Replace $\theta_n=\theta_{n-1}-\gamma f_n'(\theta_{n-1})$ by $\theta_n=\theta_{n-1}-\gamma \left[f_n'(\overline{\theta}_{n-1})+f''(\overline{\theta}_{n-1})(\theta_{n-1}-\overline{\theta}_{n-1})\right]$
 - Simple choice of step-size and convergence rate in O(1/n)

Robust averaged stochastic gradient (Bach and Moulines, 2013)

- Constant-step-size SGD is convergent for least-squares
 - Convergence rate in O(1/n) without any dependence on μ
 - Simple choice of step-size (equal to 1/L)
- Constant-step-size SGD can be made convergent
 - Online Newton correction with same complexity as SGD
 - Replace $\theta_n=\theta_{n-1}-\gamma f_n'(\theta_{n-1})$ by $\theta_n=\theta_{n-1}-\gamma \left[f_n'(\overline{\theta}_{n-1})+f''(\overline{\theta}_{n-1})(\theta_{n-1}-\overline{\theta}_{n-1})\right]$
 - Simple choice of step-size and convergence rate in O(1/n)
- Multiple passes still work better in practice

- Linearly-convergent stochastic gradient methods
 - Provable and precise rates
 - Improves on two known lower-bounds (by using structure)
 - Several extensions / interpretations / accelerations

Linearly-convergent stochastic gradient methods

- Provable and precise rates
- Improves on two known lower-bounds (by using structure)
- Several extensions / interpretations / accelerations

Extensions and future work

- Lower bounds for finite sums (Lan, 2015)
- Sampling without replacement (Gurbuzbalaban et al., 2015)

• Linearly-convergent stochastic gradient methods

- Provable and precise rates
- Improves on two known lower-bounds (by using structure)
- Several extensions / interpretations / accelerations

Extensions and future work

- Lower bounds for finite sums (Lan, 2015)
- Sampling without replacement (Gurbuzbalaban et al., 2015)
- Bounds on testing errors for incremental methods

Linearly-convergent stochastic gradient methods

- Provable and precise rates
- Improves on two known lower-bounds (by using structure)
- Several extensions / interpretations / accelerations

Extensions and future work

- Lower bounds for finite sums (Lan, 2015)
- Sampling without replacement (Gurbuzbalaban et al., 2015)
- Bounds on testing errors for incremental methods
- Parallelization (Leblond et al., 2016)
- Non-convex problems (Reddi et al., 2016)
- Other forms of acceleration (Scieur, d'Aspremont, and Bach, 2016)

Outline

1. Introduction/motivation: Supervised machine learning

- Optimization of finite sums
- Batch gradient descent
- Stochastic gradient descent

2. Stochastic average gradient (SAG)

- Linearly-convergent stochastic gradient method
- Precise convergence rates
- From training cost to testing cost

3. Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

- Optimization over convex hulls
- Application to one-hidden layer neural networks

Dealing with constraints

- Regularization: $C = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leqslant \omega\}$
 - Squared ℓ_2 -norm: $\Omega(\theta) = \sum_{j=1}^d |\theta_j|^2$
 - ℓ_1 -norm: $\Omega(\theta) = \sum_{j=1}^d |\theta_j|$
 - Matrix norm: ℓ_1 -norm of singular values (see board)

Dealing with constraints

- Regularization: $C = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq \omega\}$
 - Squared ℓ_2 -norm: $\Omega(\theta) = \sum_{j=1}^d |\theta_j|^2$
 - ℓ_1 -norm: $\Omega(\theta) = \sum_{j=1}^d |\theta_j|$
 - Matrix norm: ℓ_1 -norm of singular values (see board)
- Projected gradient descent for $\min_{\theta \in \mathcal{C}} g(\theta)$ (see board)

$$\theta_t = \arg\min_{\theta \in \mathcal{C}} \|\theta - (\theta_{t-1} - \gamma g'(\theta_{t-1}))\|^2$$

- Requires costly "quadratic oracle" $\arg\min_{\theta\in\mathcal{C}}\|\theta-z\|^2$
- Preserved convergence rates

Dealing with constraints

- Regularization: $C = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq \omega\}$
 - Squared ℓ_2 -norm: $\Omega(\theta) = \sum_{j=1}^d |\theta_j|^2$
 - ℓ_1 -norm: $\Omega(\theta) = \sum_{j=1}^d |\theta_j|$
 - Matrix norm: ℓ_1 -norm of singular values (see board)
- Projected gradient descent for $\min_{\theta \in \mathcal{C}} g(\theta)$ (see board)

$$\theta_t = \arg\min_{\theta \in \mathcal{C}} \|\theta - (\theta_{t-1} - \gamma g'(\theta_{t-1}))\|^2$$

- Requires costly "quadratic oracle" $\arg\min_{\theta\in\mathcal{C}}\|\theta-z\|^2$
- Preserved convergence rates
- "Linear oracle" often easier $\arg\min_{\theta \in \mathcal{C}} z^{\top} \theta$

Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

- Algorithm for $\min_{\theta \in \mathcal{C}} g(\theta)$ (see board)
- 1. Linearization: $g(\theta) \geqslant g(\theta_{t-1}) + g'(\theta_{t-1})^{\top}(\theta \theta_{t-1})$
- 2. "FW step": $\bar{\theta}_{t-1} \in \arg\min_{\theta \in \mathcal{C}} g'(\theta_{t-1})^{\top} (\theta \theta_{t-1})$
- 3. Line search: $\theta_t = (1 \rho_t)\theta_{t-1} + \rho_t \bar{\theta}_{t-1}$

Conditional Gradient (a.k.a. Frank-Wolfe algorithm)

- Algorithm for $\min_{\theta \in \mathcal{C}} g(\theta)$ (see board)
- 1. Linearization: $g(\theta) \geqslant g(\theta_{t-1}) + g'(\theta_{t-1})^{\top}(\theta \theta_{t-1})$
- 2. "FW step": $\bar{\theta}_{t-1} \in \arg\min_{\theta \in \mathcal{C}} g'(\theta_{t-1})^{\top} (\theta \theta_{t-1})$
- 3. Line search: $\theta_t = (1 \rho_t)\theta_{t-1} + \rho_t \bar{\theta}_{t-1}$
 - "Greedy" optimization
 - Convergence rate: $g(\theta_t) f(\theta_*) \leqslant \frac{2L \mathrm{diam}(\mathcal{C})^2}{t}$
 - Sparse iterates and ℓ_1 -norm example (see board)
 - see, e.g., Jaggi (2013) and references therein

One-hidden layer neural networks

• Replace the sum $\sum_{i=1}^k \eta_i(w_i^{\top}x)_+$ by an integral

$$f(x) = \int_{\mathbb{R}^d} (w^\top x)_+ \ d\mu(w)$$

- $d\mu$ any signed measure with finite mass (e.g., $d\mu(w) = \eta dw$)
- Equivalence when $d\mu$ is a weighted sum of Diracs: $\sum_{i=1}^k \eta_i \delta_{w_i}$

One-hidden layer neural networks

• Replace the sum $\sum_{i=1}^k \eta_i(w_i^\top x)_+$ by an integral

$$f(x) = \int_{\mathbb{R}^d} (w^\top x)_+ \ d\mu(w)$$

- $d\mu$ any signed measure with finite mass (e.g., $d\mu(w) = \eta dw$)
- Equivalence when $d\mu$ is a weighted sum of Diracs: $\sum_{i=1}^k \eta_i \delta_{w_i}$
- \bullet Promote sparsity with total variation of $\mu \colon \int_{\mathbb{R}^d} |\eta(w)| dw$
 - Several points of views (Barron, 1993; Kurkova and Sanguineti, 2001; Bengio, Le Roux, Vincent, Delalleau, and Marcotte, 2006; Rosset, Swirszcz, Srebro, and Zhu, 2007)
- ℓ_1 -norm in infinite dimension \Rightarrow convex problem

$$\min_{\eta} \mathbb{E}_{(x,y)} \ell \Big(y, \int_{\mathbb{R}^d} (w^\top x)_+ \ \eta(w) dw \Big) \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

$$\min_{\eta} \mathbb{E}_{(x,y)} \ell \Big(y, \int_{\mathbb{R}^d} (w^\top x)_+ \ \eta(w) dw \Big) \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

• "Frank-Wolfe" step with g(x,y) gradient of the loss for (x,y) at η

$$\min_{\eta} \mathbb{E}_{(x,y)} g(x,y) \int_{\mathbb{R}^d} (w^\top x)_+ \ \eta(w) dw \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

$$\min_{\eta} \int_{\mathbb{R}^d} \left(\mathbb{E}_{(x,y)} g(x,y)(w^\top x)_+ \right) \eta(w) dw \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

$$\Leftrightarrow \min_{\eta} \int_{\mathbb{R}^d} h(w) \eta(w) dw \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

$$\min_{\eta} \mathbb{E}_{(x,y)} \ell \Big(y, \int_{\mathbb{R}^d} (w^\top x)_+ \ \eta(w) dw \Big) \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

ullet "Frank-Wolfe" step with g(x,y) gradient of the loss for (x,y) at η

$$\min_{\eta} \mathbb{E}_{(x,y)} g(x,y) \int_{\mathbb{R}^d} (w^\top x)_+ \ \eta(w) dw \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

$$\min_{\eta} \int_{\mathbb{R}^d} \left(\mathbb{E}_{(x,y)} g(x,y)(w^\top x)_+ \right) \eta(w) dw \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

$$\Leftrightarrow \min_{\eta} \int_{\mathbb{R}^d} h(w) \eta(w) dw \text{ such that } \int_{\mathbb{R}^d} |\eta(w)| dw \leqslant C$$

- Best additional neuron: maximizing |h(w)| with respect to w
 - Incremental learning of neural networks

Still not polynomial time

- Incremental step still NP-hard (Bach, 2014)
- Classical binary classification problem (Bengio et al., 2006)
- Precise analysis of number of neurons and sample complexity
 - Exponential in dimension $O(\varepsilon^{-d})$ in general to reach precision ε
 - Adaptive to linear structures

Still not polynomial time

- Incremental step still NP-hard (Bach, 2014)
- Classical binary classification problem (Bengio et al., 2006)

Precise analysis of number of neurons and sample complexity

- Exponential in dimension $O(\varepsilon^{-d})$ in general to reach precision ε
- Adaptive to linear structures

Linear function
$$w^{\top}x + b$$
 $(\sqrt{d}/\varepsilon)^2$ Generalized additive model $\sum_{j=1}^d f_j(x_j)$ $(\sqrt{d}/\varepsilon)^4$ One-hidden layer neural network $\sum_{i=1}^k \eta_i \sigma(w_i^{\top}x + b)$ $k^2(\sqrt{d}/\varepsilon)^2$ Projection pursuit $\sum_{i=1}^k f_i(w_i^{\top}x)$ $k^4(\sqrt{d}/\varepsilon)^4$ Subspace dependence $g(W^{\top}x)$ $(\sqrt{d}/\varepsilon)^{\mathrm{rank}(W)+3}$

Conclusions Optimization for machine learning

Well understood

- Convex case with a single machine
- Matching lower and upper bounds for variants of SGD
- Non-convex case: SGD for local risk minimization

Conclusions Optimization for machine learning

Well understood

- Convex case with a single machine
- Matching lower and upper bounds for variants of SGD
- Non-convex case: SGD for local risk minimization

Not well understood: many open problems

- Step-size schedules and acceleration
- Dealing with non-convexity (local minima and stationary points)
- Distributed learning (multiple cores, GPUs, and cloud)

References

- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In *Adv. NIPS*, 2011.
- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). In Advances in Neural Information Processing Systems (NIPS), 2013.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–106, 2012a.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization, 2012b.
- Francis Bach. Breaking the curse of dimensionality with convex neural networks. Technical Report 1412.8690, arXiv, 2014.
- A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Transactions on Information Theory*, 39(3):930–945, 1993.
- Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2006.
- D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant step size. *SIAM Journal on Optimization*, 18(1):29–51, 2008.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- A. Defazio. A simple practical accelerated method for finite sums. In *Advances In Neural Information Processing Systems (NIPS)*, 2016.

- A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems* (NIPS), 2014a.
- A. Defazio, J. Domke, and T. S. Caetano. Finito: A faster, permutable incremental gradient method for big data problems. In *Proc. ICML*, 2014b.
- S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization. *Optimization Online*, July, 2010.
- M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the convergence rate of incremental aggregated gradient algorithms. Technical Report 1506.02081, arXiv, 2015.
- Martin Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In *Proceedings of the International Conference on Machine Learning (ICML)*, pages 427–435, 2013.
- R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In *Advances in Neural Information Processing Systems*, 2013.
- V. Kurkova and M. Sanguineti. Bounds on rates of variable-basis and neural-network approximation. *IEEE Transactions on Information Theory*, 47(6):2659–2665, Sep 2001.
- Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate {Frank-Wolfe} optimization for structural {SVMs}. In *Proceedings of The 30th International Conference on Machine Learning*, pages 53–61, 2013.
- G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv, 2015.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

- rate for strongly-convex optimization with finite training sets. In Advances in Neural Information Processing Systems (NIPS), 2012.
- R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: Asynchronous parallel Saga. Technical Report 1606.04809, arXiv, 2016.
- H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In *Advances in Neural Information Processing Systems (NIPS)*, 2015.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2):829–855, 2015.
- A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. *Stochastic Optimization: Algorithms and Applications*, pages 263–304, 2000.
- A. S. Nemirovski and D. B. Yudin. *Problem complexity and method efficiency in optimization*. Wiley & Sons, 1983.
- Y. Nesterov. A method for solving a convex programming problem with rate of convergence $O(1/k^2)$. Soviet Math. Doklady, 269(3):543–547, 1983.
- Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer, 2004.
- A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In *Advances in Neural Information Processing Systems (NIPS)*, 2014.
- S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola. Stochastic variance reduction for nonconvex optimization. Technical Report 1603.06160, arXiv, 2016.
- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951.

- S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ_1 -regularization in infinite dimensional feature spaces. In *Proceedings of the Conference on Learning Theory (COLT)*, 2007.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- D. Scieur, A. d'Aspremont, and F. Bach. Regularized nonlinear acceleration. In *Advances in Neural Information Processing Systems*, 2016.
- S. Shalev-Shwartz. Sdca without duality, regularization, and individual convexity. Technical Report 1602.01582, arXiv, 2016.
- S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. *Journal of Machine Learning Research*, 14(Feb):567–599, 2013.
- S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. In *Proc. ICML*, 2014.
- J. Shawe-Taylor and N. Cristianini. *Kernel Methods for Pattern Analysis*. Cambridge University Press, 2004.
- M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational Optimization and Applications, 11(1):23-35, 1998.
- P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize rule. SIAM Journal on Optimization, 8(2):506–531, 1998.
- I. Tsochantaridis, Thomas Joachims, T., Y. Altun, and Y. Singer. Large margin methods for structured and interdependent output variables. *Journal of Machine Learning Research*, 6:1453–1484, 2005.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 9:2543–2596, 2010.

- L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.
- L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of full gradients. In *Advances in Neural Information Processing Systems*, 2013.