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Machine Learning as Optimization
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Machine Learning often boils down to minimizing 
variable: parameter which describes the machine. 
objective: fitting error with respect to data + regularization 
!

!

!

!

!

interpretation: likelihood + prior on parameter  

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi) + (✓)
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l(f✓(xi), yi) + (✓)

g = 1
n

Pn
i=1 r✓[l(f✓(xi), yi)]

Computing this gradient will often cause a BIG problem:
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3

Issue 1: Parameter size 
Very large parameter vector.  
for NN, this can be ~109. 
Even one gradient is costly. 

!

Issue 2: Model complexity 
Parameters define extremely 
complex functions. How can we 
compute gradients? 

!

Issue 3: Dataset size 
Single machine not adequate. 
Parallelism required. 
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Self-introduction

•ENSAE (’01) / MVA / Phd. ENSMP / Japan & US 
• post-doc then hedge-fund in Japan (’05~’08) 
• Lecturer @ Princeton University (‘09~’10) 
• Assoc. Prof. @ Kyoto University (’10~’16) 
• Prof @ ENSAE since 9/’16. 

•Active in ML community, stats/optim flavor. 
• Attend & publish regularly in NIPS & ICML. 

•Interests 
• Optimal transport, kernel methods, time series.
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Summary

1. Basics 
• Link between ML - Optimisation. (R)(E)RM problems 

2. GPUs 

3. Automatic differentiation 

4. Distributed optimization
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samples from p 2 P(X ⇥ Y)

list of ingredients in ML
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{(x1, y1), . . . , (xn, yn)} 2 (X ⇥ Y)n

loss function l : Y ⇥ Y ! R+

regularizer  : ⇥ ! R+

function class F = {f✓ : X ! Y, ✓ 2 ⇥}
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{(x1, y1), . . . , (xn, yn)} 2 (X ⇥ Y)n

loss function l : Y ⇥ Y ! R+

regularizer  : ⇥ ! R+

n ⇡ 1
dim(X ) ⇡ 1

function class F = {f✓ : X ! Y, ✓ 2 ⇥}



Goal of Batch ML
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1. The elusive golden standard: Risk Minimization 
 
 
 

2. The naive alternative: Empirical Risk Minimization 
 
 
 
 

min
✓2⇥

Ep[l(f✓(X), Y )]

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi)



Supervised ML
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3. The reasonable compromise

min
✓2⇥

1

n

nX

i=1

l(f✓(xi), yi)

From an optimization point of view: 
• parameter size is huge. 
• loss and regularizer functions might be ugly. 
• n points might be too much for a single RAM machine (~256Gb 

vs. a few terabytes of more for modern datasets).
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Example: Regression (Regularized)
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dim n

dim d

yj(xj)
T

✓
vs.

min
✓,b

1

n

nX

j=1

(xT
j ✓ + b� yj)

2 + �k✓kq
q





GPUs 



11

“The complexity for minimum component costs 
has increased at a rate of roughly a factor of 

two per year. Certainly over the short term this 
rate can be expected to continue” 

Gordon Moore (Intel), 1965

“OK, maybe a factor of two every two years.” 
Gordon Moore (Intel), 1975 [paraphrased]

Moore’s Law



Moore’s Law
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  The Trend, (1960-2015)

Why Parallel Processing

Moor’s Extrapolation Actual Data

  Number of transistors and cores have keep increasing!

  Performance/core is only slightly increased.

  Frequency has remained constant to control heat/power.

  One must go for parallel implementations.

  Lesson’s learnt
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Solution: GPU

used to be a small piece of hardware…

GPU = Graphics Processing Unit
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Solution: GPU

… plugged into computer, with video output…



15

Solution: GPU

…of interest to gamers and video editors.
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Graphics
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Graphics
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3D Rendering
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3D Rendering
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What are GPUs

Definition: GPU 
!

A programmable logic chip (processor) specialized 
for display functions. The GPU renders images, 
animations and video for the computer's screen. 
GPUs are located on plug-in cards, in a chipset on 
the motherboard or in the same chip as the CPU. 
!

A GPU performs parallel operations. Although it 
is used for 2D data as well as for zooming and 
panning the screen, a GPU is essential for smooth 
decoding and rendering of 3D animations.
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What are GPGPUs

Definition: GPGPU 
!

Using a GPU for general-purpose (GP) parallel 
processing applications rather than rendering 
images for the screen.  
!

For fast results, applications such as sorting, matrix 
algebra, image processing and physical modeling 
require multiple sets of data to be processed in 
parallel. 
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At very basic level…

Hardware view

At the top-level, a PCIe graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR4 GDDR5

motherboard graphics card

Lecture 1 – p. 3

PCIe

CPU RAM GPU RAM

Motherboard GPU
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In the real world
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In the real world



CPU
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Parallel Design: CPU vs GPU

Isfahan University of Technology

 Single Instructions, Multiple Data (SIMD)

  Large data caching and flow control units

  Few number of ALUs (cores)
  Example: Intel Xeon E5-2670 CPU

  • 8 cores (16 threads)

  • 2.6 GHz 

  • 2.3 billion transistors

  • 20 MB on chip cache

  • Flexible DRAM size
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 Single Instructions, Multiple Data (SIMD)

  Large data caching and flow control units

  Few number of ALUs (cores)
  Example: Intel Xeon E5-2670 CPU

  • 8 cores (16 threads)

  • 2.6 GHz 

  • 2.3 billion transistors

  • 20 MB on chip cache

  • Flexible DRAM size

Single Instructions, Multiple Data (SIMD) 
large data-caching  
large flow control units 
few Arithmetic Logical Units 
(ALU, cores), but fast

Example: Intel Xeon E5-2670 CPU 
8 cores (16 threads)  
2.6 GHz  
2.3 billion transistors  
20 MB on chip cache  
Flexible DRAM size 
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26

Single Instructions, Multiple Threads (SIMT) 
small cache, control flow 
Many ALUs (cores), slow. 
Highly parallel.
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Isfahan University of Technology  Single Instructions, Multiple Threads (SIMT)

 Small cache and control flow units

 Large number of ALUs (cores)  

 Example: Kepler K20x GPU

  • 2688 (14 x 192) processor cores

  • 0.73 GHz

  • 28nm features

  • 7.1 billion transistors

  • 1.5 MB on-chip L2 cache

  • Only 6GB on chip memory
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 Small cache and control flow units

 Large number of ALUs (cores)  

 Example: Kepler K20x GPU

  • 2688 (14 x 192) processor cores

  • 0.73 GHz

  • 28nm features

  • 7.1 billion transistors

  • 1.5 MB on-chip L2 cache

  • Only 6GB on chip memory

Parallel Design: CPU vs GPU

Example: Kepler K20x GPU 
2688 (14 x 192) cores  
0.73 GHz 
28nm features 
7.1 billion transistors 
1.5 MB on-chip L2 cache 
Only 6GB on chip memory 



GPU vs. CPU
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GPU vs. CPU
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GPU Example: Kepler
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Set of 14~15 SIMD Streaming Multiprocessors (SMX) 

Each Multiprocessor has 192 cores, 64k L1 Cache. 

Each SMX can handle up to 2000 threads.  

Page Page 
Amin Safi  |  TU Dortmund 

GPU Architecture

Isfahan University of Technology

 Set of SIMD Streaming Multiprocessors (SMX)

 Each Multiprocessor has its own set of computational resources.

GPU Hardware Architecture



GPU Example: Kepler
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Isfahan University of Technology

 2688 cores are divided among14 SMXs, each 

having 192 processor cores.

 Each 3 cores serve as 1 double precision unit.

 Each SMX multiprocessor has a set of: 
•  65 KB L1 / Shared memory
•  48 KB read-only caches
•  Constant and texture caches
•  Registers

 32 special function units.

 Kepler Architecture (Compute Capability 3.x)

GPU Architecture

One SMX 
12 x 16=192 cores 

32 Special Function Units 
32 Load/Store Units 

64 Double Precision Units  
!

64k shared memory 
!



GPU
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GPU Architecture

 GPUs come in different generations, e. g., Tesla, Fermi, Kepler,…

 Each is labeled with a specific Compute Capability, e.g., 1.x, 2.x, 3.x, …

 nVIDIA GPU Generations 

Kepler
7.0 billion

2688 @ 0.73 GHz

32

2

2688 FMA ops/clock

1344 FMA ops/clock

1.5 MB
Yes

Up to 32 + Dyn. Parallel

64-bit

Configurable 48 KB, 16 

KB or 32 KB

512 @ 1.15 GHz

Configurable 48 KB, 16 

KB or 32 KB
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Because GPUs were designed to apply the same shading 
function to many pixels simultaneously, GPUs can be used to 
apply the same simple function to many data points 
simultaneously 

How simple? 
Essentially, matrix algebra and 
special functions on each element 
(exp, log, sin etc…)
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How fast?
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Crucial for Deep Learning

Why? 
Multilayer Neural Networks only use element wise 
operations (hinge, softmax, tanh, sigmoid) and matrix 
products, exactly those operations that GPU are good for.
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µ =
nX

i=1

1

n
�
xi

⌫ =
nX

j=1

1

n
�yj

(⌦,D)

A more concrete Math Problem.

Optimal Assignment Problem
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µ =
nX

i=1

1

n
�
xi

⌫ =
nX

j=1

1

n
�yj

(⌦,D)

C(�) =
1

n

nX

i=1

D(xi,y�i
)p

A more concrete Math Problem.

Optimal Assignment Problem
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OA(µ,⌫) = min
�2Sn

C(�)

MXY
def
= [D(xi,yj)

p]ij

min
�2Sn

C(�) = min
�2Sn

hP�,MXY i

P� = [1�i=j/n]i,j



Optimal Assignment Problem
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min
�2Sn

C(�) = min
�2Sn

hP�,MXY i

B =

⇢
P 2 Rn⇥n

+ |P1 = PT1 =
1

n

�

OA(µ,⌫) = min
P2B

hP ,MXY i



Optimal Assignment
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P ?

MXY

B



Optimal Assignment
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P ?

MXY

B

Hungarian Algorithm 
used in practice.
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Solving OA using Matrix Products

OA�(µ,⌫) = min
P2B

hP ,MXY i � �E(P )

E(P )

def
= �

nX

i,j=1

Pij(logPij)
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Solving OA using Matrix Products

OA�(µ,⌫) = min
P2B

hP ,MXY i � �E(P )

E(P )

def
= �

nX

i,j=1

Pij(logPij)

L(P,↵,�) =
X

ij

PijMij + �Pij logPij + ↵T
(P1� 1/n) + �T

(PT1� 1/n)

@L/@Pij = Mij + �(logPij + 1) + ↵i + �j

(@L/@Pij = 0) )Pij = e
↵i
� +

1
2 e

�
Mij

� e
�j

� +
1
2
= ui KKijvj
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Solving OA using Matrix Products

OA�(µ,⌫) = min
P2B

hP ,MXY i � �E(P )

OA(µ,⌫) = min
P2B

hP ,MXY i

Hungarian Algorithm 
Cubic complexity

P ⇤ = D(u)KKD(v);u =
1

nKKv
,v =

1

nKKTu



Automatic  
Differentiation
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Automatic Differentiation

Automatic differentiation: 
set of techniques to numerically evaluate the derivative of a 
function specified by a computer program.

Automatic differentiation is not 
numerical differentiation 

!

!

!

symbolic differentiation

4 Atılım Güneş Baydin et al.

tial to have an impact; Sect. 5 covers various implementation approaches and
available AD tools; and Sect. 6 discusses directions for future work.

2 What AD is not

Without proper introduction, the term “automatic di↵erentiation” has under-
tones suggesting that it is either a type of symbolic or numerical di↵erentiation.
This can be intensified by the dichotomy that the final results from AD are
indeed numerical values, while the steps in its computation do depend on al-
gebraic manipulation, giving AD a two-sided nature that is partly symbolic
and partly numerical (Griewank, 2003).

Let us start by stressing how AD is di↵erent from, and in some aspects
superior to, these two commonly encountered techniques of derivative calcu-
lation.

2.1 AD is not numerical di↵erentiation

Numerical di↵erentiation is the finite di↵erence approximation of derivatives
using values of the original function evaluated at some sample points (Burden
and Faires, 2001) (Fig. 2). In its simplest form, it is based on the standard
definition of a derivative. For example, for a function of many variables f :

Rn ! R, we can approximate the gradient rf =
⇣

@f

@x1
, . . . , @f

@x

n

⌘
using

@f(x)

@x
i

⇡ f(x+ he
i

)� f(x)

h
, (1)

where e
i

is the i-th unit vector and h > 0 is a small step size. This has
the advantage of being uncomplicated to implement, but the disadvantages of
performing O(n) evaluations of f for a gradient in n dimensions and requiring
careful consideration in selecting the step size h.

Numerical approximations of derivatives are inherently ill-conditioned and
unstable5, with the exception of complex variable methods that are applicable
to a limited set of holomorphic functions (Fornberg, 1981). This is due to
the introduction of truncation6 and round-o↵7 errors, inflicted by the limited
precision of computations and the chosen value of the step size h. Truncation
error tends to zero as h ! 0. However, as h is decreased, round-o↵ error
increases and becomes dominant (Fig. 3).

5 Using the limit definition of the derivative for finite di↵erence approximation commits
both cardinal sins of numerical analysis: “thou shalt not add small numbers to big numbers”,
and “thou shalt not subtract numbers which are approximately equal”.

6 Truncation error is the error of approximation, or inaccuracy, one gets from h not
actually being zero. It is proportional to a power of h.

7 Round-o↵ error is the inaccuracy one gets from valuable low-order bits of the final
answer having to compete for machine-word space with high-order bits of f(x + he

i

) and
f(x) (Eq. 1), which the computer has to store just until they cancel in the subtraction at
the end. Round-o↵ error is inversely proportional to a power of h.
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Fig. 3 Error in the forward (Eq. 1) and center di↵erence (Eq. 2)
approximations as a function of step size h, for the deriva-
tive of f(x) = 64x(1� x)(1� 2x)2(1� 8x+ 8x2)2. Computed using

E

f

(h, x0) =
��� f(x0+h)�f(x0)

h

� d

dx

f(x)
��
x0

��� and E

c

(h, x0) =
��� f(x0+h)�f(x0�h)

2h � d

dx

f(x)
��
x0

���
at x0 = 0.2 .

Other techniques for improving numerical di↵erentiation, including higher-
order finite di↵erences, Richardson extrapolation to the limit (Brezinski and
Zaglia, 1991), and di↵erential quadrature methods using weighted sums (Bert
and Malik, 1996), have increased computational complexity, do not completely
eliminate approximation errors, and remain highly susceptible to floating point
truncation.

2.2 AD is not symbolic di↵erentiation

Symbolic di↵erentiation is the automatic manipulation of expressions for ob-
taining derivatives (Grabmeier et al, 2003) (Fig. 2). It is carried out by com-
puter algebra packages that implement di↵erentiation rules such as

d

dx
(f(x) + g(x)) d

dx
f(x) +

d

dx
g(x)

d

dx
(f(x) g(x)) 

✓
d

dx
f(x)

◆
g(x) + f(x)

✓
d

dx
g(x)

◆
.

(3)

When formulae are represented as data structures, symbolically di↵erenti-
ating an expression tree is a perfectly mechanistic process, already considered
subject to mechanical automation at the very inception of calculus (Leibniz,
1685). This is realized in modern computer algebra systems such as Mathe-
matica, Maple, and Maxima.
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Automatic DifferentiationAutomatic di↵erentiation in machine learning: a survey 5

l1 = x

l

n

+ 1 = 4l
n

(1� l

n

)

f(x) = l4 = 64x(1� x)(1� 2x)2(1� 8x+ 8x2)2

f

0(x) = 128x(1�x)(�8+16x)(1�2x)2(1�8x+8x2)+
64(1� x)(1� 2x)2(1� 8x+ 8x2)2 � 64x(1� 2x)2(1�
8x+ 8x2)2 � 256x(1� x)(1� 2x)(1� 8x+ 8x2)2

f(x):
v = x
for i = 1 to 3

v = 4v(1 - v)
return v

or, in closed-form,

f(x):
return 64x (1-x) (1-2x)^2 (1-8x+8x^2)^2

f’(x):
return 128x(1 - x)(-8 + 16 x)(1 - 2

x)^2 (1 - 8 x + 8 x^2) + 64 (1 - x)(1
- 2 x)^2 (1 - 8 x + 8 x^2)^2 - 64x(1 -
2 x)^2 (1 - 8 x + 8 x^2)^2 - 256x(1 -
x)(1 - 2 x)(1 - 8 x + 8 x^2)^2

f’(x0) = f

0(x0)
Exact

f’(x):
(v,v’) = (x,1)
for i = 1 to 3

(v,v’) = (4v(1-v), 4v’-8vv’)
return (v,v’)

f’(x0) = f

0(x0)
Exact

f’(x):
return (f(x + h) - f(x)) / h

f’(x0) ⇡ f

0(x0)
Approximate

Manual
Di↵erentiation

Symbolic
Di↵erentiation

of the Closed-form

Coding Coding

Numerical
Di↵erentiation

Automatic
Di↵erentiation

Fig. 2 The range of approaches for di↵erentiating mathematical expressions and computer
code. Symbolic di↵erentiation (center right) gives exact results but su↵ers from unbounded
expression swell; numeric di↵erentiation (lower right) has problems of accuracy due to round-
o↵ and truncation errors; automatic di↵erentiation (lower left) is as accurate as symbolic
di↵erentiation with only a constant factor of overhead.

Techniques have been developed to mitigate this shortcoming of numerical
di↵erentiation, such as using a center di↵erence approximation

@f(x)

@x
i

=
f(x+ he

i

)� f(x� he
i

)

2h
+O(h2) , (2)

where the first-order errors cancel and e↵ectively move the truncation error
from first-order to second-order8 in h. For the one-dimensional case, it is just
as costly to compute the forward di↵erence (Eq. 1) and the center di↵er-
ence (Eq. 2), requiring only two evaluations of f . However, with increasing
dimensionality, a trade-o↵ between accuracy and performance is faced, where
computing a Jacobian matrix of an f : Rn ! Rm requires 2mn evaluations.

8 This does not avoid either of the cardinal sins, and is still highly inaccurate due to
truncation.

Source: Automatic differentiation in machine learning, a survey, Baydin et. al, 2015
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from first-order to second-order8 in h. For the one-dimensional case, it is just
as costly to compute the forward di↵erence (Eq. 1) and the center di↵er-
ence (Eq. 2), requiring only two evaluations of f . However, with increasing
dimensionality, a trade-o↵ between accuracy and performance is faced, where
computing a Jacobian matrix of an f : Rn ! Rm requires 2mn evaluations.

8 This does not avoid either of the cardinal sins, and is still highly inaccurate due to
truncation.
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Automatic di↵erentiation in machine learning: a survey 7

Table 1 Iterations of the logistic map l

n+1 = 4l
n

(1 � l

n

), l1 = x and the corresponding
derivatives of l

n

with respect to x, illustrating expression swell.

n l

n

d

dx

l

n

d

dx

l

n

(Optimized)

1 x 1 1

2 4x(1� x) 4(1� x)� 4x 4� 8x

3 16x(1� x)(1� 2x)2 16(1� x)(1� 2x)2 � 16x(1�
2x)2 � 64x(1� x)(1� 2x)

16(1� 10x+ 24x2 � 16x3)

4 64x(1 � x)(1 � 2x)2

(1� 8x+ 8x2)2
128x(1 � x)(�8 + 16x)(1 �
2x)2(1 � 8x + 8x2) + 64(1 �
x)(1� 2x)2(1� 8x+ 8x2)2 �
64x(1�2x)2(1�8x+8x2)2�
256x(1� x)(1� 2x)(1� 8x+
8x2)2

64(1�42x+504x2�2640x3+
7040x4 � 9984x5 + 7168x6 �
2048x7)

In optimization, symbolic di↵erentiation can give valuable insight into the
structure of the problem domain and, in some cases, produce analytical so-
lutions of extrema (e.g. d

dx

f(x) = 0) that can eliminate the need for the
calculation of derivatives altogether. On the other hand, symbolic derivatives
do not lend themselves to e�cient run-time calculation of derivative values,
as they can be exponentially larger than the expression whose derivative they
represent.

Consider a function h(x) = f(x)g(x) and the multiplication rule in Eq. 3.
Since h is a product, h(x) and d

dx

h(x) have some common components (namely
f(x) and g(x)). Notice also that on the right hand side, f(x) and d

dx

f(x) ap-
pear separately. If we just proceed to symbolically di↵erentiate f(x) and plug
its derivative into the appropriate place, we will have nested duplications of
any computation that appears in common between f(x) and d

dx

f(x). Hence,
careless symbolic di↵erentiation can easily produce exponentially large sym-
bolic expressions which take correspondingly long to evaluate. This problem
is known as expression swell (Table 1).

When we are concerned with the accurate computation of derivative values
and not so much with their actual symbolic form, it is in principle possible
to simplify computations by storing values of intermediate subexpressions in
memory. Moreover, for further e�ciency, we can interleave as much as possible
the di↵erentiating and simplifying steps.

This “interleaving” idea forms the basis of AD and provides an account of
its simplest form: apply symbolic di↵erentiation at the elementary operation

level and keep intermediate numerical results, in lockstep with the evaluation

of the main function. This is AD in the forward accumulation mode.

3 Preliminaries

In its most basic description, AD relies on the fact that all numerical com-
putations are ultimately compositions of a finite set of elementary operations
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Computer code for f (x
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)ẇ
1

= cos(x
1

) · 0 = 0
ẇ
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ensures that we can propagate the dual components throughout
the computation.
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Forward mode AD

I We have until now only described forward mode AD.

I Repetition of the procedure using the computational graph:
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Source: Havard Berland, NTNU
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Reverse mode AD

I The chain rule works in both directions.

I The computational graph is now traversed from the top.
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Source: Havard Berland, NTNU
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Jacobian computation

Given F : R

n 7! R

m and the Jacobian J = DF (x) 2 R

m⇥n.

J = DF (x) =

@f

1

@x

1

@f

1

@x

n

@f

m

@x

1

@f

m

@x

n

I One sweep of forward mode can calculate one column vector
of the Jacobian, J ẋ, where ẋ is a column vector of seeds.

I One sweep of reverse mode can calculate one row vector of
the Jacobian, ȳJ, where ȳ is a row vector of seeds.

I Computational cost of one sweep forward or reverse is roughly
equivalent, but reverse mode requires access to intermediate

variables, requiring more memory.
18 / 21

Forward sweep can compute  
one column

Backward sweep can compute  
one column

Source: Havard Berland, NTNU
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Forward or reverse mode AD?

Reverse mode AD is best suited for

F : R

n ! R

Forward mode AD is best suited for

G : R! R

m

I Forward and reverse mode represents
just two possible (extreme) ways of
recursing through the chain rule.

I For n > 1 and m > 1 there is a golden
mean, but finding the optimal way is
probably an NP-hard problem.

?
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1

N

NX

j=1

✓⇤j
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min
✓2Rp

1

n1

X

i2I1

li(✓) min
✓2Rp

1

n2

X

i2I2

li(✓) min
✓2Rp

1

n3

X

i2I3

li(✓) min
✓2Rp

1

n4

X

i2I4

li(✓)

n1 n2 n3 n4

✓1 = r(✓0)� ⇢r(✓0)

Only gradient 
parallel

Communication cost!!!  !
How can we incorporate regularizer?
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min
✓2Rp

NX

j=1

0

@ 1

nj

X

i2Ij

li(✓)

1

A = min
✓2Rp

NX

j=1

fj(✓)

min
✓2Rp

NX

j=1

fj(✓) = min
✓1,...,✓N2Rp

✓1=✓2=···=✓N

NX

j=1

fj(✓j)
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min
✓1,...,✓N2Rp

⇢=✓1=✓2=···=✓N

NX

j=1

fj(✓j) + (⇢)
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min
✓1,...,✓N2Rp

⇢=✓1=✓2=···=✓N

NX

j=1

fj(✓j) + (⇢)

The generic splitting problem we will address:
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min
✓1,...,✓N2Rp

⇢=✓1=✓2=···=✓N

NX

j=1

fj(✓j) + (⇢)
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✓t+1
1 = argmin

✓
f1(✓) +

⌧

2
k✓ � ⇢t + ut

1k2

...
...

✓t+1
N = argmin

✓
fN (✓) +

⌧

2
k✓ � ⇢t + ut

Nk2

⇢t+1 = argmin
✓

 (✓) + (N⌧/2)k✓ � ✓t+1 � ūtk2

ut+1
i = ut

i + ✓
t+1
i � ⇢t+1, i  N

repeat for t = 0, . . . , T
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Def

For a (possibly non convex) function f : Rp ! ¯R,
the convex conjugate of f is, 8y 2 Rp

,

f⇤
(y) = sup

x2Rp
hx, y i � f(x)
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Def
For a (possibly non convex) function f : Rp ! ¯R,

the convex conjugate of f is 8y 2 Rp

,

f

⇤
(y) = sup

x2Rp
hx, y i � f(x)

f (x) f ∗(y)
Squared loss 1

2x
2 1

2y
2

Hinge loss max{1− x , 0}
{
y (−1 ≤ y ≤ 0),

∞ (otherwise).

Logistic loss log(1 + exp(−x))
{
(−y) log(−y) + (1 + y) log(1 + y) (−1 ≤ y ≤ 0),

∞ (otherwise).

L1 regularization ∥x∥1

{
0 (maxj |yj | ≤ 1),

∞ (otherwise).

Lp regularization
∑d

j=1 |xj |
p ∑d

j=1
p−1

p
p

p−1
|yj |

p
p−1

(p > 1)
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Def
For a (possibly non convex) function f : Rp ! ¯R,

the convex conjugate of f is 8y 2 Rp

,

f

⇤
(y) = sup

x2Rp
hx, y i � f(x)

f⇤
is convex, even if f is not.

y 2 @f(x) , f(x) + f

⇤(y) = hx, yi , x 2 @f

⇤(y)

8x, y, f(x) + f

⇤(y) � hx, yi
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Theorem

Let f : Rp ! ¯

R and g : Rq ! ¯

R be closed convex, and A 2 Rq⇥p

a linear

map. Suppose that either condition (a) or (b) is satisfied. Then

inf

x2Rp
f(x) + g(Ax) = sup

y2Rq
�f

⇤
(A

T

y)� g

⇤
(�y)

(a)9x 2 Rp
s.t. x 2 ri(dom(f)) and Ax 2 ri(dom(g))

(b)9y 2 Rq
s.t. AT y 2 ri(dom(f⇤

)) and � y 2 ri(dom(g⇤))
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l✓(zi) = l(yi, xT
i ✓)min

✓2Rp

1

n

nX

i=1

l✓(zi) +  (✓)

X 2 Rn⇥p1
n

P
i l✓(zi) = l(y, X✓) = g(X✓)

supy2Rn � ⇤(�XT y)� g⇤(y) = � infy2Rn g⇤(y) +  ⇤(�XT y)

sup
y2Rn

X

i

l⇤i (yi) +  ⇤(�XT y)



Fenchel Duality and ERM

75

l✓(zi) = l(yi, xT
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✓2Rp

1

n

nX

i=1

l✓(zi) +  (✓)

X 2 Rn⇥p1
n

P
i l✓(zi) = l(y, X✓) = g(X✓)

supy2Rn � ⇤(�XT y)� g⇤(y) = � infy2Rn g⇤(y) +  ⇤(�XT y)

sup
y2Rn

X

i
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• Set x

0
= (x

0
1, . . . , x

0
n),

• For k = 1, . . . ,K

– x

k+1
i = argmin

y2R
f(x

k+1
1 , . . . , x

k+1
i�1 , y, x

k
i+1, . . . , x

k
n)

source: wikipedia
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Reminders on Coordinate Descent

• Set x

0
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0
1, . . . , x

0
n),

• For k = 1, . . . ,K

– x

k+1
i = argmin

y2R
f(x

k+1
1 , . . . , x

k+1
i�1 , y, x

k
i+1, . . . , x

k
n)

source: wikipedia
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Reminders on Coordinate Descent
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Reminders on Coordinate Descent

source: wikipedia
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Reminders on Coordinate Descent

source: wikipedia

To ensure success of CD, some progress must be guaranteed. 
Separability of the objective function helps.
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• Set ✓0 = (✓01, . . . , ✓
0
p),

• For k = 1, . . . ,K

– Sample j.

– Compute gj = @f(✓)/@✓j

– ✓j  argmin

y2R
gjy +  j(y) +

1
2⌘t
ky � ✓jk2
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Coordinate Descent on Primal Problem

source: wikipedia

• Set ✓0 = (✓01, . . . , ✓
0
p),

• For k = 1, . . . ,K

– Sample j.

– Compute gj = @f(✓)/@✓j

– ✓j  argmin

y2R
gjy +  j(y) +

1
2⌘t
ky � ✓jk2

Regularizer must be separable.
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Theorem

Let f : Rp ! ¯

R and g : Rq ! ¯

R be closed convex, and A 2 Rq⇥p

a linear

map. Suppose that either condition (a) or (b) is satisfied. Then

inf

x2Rp
f(x) + g(Ax) = sup

y2Rq
�f

⇤
(A

T

y)� g

⇤
(�y)

min
✓2Rp

1

n

nX

i=1

l✓(zi) +  (✓) l✓(zi) = l(yi, xT
i ✓)

sup
y2Rn

1

n

X

i

l⇤i (yi) +  ⇤(�XT y/n)

✓⇤ = r ⇤(�XTy⇤/n)
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l✓(zi) = l(yi, xT
i ✓)min

✓2Rp
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n

nX

i=1

l✓(zi) +  (✓)

X 2 Rn⇥p1
n

P
i l✓(zi) = l(y, X✓) = g(X✓)

supy2Rn � ⇤(�XT y)� g⇤(y) = � infy2Rn g⇤(y) +  ⇤(�XT y)
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X
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n
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Algorithm of SDCA

SDCA (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, . . .

1 Pick up an index i ∈ {1, . . . , n} uniformly at random.

2 Update the i-th coordinate yi so that the objective function is
decreased.

31 / 59
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Algorithm of SDCA

SDCA (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, . . .

1 Pick up an index i ∈ {1, . . . , n} uniformly at random.

2 Update the i-th coordinate yi :
(let A\i = [a1, . . . , ai−1, ai+1, . . . , an], and y\i = (yj)j ̸=i )

• y (t)
i ∈ argmin

yi∈R

{
f ∗i (yi ) + nψ∗

(
− 1

n
(aiyi + A\iy

(t−1)
\i )

)

+
1

2η
∥yi − y (t−1)

i ∥2
}
,

• y (t)
j =y (t−1)

j (for j ̸= i).

31 / 59
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Algorithm of SDCA
SDCA (linearized version) (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, . . .

1 Pick up an index i ∈ {1, . . . , n} uniformly at random.

2 Calculate x (t−1) = ∇ψ∗(−Ay (t−1)/n).

3 Update the i-th coordinate yi :

• y (t)i ∈ argmin
yi∈R

{
f ∗i (yi )− ⟨x (t−1), aiyi ⟩+

1

2η
∥yi − y (t−1)

i ∥2
}

• y (t)j =y (t−1)
j (for j ̸= i).

If the reg func ψ is λ-strongly covnex, ψ∗ is 1/λ-smooth and thus
differentiable: x (t) = ∇ψ∗(−Ay (t)/n).
x (t) is actually the primal variable.
Computational complexity per iteration is same as online methods!
Important relation: prox(q|g∗) = q − prox(q|g). primal!

31 / 59
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SDCA : SVM
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http://www.vlfeat.org/api/svm-sdca.html


SDCA, SVM ascent
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SDCA, SVM ascent
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http://www.vlfeat.org/api/svm-sdca.html


SDCA, SVM ascent, hinge

86 http://www.vlfeat.org/api/svm-sdca.html

Setting derivative to 0

http://www.vlfeat.org/api/svm-sdca.html
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COCOA+ (Ma et al., 2015)

We divide the sample into K groups {Gk}k :

{1, . . . , n} =
K⋃

k=1

Gk , Gk ∩ Gk′ = ∅.

Dual problem of RERM:

D(y) =
1

n

n∑

i=1

f ∗i (yi ) + ψ∗
(
−1

n
Ay

)

=
1

n

K∑

k=1

( ∑

i∈Gk

f ∗i (yi )

)

︸ ︷︷ ︸
Divided into K groups

+ψ∗
(
− 1

n

K∑

k=1

AGkyGk

)

︸ ︷︷ ︸
needs synchronization

where AGk = [ai1 , . . . , aiGk ] ∈ Rp×|Gk | where ij ∈ Gk and yGk = (yi )i∈Gk .
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scheme (i.e., updating a single point before communication). When processing the same number of
datapoints, this is clearly a dramatic savings.

Our theoretical analysis (Section 4) shows that this significant reduction in communication cost
comes with only a very moderate increase in the amount of total computation, in order to reach
the same optimization accuracy. We show that, in general, the distributed COCOA framework will
inherit the convergence rate of the internally-used local optimization method. When using SDCA
(randomized dual coordinate ascent) as the local optimizer and assuming smooth losses, this con-
vergence rate is geometric.

In practice, our experiments with the method implemented on the fault-tolerant Spark platform [1]
confirm both the clock time performance and huge communication savings of the proposed method
on a variety distributed datasets. Our experiments consistently show order of magnitude gains over
traditional mini-batch methods of both SGD and SDCA, and significant gains over the faster but
theoretically less justified local SGD methods.

Related Work. As we discuss below (Section 5), our approach is distinguished from recent work
on parallel and distributed optimization [2, 3, 4, 5, 6, 7, 8, 9] in that we provide a general framework
for improving the communication efficiency of any dual optimization method. To the best of our
knowledge, our work is the first to analyze the convergence rate for an algorithm with this level
of communication efficiency, without making data-dependent assumptions. The presented analysis
covers the case of smooth losses, but should also be extendable to the non-smooth case. Existing
methods using mini-batches [4, 2, 10] are closely related, though our algorithm makes significant
improvements by immediately applying all updates locally while they are processed, a scheme that
is not considered in the classic mini-batch setting. This intuitive modification results in dramatically
improved empirical results and also strengthens our theoretical convergence rate. More precisely,
the convergence rate shown here only degrades with the number of workers K, instead of with the
significantly larger mini-batch-size (typically order n) in the case of mini-batch methods.

Our method builds on a closely related recent line of work of [2, 3, 11, 12]. We generalize the algo-
rithm of [2, 3] by allowing the use of arbitrary (dual) optimization methods as the local subroutine
within our framework. In the special case of using coordinate ascent as the local optimizer, the
resulting algorithm is very similar, though with a different computation of the coordinate updates.
Moreover, we provide the first theoretical convergence rate analysis for such methods, without mak-
ing strong assumptions on the data.

The proposed COCOA framework in its basic variant is entirely free of tuning parameters or learning
rates, in contrast to SGD-based methods. The only choice to make is the selection of the internal lo-
cal optimization procedure, steering the desired trade-off between communication and computation.
When choosing a primal-dual optimizer as the internal procedure, the duality gap readily provides a
fair stopping criterion and efficient accuracy certificates during optimization.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we describe the prob-
lem setting of interest. Section 3 outlines the proposed framework, COCOA, and the convergence
analysis of this method is presented in Section 4. We discuss related work in Section 5, and compare
against several other state-of-the-art methods empirically in Section 6.

2 Setup

A large class of methods in machine learning and signal processing can be posed as the minimization
of a convex loss function of linear predictors with a convex regularization term:

min

w2Rd

h

P (w) :=

�

2

kwk2 + 1

n

n
X

i=1

`i(w
T
xi)

i

, (1)

Here the data training examples are real-valued vectors xi 2 Rd; the loss functions `i, i = 1, . . . , n
are convex and depend possibly on labels yi 2 R; and � > 0 is the regularization parameter. Using
the setup of [13], we assume the regularizer is the `2-norm for convenience. Examples of this class
of problems include support vector machines, as well as regularized linear and logistic regression,
ordinal regression, and others.

2

The most popular method to solve problems of the form (1) is the stochastic subgradient method
(SGD) [14, 15, 16]. In this setting, SGD becomes an online method where every iteration only
requires access to a single data example (xi, yi), and the convergence rate is well-understood.

The associated conjugate dual problem of (1) takes the following form, and is defined over one dual
variable per each example in the training set.

max

↵2Rn

h

D(↵) := ��

2

kA↵k2 � 1

n

n
X

i=1

`⇤i (�↵i)

i

, (2)

where `⇤i is the conjugate (Fenchel dual) of the loss function `i, and the data matrix A 2 Rd⇥n

collects the (normalized) data examples Ai :=

1
�nxi in its columns. The duality comes with the

convenient mapping from dual to primal variables w(↵) := A↵ as given by the optimality con-
ditions [13]. For any configuration of the dual variables ↵, we have the duality gap defined as
P (w(↵))�D(↵). This gap is a computable certificate of the approximation quality to the unknown
true optimum P (w

⇤
) = D(↵

⇤
), and therefore serves as a useful stopping criteria for algorithms.

For problems of the form (2), coordinate descent methods have proven to be very efficient, and come
with several benefits over primal methods. In randomized dual coordinate ascent (SDCA), updates
are made to the dual objective (2) by solving for one coordinate completely while keeping all others
fixed. This algorithm has been implemented in a number of software packages (e.g. LibLinear [17]),
and has proven very suitable for use in large-scale problems, while giving stronger convergence
results than the primal-only methods (such as SGD), at the same iteration cost [13]. In addition
to superior performance, this method also benefits from requiring no stepsize, and having a well-
defined stopping criterion given by the duality gap.

3 Method Description

The COCOA framework, as presented in Algorithm 1, assumes that the data {(xi, yi)}ni=1 for a
regularized loss minimization problem of the form (1) is distributed over K worker machines. We
associate with the datapoints their corresponding dual variables {↵i}ni=1, being partitioned between
the workers in the same way. The core idea is to use the dual variables to efficiently merge the
parallel updates from the different workers without much conflict, by exploiting the fact that they all
work on disjoint sets of dual variables.

Algorithm 1: COCOA: Communication-Efficient Distributed Dual Coordinate Ascent
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In each round, the K workers in parallel perform some steps of an arbitrary optimization method,
applied to their local data. This internal procedure tries to maximize the dual formulation (2), only
with respect to their own local dual variables. We call this local procedure LOCALDUALMETHOD,
as specified in the template Procedure A. Our core observation is that the necessary information
each worker requires about the state of the other dual variables can be very compactly represented
by a single primal vector w 2 Rd, without ever sending around data or dual variables between the
machines.

Allowing the subroutine to process more than one local data example per round dramatically reduces
the amount of communication between the workers. By definition, COCOA in each outer iteration
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Procedure A: LOCALDUALMETHOD: Dual algorithm for prob. (2) on a single coordinate block k

Input: Local ↵[k] 2 Rnk , and w 2 Rd consistent with other coordinate blocks of ↵ s.t. w = A↵

Data: Local {(xi, yi)}nk
i=1

Output: �↵[k] and �w := A[k]�↵[k]

Procedure B: LOCALSDCA: SDCA iterations for problem (2) on a single coordinate block k

Input: H � 1, ↵[k] 2 Rnk , and w 2 Rd consistent with other coordinate blocks of ↵ s.t. w = A↵

Data: Local {(xi, yi)}nk
i=1

Initialize: w(0)  w, �↵[k]  0 2 Rnk

for h = 1, 2, . . . , H
choose i 2 {1, 2, . . . , nk} uniformly at random
find �↵ maximizing ��n
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(�↵[k])i  (�↵[k])i +�↵

w

(h)  w

(h�1)
+

1
�n�↵xi

end
Output: �↵[k] and �w := A[k]�↵[k]

only requires communication of a single vector for each worker, that is �wk 2 Rd. Further, as we
will show in Section 4, COCOA inherits the convergence guarantee of any algorithm run locally on
each node in the inner loop of Algorithm 1. We suggest to use randomized dual coordinate ascent
(SDCA) [13] as the internal optimizer in practice, as implemented in Procedure B, and also used in
our experiments.

Notation. In the same way the data is partitioned across the K worker machines, we write the dual
variable vector as ↵ = (↵[1], . . . ,↵[K]) 2 Rn with the corresponding coordinate blocks ↵[k] 2 Rnk

such that
P

k nk = n. The submatrix A[k] collects the columns of A (i.e. rescaled data examples)
which are available locally on the k-th worker. The parameter T determines the number of outer
iterations of the algorithm, while when using an online internal method such as LOCALSDCA, then
the number of inner iterations H determines the computation-communication trade-off factor.

4 Convergence Analysis

Considering the dual problem (2), we define the local suboptimality on each coordinate block as:

"D,k(↵) := max

↵̂[k]2Rnk
D((↵[1], . . . , ˆ↵[k], . . . ,↵[K]))�D((↵[1], . . . ,↵[k], . . . ,↵[K])), (3)

that is how far we are from the optimum on block k with all other blocks fixed. Note that this differs
from the global suboptimality max

↵̂

D(

ˆ

↵)�D((↵[1], . . . ,↵[K])).
Assumption 1 (Local Geometric Improvement of LOCALDUALMETHOD). We assume that there
exists ⇥ 2 [0, 1) such that for any given ↵, LOCALDUALMETHOD when run on block k alone
returns a (possibly random) update �↵[k] such that

E[✏D,k((↵[1], . . . ,↵[k�1],↵[k] +�↵[k],↵[k+1], . . . ,↵[K]))]  ⇥ · ✏D,k(↵). (4)

Note that this assumption is satisfied for several available implementations of the inner procedure
LOCALDUALMETHOD, in particular for LOCALSDCA, as shown in the following Proposition.

From here on, we assume that the input data is scaled such that kxik  1 for all datapoints. Proofs
of all statements are provided in the supplementary material.
Proposition 1. Assume the loss functions `i are (1/�)-smooth. Then for using LOCALSDCA,
Assumption 1 holds with

⇥ =

✓

1� �n�

1 + �n�

1

ñ

◆H

. (5)

where ñ := maxk nk is the size of the largest block of coordinates.
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where ñ := maxk nk is the size of the largest block of coordinates.

4



COCOA

90

Run small coord. desc.in parallel }
}}

Run small coord. desc.in parallelSum up the results(synchronization)
G1

G2

G3

54 / 62


