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“Big data” revolution?
A new scientific context

e Data everywhere: size does not (always) matter
e Science and industry
e Size and variety

e Learning from examples

— n observations in dimension d
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Bioinformatics

e Protein: Crucial elements of cell life
e Massive data: 2 millions for humans

e Complex data




Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
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Context
Machine learning for “big data”

e Large-scale machine learning: large d, large n

— d : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
e Ideal running-time complexity: O(dn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951)
— Mixing statistics and optimization



Outline - |

1. Introduction

e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)

e Traditional statistical analysis through Rademacher complexity
2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)

e Non-smooth optimization (subgradient descent)

3. Classical stochastic approximation (not covered)

e Robbins-Monro algorithm (1951)
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4. Non-smooth stochastic approximation
e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds

5. Smooth stochastic approximation algorithms
e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates



Supervised machine learning

e Data: n observations (z;,y;) €e X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function ' ®(x) of features ®(x) € R

e (regularized) empirical risk minimization: find § solution of

I T
min Egé(yiﬁ ®(z;)) + pR(0)

convex data fitting term 4+ regularizer



Usual losses

e Regression: y ¢ R, prediction §j = 0 ' &(x)
— quadratic loss 3(y — §)? = 2(y — 0 ®(x))?



Usual losses

e Regression: y € R, prediction §j = 0' ®(z)
— quadratic loss 3(y — §)? = 2(y — 0 ®(x))?

e Classification : y € {—1,1}, prediction § = sign(f' ®(x))

— loss of the form 4(y 0 ' ®(x))
— “True” 0-1 loss: £(y HT(I)(QU)) — 1y9T<I>(fv)<0

— Usual convex losses:
5

— 0-1

4 — hinge
square
logistic

3




Main motivating examples

e Support vector machine (hinge loss): non-smooth

((Y,0"®(X)) = max{l — Y0 ®(X),0}
e Logistic regression: smooth
U(Y,0"®(X)) =log(l + exp(—YO'®(X)))
e Least-squares regression

(Y.0T(X)) = oY — 0T B(X))?

e Structured output regression

— See Tsochantaridis et al. (2005); Lacoste-Julien et al. (2013)



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0]|5 = Z;i:l 10,

— Numerically well-behaved

— Representer theorem and kernel methods : 0 =>"" | a;®(z;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)



Usual regularizers

e Main goal: avoid overfitting

e (squared) Euclidean norm: ||0]|5 = Z;i:l 10,

— Numerically well-behaved

— Representer theorem and kernel methods : 0 =>"" | a;®(z;)

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004)

e Sparsity-inducing norms

. _ d
— Main example: £1-norm ||0]]y = > _._, (6]
— Perform model selection as well as regularization

— Non-smooth optimization and structured sparsity
— See, e.g., Bach, Jenatton, Mairal, and Obozinski (2012b,a)
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Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function ' ®(z) of features ®(x) € R?

e (regularized) empirical risk minimization: find f solution of

1 n
' — 0(y;, 0" ®(x;)) such that Q(0) < D
min n; (91,0 " ®(x)) su (0)

convex data fitting term + constraint
e Empirical risk: f(0) = I3 l(y;, 0" ®(x;)) training cost
o Expected risk: f(0) = E(,,,)¢(y, 0" (z)) testing cost

e Two fundamental questions: (1) computing 0 and (2) analyzing 6

— May be tackled simultaneously



General assumptions

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Bounded features ®(z) € R%: [|®(z)]2 < R

o Empirical risk: f(0) = 23" #(y;,0T®(x;)) training cost
o Expected risk: f(0) = E(,,)¢(y, 0" ®(z)) testing cost

e Loss for a single observation: f;(0) = ¢(y;,0" ®(x;))
= Vi, f(0) =Ef(0)

e Properties of f;, f,f

— Convex on R4
— Additional regularity assumptions: Lipschitz-continuity,
smoothness and strong convexity



e Global definitions
A

Convexity




Convexity

e Global definitions (full domain)

A

012 | »6

— Not assuming differentiability:

V01,02, € [0,1], glab; + (1 —a)bs) < ag(f)+ (1 —a)g(bs)



Convexity

e Global definitions (full domain)

A

012 | »6

— Assuming differentiability:

V01,02, g(61) = g(62) +g'(62) " (61 — 62)

e Extensions to all functions with subgradients / subdifferential



Convexity

e Global definitions (full domain)

A

>0

e Local definitions

— Twice differentiable functions
— V0, ¢"(0) = 0 (positive semi-definite Hessians)



Convexity

e Global definitions (full domain)

A

>0
e Local definitions

— Twice differentiable functions
— V0, ¢"(0) = 0 (positive semi-definite Hessians)

e Why convexity?



Why convexity?

¢ Local minimum = global minimum
— Optimality condition (non-smooth): 0 € dg(0)
— Optimality condition (smooth): ¢’(8) =0

e Convex duality

— See Boyd and Vandenberghe (2003)

e Recognizing convex problems

— See Boyd and Vandenberghe (2003)



Lipschitz continuity

e Bounded gradients of g (< Lipschitz-continuity): the function
g if convex, differentiable and has (sub)gradients uniformly bounded
by B on the ball of center 0 and radius D:

v0 € RY [|9]l2 < D = [|g/(0)]]> < B

v9,60" € R 0[]z, 16"]]2 < D = |g(0) — g(¢")] < B|6 — &[]

e Machine learning

= with g(0) = 5 2202 (v, 0" ©(24))
— G-Lipschitz loss and R-bounded data: B =GR



Smoothness and strong convexity

e A function g : R — R is L-smooth if and only if it is differentiable

and its gradient is L-Lipschitz-continuous

V01,02 € R, ||g'(01) — ¢'(62)]]2 < L||61 — 02]|2

e If g is twice differentiable: V8 € R¢, ¢"”(0) < L - Id

A

smooth

A
NON—SMOOt|

e

i




Smoothness and strong convexity

e A function g : R — R is L-smooth if and only if it is differentiable
and its gradient is L-Lipschitz-continuous

V01,05 € R, ||g'(01) — g'(02)]|2 < LI||61 — 022

e If g is twice differentiable: V8 € R¢, ¢"”(0) < L - Id

e Machine learning

— with g(0) = %Z?:l LYy, QT(I)(%))
— Hessian ~ covariance matrix + =N D(z)® (z;) "

— Lioss-smooth loss and R-bounded data: L = L. R?



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € RY, g(61) = g(02) + g'(02) ' (01 — 02) + £[|61 — 02]|3

e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

A

convex

/

A
strongly

convex

/

T~/



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € RY, g(61) = g(02) + g'(02) ' (01 — 02) + £[|61 — 02]|3

e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

©

(large p/L) (small u/L)



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € R, g(01) = g(02) + ¢'(62) ' (61 — 02) + £]|601 — 02]]3
e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

e Machine learning

— with g(0) = %Z?:l Uy, 0" ®(x;))
— Hessian =~ covariance matrix %2?21 O () D ()"
— Data with invertible covariance matrix (low correlation/dimension)



Smoothness and strong convexity

e A function g : RY — R is p-strongly convex if and only if

V01,02 € R, g(01) = g(02) + ¢'(62) ' (61 — 02) + £]|601 — 02]]3
e If g is twice differentiable: V8 € R%, ¢”(0) = p - 1d

e Machine learning

— with g(0) = %Z?:l Uy, 0" ®(x;))
— Hessian ~ covariance matrix %2?21 O (z;)P(z;) "
— Data with invertible covariance matrix (low correlation/dimension)

e Adding regularization by £||0|°

— creates additional bias unless 1 is small



Summary of smoothness/convexity assumptions

e Bounded gradients of g (Lipschitz-continuity): the function g if
convex, differentiable and has (sub)gradients uniformly bounded by

B on the ball of center 0 and radius D:

v0 € RY [|0]2 < D = [|g'(0)]]> < B

e Smoothness of ¢g: the function g is convex, differentiable with
L-Lipschitz-continuous gradient ¢’ (e.g., bounded Hessians):

V01,05 € R, ||g'(61) — g'(62) ]2 < L||61 — 02]|2

e Strong convexity of g: The function g is strongly convex with
respect to the norm || - ||, with convexity constant p > O:

V01,05 € R, g(61) = g(02) + g'(02) T (01 — 02) + 2|0y — 023



Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

9cRd 0cO 6cO 9cRd

£(0) — min f() = [f(é) - minf(@)] + [minf(@) — min f(6)
Estimation error Approximation error

— NB: may replace min f(0) by best (non-linear) predictions
OER



Analysis of empirical risk minimization

e Approximation and estimation errors: © = {# ¢ R¢ Q(0) < D}

()~ min £6) = | £6) = pin £)| + | in 1(6) ~ i 6

O cRd 0cO 0€© OcRd
Estimation error Approximation error

1. Uniform deviation bounds, with | § € arg rgni(g 7()
3

f(6) —min f(6) < 2-sup|f(0) — f(0)]

HeO HcO
— Typically slow rate 0(1/\/5)

2. More refined concentration results with faster rates O(1/n)



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Q(0) = ||0]|2 (Euclidean norm)

— “Linear” predictors: 0(x) = 0'®(x), with ||®(x)|2 < R as.

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0]|» < D}
— No assumptions regarding convexity



Slow rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)
— Q(0) = ||0]||2 (Euclidean norm)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(x)|2s < R a.s.
— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||0||> < D}
— No assumptions regarding convexity

e With probability greater than 1 — ¢

A bo+ GRD [ 9 ]
sup | f(0) — f(0)] < 2+ 4/2log =~
sup | £(0) ~ () < =~ ;2
e Expectated estimation error: ]E[sup ‘f(g) _ f(@)u < 40y + 4GRD
6O Vn

e Using Rademacher averages (see, e.g., Boucheron et al., 2005)

e Lipschitz functions = slow rate



Motivation from mean estimation
. A 1 n . 1 n
o Estimator 0 = = > | z; = argminger 5- ) ,_1(0 — 2;)

e From before:

~ f(0) = JE(0 — 2)* =}
= f(0) = 3(0 — Ez)* + 5var(z) = f(Ez) + O(1/y/n)

2



Motivation from mean estimation

. 1 n
e Estimator § = = > " | 2; = argminger 5~ Zz 1(0 -

e From before:

- f(0) =
~ f(6) =

l\DI»—\l\DIl—\

e More refined/direct bound:

f(

E[f(0)

E(0 —
Ch ]E)

)

~ f(Ez)

— f(Ez)]

1
— ]Ez) = — var(z)
— 2n

e Bound only at 6 + strong convexity (instead of uniform bound)



Fast rate for supervised learning

e Assumptions (f is the expected risk, fthe empirical risk)

— Same as before (bounded features, Lipschitz loss)
— Regularized risks: f#(0) = f(0)+%|0]|5 and f#(0) = f(0)+5]0||5
— Convexity

e For any a > 0, with probability greater than 1 — 6, for all § € R?,
) 8(1+ HG?R?(32 + log +
PA(6) ~ min pr(n) < "I B2 08 D)
neRr? un
e Results from Sridharan, Srebro, and Shalev-Shwartz (2008)

— see also Boucheron and Massart (2011) and references therein

e Strongly convex functions = fast rate

— Warning: p should decrease with n to reduce approximation error
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1. Introduction

e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)

e Traditional statistical analysis through Rademacher complexity
2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)

e Non-smooth optimization (subgradient descent)

3. Classical stochastic approximation (not covered)

e Robbins-Monro algorithm (1951)
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4. Non-smooth stochastic approximation
e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds

5. Smooth stochastic approximation algorithms
e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates



Complexity results in convex optimization

e Assumption: g convex on R?

e Classical generic algorithms

— Gradient descent and accelerated gradient descent
— Newton method
— Subgradient method and ellipsoid algorithm

e Key additional properties of g

— Lipschitz continuity, smoothness or strong convexity

e Key insight from Bottou and Bousquet (2008)

— In machine learning, no need to optimize below estimation error

e Key references: Nesterov (2004), Bubeck (2015)



(smooth) gradient descent

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)

e Algorithm:
0 =01 — —9/(9t—1)




(smooth) gradient descent - strong convexity

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
— g u-strongly convex

e Algorithm:
1

0 =01 — Zg,(et—l)

e Bound:

g(0¢) — g(0+) < (1 —p/L)"[g(60) — g(64)]

e Three-line proof

e Line search, steepest descent or constant step-size



(smooth) gradient descent - slow rate

e Assumptions

— g convex with L-Lipschitz-continuous gradient (e.g., L-smooth)
— Minimum attained at 6.

e Algorithm: .
0 =01 — Zg/(et—l)
e Bound: 210 . ”2
9(0:) — 9(0.) < ==

t+4
e Four-line proof

e Adaptivity of gradient descent to problem difficulty

e Not best possible convergence rates after O(d) iterations



Gradient descent - Proof for quadratic functions
e Quadratic convex function: g(f) =20'HY —c'6
— 1 and L are smallest largest eigenvalues of H

— Global optimum 6, = H~ ¢ (or H'¢)

e Gradient descent:

1 1
9,5 — 975_1 — Z(H@ — C) — (975_1 — Z(HH — H(g*)
1 1
0= 0. = (I—FH)(O1—0.) = (I = FH)"(6 — 0.)

e Strong convexity x> 0: eigenvalues of (I — +H)"in [0, (1 — £)1]

— Convergence of iterates: ||0; — 0.]|* < (1 — p/L)?*!||6y — 0.]|*
— Function values: ¢(6;) — g(6.) < (1 — pu/L)*|g(60) — g(6.)]



Gradient descent - Proof for quadratic functions
e Quadratic convex function: g(f) =20'HY —c'6
— 1 and L are smallest largest eigenvalues of H

— Global optimum 6, = H~ ¢ (or H'¢)

e Gradient descent:
1 1

9,5 — 975_1 — Z(H@ — C) — (975_1 — Z(H(g — H(g*)
1 1
0= 0. = (I—FH)(O1—0.) = (I = FH)"(6 — 0.)

e Convexity p = 0: eigenvalues of (I — +H)" in [0, 1]

— No convergence of iterates: ||6; — 0.]|° < ||6p — 6.
— Function values: g(0;) —g(0+) < max, (o, 1, v(1—v/L)*||6g—0.||?
g(6:) — g(0+) < 2160 — 6.



Accelerated gradient methods (Nesterov, 1983)

e Assumptions

— g convex with L-Lipschitz-cont. gradient , min. attained at 6,

e Algorithm: 1
0, = Nt—1 — zg’(m_l)
t—1
= 0 —(0; — 6, _
Mt t + t—|—2( ' t—1)

e Bound: 2L|6 — 0.,||2
g(61) — g(6.) < 0

e Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)

e Not improvable

e Extension to strongly-convex functions



Accelerated gradient methods - strong convexity

e Assumptions

— g convex with L-Lipschitz-cont. gradient , min. attained at 6,
— g u-strongly convex

e Algorithm: .

0 = 77t—1—zgl(77t—1)

Lo VIR g g, )

e = 0+

e Bound: g(6;) — f(6.) < L[| — H*H ( — /L)

— Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)
— Not improvable
— Relationship with conjugate gradient for quadratic functions



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2012b)

e Gradient descent as a proximal method (differentiable functions)

: L
— 0441 = arg min f(6;) + (0 — 9t)TVf(9t)+§H9 — 0,]|3

0 cRd

— 01 =6, — LV f(6))



Optimization for sparsity-inducing norms
(see Bach, Jenatton, Mairal, and Obozinski, 2012b)

e Gradient descent as a proximal method (differentiable functions)

. L
— Oy = argmin f(0;) + (0 — 0;) "V f(0r)+= (|0 — 04]5
fcRd 2

— 01 =0, — %Vf(et)

e Problems of the form: | min f(6) + u€2(9)
o cR?

: L
= fi1 = arg min f(0:) + (6 — Ht)TVf(Ht)+uQ(9)+§H9 — 05
— Q(0) = ||0||1 = Thresholded gradient descent

e Similar convergence rates than smooth optimization

— Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)



Soft-thresholding for the /;-norm

1
e Example 1: quadratic problem in 1D, i.e. mi]llg 5:1;2 — xy + A|z|
TE
e Piecewise quadratic function with a kink at zero
— Derivative at 0+: g = A —yand 0—: g_ = -\ —y
A A
r \'/ r

— x = 0 is the solution iff g > 0 and g_ <0 (i.e., |y| < A)
— x > 0 is the solution iff g, <0 (e, y=>A) =2 =y — A
— 2 < 0 is the solution iff g_ <0 (ie, y<=A) = 2" =y + A

e Solution

z* =sign(y)(Jy| — M)+

= soft thresholding



e Example 1: quadratic problem in 1D, i.e.

e Piecewise quadratic function with a kink at zero

e Solution

Soft-thresholding for the /;-norm

z* =sign(y)(Jy| — M)+

r€eR

1

min —x
2

2

— xy + A|z|

= soft thresholding




Newton method

e Given 6;_1, minimize second-order Taylor expansion

. 1

§(6) = 9(0r—1)+9'(6r—1) T (0=0:—1)+5(0—00 1) 9" (61) T (6—0,1)
e Expensive lteration: 0, = 0;_1 — ¢"(0;_1) " 1¢'(0:—1)

— Running-time complexity: O(d®) in general

e Quadratic convergence: If ||#;_1 — 60.]| small enough, for some
constant C, we have

(Cl10 = 0.]1) = (Cl0e—1 — 0.])7

— See Boyd and Vandenberghe (2003)



Summary: minimizing smooth convex functions

e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for smooth convex functions
— O(e™t*/ L) convergence rate for strongly smooth convex functions

— Optimal rates O(1/t?) and O(e™*V “/L)

e Newton method: (9,5 = Ht—l — f”((gt_l)_lf/((gt_l)

t
— O(e_p2 ) convergence rate



Summary: minimizing smooth convex functions

e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v;g'(0;_1)

— O(1/t) convergence rate for smooth convex functions
— O(e™t*/ L) convergence rate for strongly smooth convex functions

— Optimal rates O(1/t?) and O(e™*V “/L)

e Newton method: (9,5 = Ht—l — f”((gt_l)_lf/((gt_l)

t
— O(e_p2 ) convergence rate

e From smooth to non-smooth

— Subgradient method and ellipsoid (not covered)



Counter-example (Bertsekas, 1999)
Steepest descent for nonsmooth objectives

[ —5(962 + 1662)Y/2 if 6, > |0,
FONSES A iy

e Steepest descent starting from any 6 such that 6; > |05 >
(9/16)%(61 |




Subgradient method/“descent” (Shor et al., 1985)

e Assumptions

— g convex and B-Lipschitz-continuous on {||f]|2 < D}

2D
Algorithm: 0, =11, 0,1 — ——¢'(0,_
¢ Al t D(tl Bﬂg(tl))

— IIp : orthogonal projection onto {||f|| < D}

=

y

Constraints



Subgradient method/“descent” (Shor et al., 1985)

e Assumptions

— g convex and B-Lipschitz-continuous on {||f]|2 < D}

2D
o Algorithm: 0, =IIp| 0,1 — ——=g'(0;—
g t D(tl Bﬂg(tl))
— IIp : orthogonal projection onto {||f|| < D}
e Bound: -
1 « 2D B
=N g, ) —g(0,) < ==
o(§0) o0 <7
e Three-line proof

e Best possible convergence rate after O(d) iterations (Bubeck, 2015)



Subgradient method/ “descent” - proof - |

® lteration: 0; = IIp(0i—1 — 19" (0:—1)) with v, = é—\%

® Assumption: ||¢’(0)]2 < B and ||0]|2 <

10, — 0.3 0,—1 — 0, — v:9' (0:_1)||5 by contractivity of projections
01 — 0.3+ B*y — 27:(6:—1 — 6.) " ¢'(6:-1) because [|g'(6;-1)l|la < B

Or—1 — 0.3 + B> — 27 [g(0:—1) — g(0.)] (property of subgradients)

NN N

® |eading to

BQ%

1
—1) * < -
g(0i—1) — g(04) 9 2

161 — 0.[15 — 116 — 6.]13]



Subgradient method/ “descent” - proof - Il

B2’Yt

e Starting from  ¢(6;_1) — g(6.) < :

1
+ 5100 = 0.3~ 16, — 0.1

e Constant step-size y; =7y

t t t
7 1
§ [g(eu—l) E 9 E _’Y ||9u—1—9*H§— ||9u—9*||3]
u=1 u=1 u=1
327 B%*y 2
< - ——+-D?
5+ gl <=5+

e Optimized step-size v; = B\[ depends on “horizon”

— Leads to bound of 2D B/t

t—1
1 2D B
e Using convexity: g(z E 9k> —g(0,) < 7



Subgradient method/ “descent” - proof - Il
BQ%
2

_ 1
® Starting from  g(0;_1) — g(0) < + g[”et—l — 0.5 — ||0: — 9*\!%}
(

® Decreasing step-size

t

1
Z 2— ng—l _ Q*H% - Heu - H*H%}

Z [g(eu—l) - 9(9*)]

/N
ﬁMw

u=1 1 u=1

t 2 t—1 2 2

= Z b Tu Z HQ — 0 ||2( 1 - 1 ) + H‘90 . H*HQ o Het - H*HQ
u=1 2 u=1 ’ 2’Yu+1 27“ 2/71 Z’Yt

zt: B — AD?( 1 1 ) AD?

h u=1 2 u=1 Q’yu_|_1 27“ 2,)/1
t
B2y, 4D? 2D

= L < 2D B+t with

Z 2 24 e B\/Z

® Using convexity: g(%z Hk) g(8,) < %



Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2 < R as.
= f(0) = >0 L(yi, @(x4) ' 6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||f||2 < D}

e Statistics: with probability greater than 1 — 9

A GRD 2
sup | (6) - 16)] < T2 |2+ 2108 |

e Optimization: after ¢ iterations of subgradient method

o . oa GRD
f(0) —gggf(ﬁ) < 7

e t = n iterations, with total running-time complexity of O(n?d)



Subgradient descent - strong convexity

e Assumptions

— g convex and B-Lipschitz-continuous on {||0]|> < D}
— g u-strongly convex

2
Algorithm: 0, = 1lIp| 0;_1 — (0, _
® goritnim t D< t—1 M(t"‘l)g( t 1))

e Bound: t
> 232
g(t@“); 1) 90 <

e Three-line proof

e Best possible convergence rate after O(d) iterations (Bubeck, 2015)



Subgradient method - strong convexity - proof - |

® [teration: 0, = IIp(0:—1 — 1:9' (0t—1)) with v, = ﬁ

® Assumption: ||g’(0)||2 < B and ||#||2 < D and p-strong convexity of f

10, — 0,15 < [|0—1 — 0« — 719" (0:_1)||3 by contractivity of projections
< 01 = 04015+ B*y7 — 274(0:-1 — 0.) " g'(6:—1) because [lg'(6:—1)[]2 < B
< 101 = 043 + By — 2% [g(0:-1) — 9(9*)+g\’9t—1 — 0.]3]

(property of subgradients and strong convexity)

® |eading to

B2’yt 1-1
5 +§[W——M}Het 1—‘9||2——Hgt 0.3

BZ
+“[

9(0i-1) —g(0x) <

t—1 t+1
0t — 6,02 = “E g g2

<
4




Subgradient method - strong convexity - proof - |l

t—1 pu(t+1)

4

B2
o From g(6;1) — g(6.) < 5

J10:—1 — 0.l — 16

u=1 t=1 ,LL(
B%* 1 » _ B%t
< 7+1[0—t(t+1)||et—9*\!2] S

t

| | 9 2B?
e Using convexity: ¢ 1 1) Zueu_l —g(6y) < P

u=1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor

t
20 1
70 [ = 1) — 0 — o+
u=1

— 0,12

1)[16 — 0.13]



Summary: minimizing convex functions
e Assumption: g convex

e Gradient descent: 0, = 0; 1 — v, ¢ (0:_1)

— O(1/+/t) convergence rate for non-smooth convex functions

— O(1/t) convergence rate for smooth convex functions

— O(e™**) convergence rate for strongly smooth convex functions
e Newton method: 0; = 0;_1 — ¢"(0;_1) g’ (0;_1)

t
— O(e_p2 ) convergence rate



Summary: minimizing convex functions
e Assumption: g convex

e Gradient descent: 0, = 60; 1 — v:g'(0;_1)

— O(1/+/t) convergence rate for non-smooth convex functions
— O(1/t) convergence rate for smooth convex functions
— O(e™**) convergence rate for strongly smooth convex functions

e Newton method: (9,5 = Ht—l — g”(gt_l)_lg/(gt_l)

t
— O(e_p2 ) convergence rate

e Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages

= Stochastic approximation



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)

smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)

quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)




Outline - |

1. Introduction

e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)

e Traditional statistical analysis through Rademacher complexity
2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)

e Non-smooth optimization (subgradient descent)

3. Classical stochastic approximation (not covered)

e Robbins-Monro algorithm (1951)



Outline - |1l

4. Non-smooth stochastic approximation
e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds

5. Smooth stochastic approximation algorithms
e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates



Stochastic approximation

e Goal: Minimizing a function f defined on R

— given only unbiased estimates f/(6,,) of its gradients f'(6,) at
certain points 6,, € R



Stochastic approximation

e Goal: Minimizing a function f defined on R

— given only unbiased estimates f/(6,,) of its gradients f'(6,) at
certain points 6,, € R

e Machine learning - statistics

— loss for a single pair of observations: | f,,(0) = ((y,, 0" ®(z,))
— f(0) =Ef,(0) = EL(y,, 0" ®(x,)) = generalization error

— Expected gradient: f'(6) = Ef}(0) = E{{'(yn,0' ®(z,,)) ®(xn)}
— Non-asymptotic results

e Number of iterations = number of observations



Stochastic approximation

e Goal: Minimizing a function f defined on R
— given only unbiased estimates f/(6,) of its gradients f'(6,) at
certain points 6,, € R
e Stochastic approximation

— (much) broader applicability beyond convex optimization
Qn — 9n—1 — /Vnhn(gn—l) Wlth E[hn((gn—l)’(gn—l} — h(gn—l)

— Beyond convex problems, i.i.d assumption, finite dimension, etc.

— Typically asymptotic results
— See, e.g., Kushner and Yin (2003); Benveniste et al. (2012)



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,
— Empirical risk: f(0) ==>"7_, 46, z)

— Estimator § = Minimizer of f(0) over a certain class ©
— Generalization bound using uniform concentration results



Relationship to online learning

e Stochastic approximation

— Minimize f(0) = E_¢(0, z) = generalization error of
— Using the gradients of single i.i.d. observations

e Batch learning

— Finite set of observations: z1,..., 2,

— Empirical risk: f(6) = %ZZ:J 00, z;)

— Estimator 6§ = Minimizer of f(6) over a certain class ©
— Generalization bound using uniform concentration results

¢ Online learning

— Update 0, after each new (potentially adversarial) observation z,
— Cumulative loss: = > 7 0(0k_1, 21)
— Online to batch through averaging (Cesa-Bianchi et al., 2004)



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Qn — Hn—l — /anr,/l(en—l)

— Polyak-Ruppert averaging: 6,, = %ZZ’;; 0

— Which learning rate sequence ~,,? Classical setting: | v, = Cn™ ¢




Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Qn — Hn—l — A}/nfr,/qJ(Hn—l)

— Polyak-Ruppert averaging: 6,, = %ZZ’;; 0

—

— Which learning rate sequence ~,,? Classical setting: | v, = Cn

e Desirable practical behavior

— Applicable (at least) to classical supervised learning problems
— Robustness to (potentially unknown) constants (L,B,u)
— Adaptivity to difficulty of the problem (e.g., strong convexity)



Stochastic subgradient “descent” /method

e Assumptions

— fn convex and B-Lipschitz-continuous on {||0||> < D}

— (fn) i.i.d. functions such that Ef,, = f
— 0, global optimum of f on C = {||0||2 < D}

2D
Algorithm: 0, =1Ip( 60,1 — ——F'(0,,_
® goritnm D< 1 B\/ﬁ n( 1))



Stochastic subgradient “descent” /method
e Assumptions

— fn convex and B-Lipschitz-continuous on {||0]|2 < D}
— (fn) i.i.d. functions such that Ef,, = f
— 0, global optimum of f on C = {||0]|> < D}

2D
e Algorithm: 0,, =1IIp <6’n 1 — W o (On )>

e Bound: )
1 2DB
Efl— 0. — f(0,) <——
f(, > ) - 10 <20
e “Same” three-line proof as in the deterministic case
e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations



Stochastic subgradient method - proof - |

® lteration: 0, =IIp(0p—1 — Vnf;(0n-1)) with v, = B2\l/)ﬁ

® f, : information up to time n

o |[f/(0)]]2 < B and ||0||]2 < D, unbiased gradients/functions E(f,,|F, 1) = f

10, — 0.3 < ||6n — ’ynf’( n—1)|[5 by contractivity of projections
< |0n—1 — 0. Hz ~ 290 (0n—1 — 0.) " fr(0—1) because || f,(0—1)2 < B
E 10 — 01131 Fn-1] < 16n-1— 0,12+ = 29 (0n-1 = 0:) " f'(On-1)
< NOur — 0.3+ B2 - 27, [f( ) — £(6.)] (subgradient property)
|05 — 0.3 < ||9n 1= 0. ||2 —Q’Vn[Ef( 1) — f(6)]
. BQ’Y?’L 1 2 2
® leading to Ef(6,,_1) — f(0«) < + E||0r—1 — 0.]|5 — E||6, — 6.])3]

2 2%n,



Stochastic subgradient method - proof - Il

B?v, 1
+ o [Efl0n-1 — 0.3 — E[|65, — 0.]]3]

e Starting from Ef(6,,_1) — f(0.) 5 9
Tn

IN

1
3 (B0t — 0.3 — B8, — 6.]13]

/
NE
oy
M§M

Z [Ef(eu—l) R f(e*)] <

"\ B?v, 4D? 2D
< 2DB ith v, = ——=
2.5+ % v with Byn

1 2DB
® Using convexity: [Ef (E Z Qk) — f(0,) < —



Stochastic subgradient descent - strong convexity - |

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fy) i.id. functions such that Ef,, = f
— f p-strongly convex on {||0||- < D}
— 6, global optimum of f over {||0||> < D}

2
p(n+1)

e Algorithm: 0, =1IIp <9n_1 — fy/z(gn—l)>

¢ Bound:

2 - 2B?
Ef<n(n+ : ;kek) - 10 < 22

e “Same” proof than deterministic case (Lacoste-Julien et al., 2012)

e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)



Stochastic subgradient - strong convexity - proof - |

® [teration: 0, = IIp(0,—1 — Vnf),(0:—1)) with v, = ﬁ

® Assumption: ||f/(6)|l2 < B and ||| < D and p-strong convexity of f

10, — 0.3 < ||0h—1 — 0« — Yuf’(0:—1) |5 by contractivity of projections
< 01 = 0.3+ B2 — 29, (0n—1 — 0.) ' f1,(6¢—1) because || f(0;-1)[l2 < B
v
E([Fa-1) < [0n-1—0.3+ = 29 [f(Bn1) = F(8) 511601 = 03]

(property of subgradients and strong convexity)

® |eading to

B2y, 1.1 1
FOur) = £0.) < 254 51— s — 0ul3 — 5116 — 0115
B? pen—1 pu(n+ 1)



Stochastic subgradient - strong convexity - proof - |l

(n+1)
4

n—1

® FromEf(0,_1)—f(0.) < —I—H[ }EHHn 1 —0.3— . E|6,—0.

S ulEf(Ou) - FO)] <Y 32 (= D0,y — 0.3 — uluu + )0, ~

— p(u+ DRl —
< Ben + 1[0 (n+ 1)E||6, — 0.]3] < Ben
X - ”n — n\n n Yk X -
w4 SR

9 2B?
® Using convexity: Ef (n(n I 1) Z u@u_1> o 9(9*) S n+1
u=1

e NB: with step-size v,, = 1/(nu), extra logarithmic factor (see later)



Stochastic subgradient descent - strong convexity - ||

e Assumptions

— f, convex and B-Lipschitz-continuous

— (fn) i.i.d. functions such that Ef,, = f

— 0, global optimum of g = f + & - |3

— No compactness assumption - no projections

e Algorithm:

2 .2 ,
,LL(n + 1)gn(9n—1) — (977,—1 ILL(’I’L T 1) [fn(‘gn—l)+ﬁ69n—1}

Hn — Hn—l_

2 z 2 B2
Bound: E kOrp_1) —g(0y) <
¢ boun g(n(n +1) 1; & 1) 9(6:) u(n + 1)

e Minimax convergence rate




Beyond convergence in expectation

2D B
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (529k) — f(0) <
k=0

e High-probability bounds

_ 2D B
— Markov inequality: P(f(% Zzé Hk) — f(0) > 6) <

ne




Beyond convergence in expectation

2D B
/n

— Obtained with simple conditioning arguments

n—1
1
e Typical result: Ef (5 E Gk) — f(0s) <
k=0

e High-probability bounds
2DB

— Markov inequality: P(f(% Z;é Hk) — f(0) > 6) <
ne
— Concentration inequality (Nemirovski et al., 2009; Nesterov and
Vial, 2008)

P(f (%nf 0) — (0.) > %(2 +41)) < 2exp(—1?)

e See also Bach (2013) for logistic regression



Beyond stochastic gradient method

e Adding a proximal step
— Goal: min f(0)+Q0) =Ef,(0) + Q(60)

DR
— Replace recursion 0,, = 0,,_1 — v f) (05) by

6, = min ||6 — 6,1 + 7 fo(62)||5 + CRA6)
6cRd

— Xiao (2010); Hu et al. (2009)
— May be accelerated (Ghadimi and Lan, 2013)

e Related frameworks

— Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
— Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)



Minimax rates (Agarwal et al., 2012)
e Model of computation (i.e., algorithms): first-order oracle
— Queries a function f by obtaining f(6x) and f'(6;) with zero-mean
bounded variance noise, for K =0,...,n — 1 and outputs 6,
e Class of functions
— convex B-Lipschitz-continuous (w.r.t. fs-norm) on a compact
convex set C containing an £,.-ball
e Performance measure

— for a given algorithm and function ¢, (algo, f) = f(0,,)—infgcc f(0)

— for a given algorithm: sup  ep(algo, f)
functions y
e Minimax performance: inf sup  ep(algo, f)

algo functions ¢



Minimax rates (Agarwal et al., 2012)

e Convex functions: domain C that contains an ¢..-ball of radius D

d
inf sup e(algo, f) > cst X min {BD\/:, BD}
n

algo functions ¢

— Consequences for £o-ball of radius D: BD/\/n
— Upper-bound through stochastic subgradient

e /-strongly-convex functions:

B? B? d
inf sup  ep(algo, f) > cst X min{ : ,BD\/:, BD}
algo functions ¢ pn pud n



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+/t deterministic: B?/(tp)
stochastic: BD/\/n stochastic: B?/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)

quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)




Outline - |

1. Introduction

e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)

e Traditional statistical analysis through Rademacher complexity
2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)

e Non-smooth optimization (subgradient descent)

3. Classical stochastic approximation (not covered)

e Robbins-Monro algorithm (1951)



Outline - |1l

4. Non-smooth stochastic approximation
e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds

5. Smooth stochastic approximation algorithms
e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,un)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?

e Many contributions in optimization and online learning: Bottou
and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al.
(2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al.
(2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and
Vial (2008); Nemirovski et al. (2009)



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,Lm)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n~1) for
smooth strongly convex problems



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with v, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with v, xn

1
—1/2

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes 7, = Cn~% with a € (1/2,1) lead to O(n™1) for
smooth strongly convex problems

e Non-asymptotic analysis for smooth problems?



Smoothness/convexity assumptions

e lteration: | 6, =0,,_1 — VoS! (0rn_1)

— Polyak-Ruppert averaging: 6,, = %ZZ;& 0.

e Smoothness of f,: For each n > 1, the function f,, is a.s. convex,
differentiable with L-Lipschitz-continuous gradient f;:

— Smooth loss and bounded data

e Strong convexity of f: The function f is strongly convex with
respect to the norm || -

, with convexity constant p > 0O:

— Invertible population covariance matrix
— or regularization by £|6]°



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™!) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0.||?> and E||0,, — 0.

2
0 Vn

— no averaging: O( ) + O(e "™ )[|6y — 6,

tr H(0,)™ 1

160 —H*HQ)

—1 —2x —24«
+pu  O(n"““+n )+O( i

— averaging:



-]

log[f(6

Robustness to wrong constants for v, = Cn™“

e f(6) = 3|6|* with i.i.d. Gaussian noise (d = 1)

o Left: a =1/2
e Right: a =1

o=1/2

e See also http://leon.bottou.org/projects/sgd

—»—sgd - C=1/5
-%-ave — C=1/5
——sgd - C=1
-9-ave - C=1
—8—sgd - C=5

1|-B-ave — C=5

log[f(6 )~

—»—sgd - C=1/5
- % -ave — C=1/5
——sgd - C=1
-9-ave - C=1
—8—sgd - C=5

 |-B-ave — C=5




Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate v, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n~1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n™1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

e Non-strongly convex smooth objective functions
— Old:  O(n~'/2) rate achieved with averaging for o = 1/2
— New: O(max{n'/273%/2 n=2/2 ne=11) rate achieved without
averaging for oo € [1/3, 1]
e Take-home message

— Use @ = 1/2 with averaging to be adaptive to strong convexity



o Left: f(0) =|0]* between —1 and 1

e Right: f(0) = |0]* between —1 and 1

Robustness to lack of strong convexity

e affine outside of [—1, 1], continuously differentiable.

loglf(8, )~

| | =»—sgd - 1/3

- % -ave — 1/3

| |—6—sgd - 1/2

-9-ave - 1/2

\ | —8—sgd - 2/3
\ |-B-ave —2/3

sgd -1
ave -1

loglf(8 )~

power 4

%N —»—sgd - 1/3
-%x-ave - 1/3
0f ——sgd - 1/2
-9-ave - 1/2
—ol —8—sgd - 2/3
Y |-B-ave - 2/3

sgd -1

-4 ave — 1




Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strong|y convex: O((Mn)_l)
Attained by averaged stochastic gradient descent with ~,, o (,un)_l
— Non-strongly convex: O(n~1/2)

Attained by averaged stochastic gradient descent with ~,, oc = %/?

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes 7, = Cn~% with a € (1/2,1) lead to O(n™1) for

smooth strongly convex problems

e A single adaptive algorithm for smooth problems with
convergence rate O(min{l/un,1/y/n}) in all situations?



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {-1,1}

— Single data point: f,,(0) = log(1 + exp(—yn0 ' ®(x,,)))
— Generalization error: f(0) =Ef,(9)
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e Logistic regression: (®(z,),y,) € R% x {-1,1}
— Single data point: f,,(0) = log(1 + exp(—yn0' ®(x,,)))
— Generalization error: f(0) = Ef,(0)
e Cannot be strongly convex = local strong convexity

— unless restricted to |0 ®(x,,)| < M (with constants e - proof)
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)

A
logistic loss




Adaptive algorithm for logistic regression
e Logistic regression: (®(z,,),y,) € R x {-1,1}
— Single data point: f,(8) = log(1 + exp(—yn0 ' ®(x,)))
— Generalization error: f(0) =Ef,(9)
e Cannot be strongly convex = local strong convexity
— unless restricted to |0 ' ®(x,,)| < M (with constants e - proof)
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)
e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R
V' np

— Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Self-concordance

e Usual definition for convex ¢ : R — R: [ (¢)| < 2" (t)3/2

— Affine invariant

— Extendable to all convex functions on R? by looking at rays

— Used for the sharp proof of quadratic convergence of Newton
method (Nesterov and Nemirovski, 1994)

e Generalized notion: |©"(t)| < ¢"(¢)
— Applicable to logistic regression (with extensions)
— o(t) =log(l+e7Y), o (t) = (1+ )71, etc...

e Important properties

— Allows global Taylor expansions
— Relates expansions of derivatives of different orders



Adaptive algorithm for logistic regression
e Logistic regression: (®(z,),y,) € R% x {-1,1}
— Single data point: f,,(0) = log(1 + exp(—y,0' ®(x,,)))
— Generalization error: f(0) =Ef,(0)
e Cannot be strongly convex = local strong convexity

— unless restricted to |0 ' ®(x,)| < M (and with constants )
— 1 = lowest eigenvalue of the Hessian at the optimum f”(6,)

e n steps of averaged SGD with constant step-size 1/(2R2\/ﬁ)
— with R = radius of data (Bach, 2013):
1 R?
V' np

— A single adaptive algorithm for smooth problems with
convergence rate O(1/n) in all situations?

Ef(0,) — f(0,) < min{ }(15 + 5R||0y — 9*H)4



Least-mean-square algorithm

e Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(x,,)| = H = p-1d



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(z,)|| < R and |y, — (®(x,),0.)| < o almost surely
— No assumption regarding lowest eigenvalues of H

_ 4 2 4 2 — 9, 2
~ Main result: | Ef (8, 1) — f(6.) < 229 4F7000 = 0.]

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)



Least-squares - Proof technique - |

e LMS recursion:

On — 0. = [I —P(x,) @ P(2,)| (On—1 — 04) + v EnD(zy,)

e Simplified LMS recursion: with H = E|®(z,,) ® ®(z,,)]
0, —0, = [I — fyH} (On_1—0y) +ven®(xy)
— Direct proof technique of Polyak and Juditsky (1992), e.g.,

O — 0. = [I—H]" (00— 0.) +~ ) [I—yH]""
k=1

Ekq)(xk)

e Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers
of ~



Markov chain interpretation of constant step sizes

e LMS recursion for f,,(0) = 1(yn — (®(z4,),0))

On, = On—1—Y((2(21), 0n—1) — Yn) P(xn)

2

e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,

— with expectation 6, Lt [ 6, (d0)



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I)(33n)7(9>)2

Hn — Hn—l — /7(<(I)(5En)7 9n—1> — yn)q)(xn)
e The sequence (0,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 6r.(d0)

e For least-squares, 0, = 0,

Qn ?(\ x
X — — — — — — ~ - - — —

/ / N /
| / AN /

I x - o p” 7

N 6 4
/ \)é\ * 0%
/ ~X N /X



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I)(37n)7(9>)2

Hn — Hn—l — /7(<(I)(5En)7 9n—1> — yn)q)(xn)
e The sequence (0,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,

— with expectation 6, Lt [ 6, (d0)

e For least-squares, 0, = 0,




Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I)(37n)7(9>)2

(gn — Hn—l — /7(<(I)(5En)7 9n—1> — yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ . (d6)

e For least-squares, 0, = 0,
— 6,, does not converge to 0, but oscillates around it
— oscillations of order /v

e Ergodic theorem:

— Averaged iterates converge to 0., = 0, at rate O(1/n)



Simulations - synthetic examples

e Gaussian distributions - d = 20

synthetic square

l0g, [f(6)-1(6)]




Simulations - benchmarks
e alpha (d — 500, n = 500 OOO), news (d = 1 300 000, n = 20 OOO)

alpha square C=1 test

alpha square C=opt test

1 : 1
__ 05¢ 0.5
0 | 0
|
o -0.5 -0.5
R . -1} g
< -1.5 l/Rz 1/2 -1.5 C/Rz 1/2
— 1/R"n —C/R"n
~2/| — SAG ~2/| — SAG
0 4 0 4
log, (n) log, ,(n)

news square C=1 test news square C=opt test

0.2 0.2

log[f(6)-f(6.)]

0.8/ _sac ' 0.8 _saG

2 4 2 4
log, (n) log, ,(n)



Optimal bounds for least-squares?
e Least-squares: cannot beat 0d/n (Tsybakov, 2003). Really?

— What if d > n?

¢ Refined assumptions with adaptivity (Dieuleveut and Bach, 2014)

— Beyond strong convexity or lack thereof



Finer assumptions (Dieuleveut and Bach, 2014)
e Covariance eigenvalues

— Pessimistic assumption: all eigenvalues A, less than a constant
— Actual decay as \,, = o(m~®) with tr H/® = Z AL/e small
™m




Finer assumptions (Dieuleveut and Bach, 2014)

e Covariance eigenvalues

— Pessimistic assumption: all eigenvalues A, less than a constant
— Actual decay as \,, = o(m~®) with tr H/® = Z AL/e small
™m

24 2 1/0“5 Hl/a
— New result: replace °° by () :
n n

(y )Y Tr H/% / n
N

alpha



Finer assumptions (Dieuleveut and Bach, 2014)
e Covariance eigenvalues

— Pessimistic assumption: all eigenvalues A, less than a constant
— Actual decay as \,,, = o(m~%) with tr H/* = Z AL/e small

m

2 2 1/04t Hl/a
— New result: replace cc by () !
n

n
e Optimal predictor

— Pessimistic assumption: |0y — 6,]|* finite
— Finer assumption: ||[H'/27"(0y — 6,)||2 small
160 — 0.1 | AIH 277 (60 — 6.)]]2
Y 2rp»2 min{r,1}
mnm Y4 7

— Replace



Optimal bounds for least-squares?
e Least-squares: cannot beat 0d/n (Tsybakov, 2003). Really?

— What if d > n?

¢ Refined assumptions with adaptivity (Dieuleveut and Bach, 2014)

— Beyond strong convexity or lack thereof

B 1652 Hl/a 4 H1/2—r — 0,
FB) — 7(68.) < T vy L1002l

n 727’”2 min{r,1}

— Previous results: a = +o0 and r = 1/2

— Valid for all o and r

— Optimal step-size potentially decaying with n

— Extension to non-parametric estimation (kernels) with optimal rates



From least-squares to non-parametric estimation - |

e Extension to Hilbert spaces: ®(z),0 € H

On, = On—1 —Y((2(21), 0n—1) — yn) P(xn)

o If =0, 0, is a linear combination of ®(x),...,P(x,)

n n—1
0, = Z ap®(xr) and a, = —v Z ap(P(xr), ®P(xn)) + YYn
k=1 k=1



From least-squares to non-parametric estimation - |

e Extension to Hilbert spaces: ®(z),0 € H

On, = On—1 —Y((2(21), 0n—1) — yn) P(xn)

o If 9 =0, 0, is a linear combination of ®(x;),...,P(z,)

n n—1
Hn — Z akq)(mk) and Ay = —7 Z ak<q)($/€)7 (I)(xn» T YYn
k=1 k=1

e Kernel trick: k(z,z') = (®(z), P(2'))

— Reproducing kernel Hilbert spaces and non-parametric estimation

— See, e.g., Scholkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004); Dieuleveut and Bach (2014)

— Still O(n?)



From least-squares to non-parametric estimation - ||
e Simple example: Sobolev space on X = |0, 1]
— ®(x) = weighted Fourier basis ®(x); = ¢, cos(2jmx) (plus sine)
— kernel k(z,2') =} . 3 cos [2jm(x — z')]

— Optimal prediction function 6, has norm [0, = > | F(0x)]°¢;
— Depending on smoothness, may or may not be flnlte



From least-squares to non-parametric estimation - ||
e Simple example: Sobolev space on X = |0, 1]
— ®(x) = weighted Fourier basis ®(x); = ¢, cos(2jmx) (plus sine)
— kernel k(z,2') =} . 3 cos [2jm(x — z')]

— Optimal prediction function 6, has norm [0, = > | F(0x)]°¢;
— Depending on smoothness, may or may not be flnlte

o Adapted norm ||[HY/2770,]12 = 3 | F(6.);]%p; *" may be finite

7 1602 tr H/ Al HY2-7(9y — 6,
f( n) — f(H*) < (fyn)l/o‘ + H ( 0 )HQ

n 727“”2 min{r,1}

1
e Same effect than /5-regularization with weight )\ equal to —

Y1



Simulations - synthetic examples

e Gaussian distributions - d = 20

synthetic square

O T
~ h w1 J
. 1 QN
- & JﬂvAh/\,*H/M',,\\ AR}
D
ql_ _2 _ J\l LAl ‘II"AI‘j\\, J/ql \‘I \\'\’\_
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‘C_'J S 2
= 1/8R
— =4 7| — 2
4 1/32R
— 2 1/2 \
1/2R"n \
—5} |
0 | A 5
0 N
g, ()

e Explaining actual behavior for all n



Bias-variance decomposition
(Défossez and Bach, 2015)

e Simplification: dominating (but exact) term whenn — coand v — 0

e Variance (e.g., starting from the solution)

F(B) ~ 1(0.) ~ B[ @(x)TH B ()

. . - . . ’
— NB: if noise ¢ is independent, then we obtain d%

— Exponentially decaying remainder terms (strongly convex problems)

e Bias (e.g., no noise)

f(On) — f(0s) ~ (00— 0+) " H™' (60 — 6.)

n2~y



Bias-variance decomposition (synthetic data d = 25)

10°
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lteration n



Bias-variance decomposition (synthetic data d = 25)

10° | ]

107!} ]

% 1072 | ]
S :
N——" I

S— 107% | ]

| 10—4 | E
VR B
IQ§ -5 :

= 107 i
S— i I

107" 1 Lo (bias) v = ~0/10 ]

07 | —+ (var.) v = v0/10 |

0 - |© (bias) v =g ]

108 -+ (var.) v = 7o ]

10°  10' 102 10® 10* 10° 10%° 107

lteration n



Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0,, =0, _1 — fygggzg (@(xn)THn_l — yn)q)(xn)



Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0, =0,,_1 — 7%(@(xn)T9n_1 — yn)q)(xn)
dp(2) dp(w)q)(x)T(g‘z

q(z)p(y|z) dq(:z:)y dq(x)
— Reweighting of the data: same bounds apply!

— Specific to least-squares = [E




Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0, =0,,_1 — 7%(@(:1;71)T9n_1 — yn)q)(xn)

2
— Specific to least-squares = E, () (yx) jgggy — igggcb(x)TH‘
— Reweighting of the data: same bounds apply!

e Optimal for variance: dg(z) x \/<I>(:I:)TH—1<I>(:1:)

dp(z)

— Same density as active learning (Kanamori and Shimodaira, 2003)
— Limited gains: different between first and second moments
— Caveat: need to know H



Optimal sampling (Défossez and Bach, 2015)

e Sampling from a different distribution with importance weights

]Ep(a:)p(ym)‘y _ (I)('CE)TH‘2 =E dp(fl?)‘y _ (I)('CE)TH‘2

q(x)p(ylr)dg(z)

— Recursion: 0, =0,,_1 — 7%(@(:1;71)T9n_1 — yn)q)(xn)

2
— Specific to least-squares = E, () (yx) jgggy — igggcb(x)TH‘
— Reweighting of the data: same bounds apply!

. . dq(z) 2

e Optimal for bias: x || P(x

i 2@

— Simpy allows biggest possible step size v < —=
— Large gains in practice
— Corresponds to normalized least-mean-squares



Convergence on Sido dataset (d = 4932)
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Achieving optimal bias and variance terms

e Current results with averaged SGD
o?d
n

R? 0y — 0., 2 R4 (90—(9*,[_]_1 90—9*)>
» }

2

— Variance (starting from optimal 6,) =

— Bias (no noise) = min {
n n



Achieving optimal bias and variance terms

e Current results with averaged SGD (ill-conditioned problems)
o4d

— Variance (starting from optimal 6,) =
n

R?||60 — 6x|1®

n

— Bias (no noise) =



Achieving optimal bias and variance terms

e Current results with averaged SGD (ill-conditioned problems)
o4d

— Variance (starting from optimal 6,) =
n

R?||60 — 6x|1®

n

— Bias (no noise) =

Bias Variance

Averaged gradient descent

R?||0y — 0. 21
(Bach and Moulines, 2013) 1600 | o

n n




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) [0 | g4
n n




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) 1% | 2-
n n
Accelerated gradient descent
R?[00 — 0.]|° 2
(Nesterov, 1983) 5 o°d
n

e Acceleration is notoriously non-robust to noise (d'Aspremont,

2008; Schmidt et al., 2011)

— For non-structured noise, see Lan (2012)




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) 1% | 2-
n n
Accelerated gradient descent
R?||0 — 0.]°
(Nesterov, 1983) 5 o?d
n
“Between” averaging and acceleration
R?||60y — 0.]|? 2d
(Flammarion and Bach, 2015) Hn01+a | n01—a




Achieving optimal bias and variance terms

Bias Variance
Averaged gradient descent
R?||60y — 0.]|? 2d
(Bach and Moulines, 2013) 1% | 2-
n n
Accelerated gradient descent
R?||0 — 0.]°
(Nesterov, 1983) 5 o?d
n
“Between” averaging and acceleration
R?||60y — 0.]|? 2d
(Flammarion and Bach, 2015) Hn01+a | n01—a
Averaging and acceleration
R?|10y — 0. 2d
(Dieuleveut, Flammarion, and Bach, 2016) [0 | i
n? n




Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0
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e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,




Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain
— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,

— moreover, ||0, —0,| = O,(\/7)

— Linear convergence up to the noise level for strongly-convex
problems (Nedic and Bertsekas, 2000)
e Ergodic theorem

— averaged iterates converge to 0., # 0, at rate O(1/n)
— moreover, ||6. — 0, = O(y) (Bach, 2013)



Simulations - synthetic examples

e Gaussian distributions - d = 20

synthetic logistic — 1

l0g, [f(6)-1(6)]

0 2

A
log, (n)



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions

3. Newton's method squares the error at each iteration
for smooth functions

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions = O(n 1)

3. Newton's method squares the error at each iteration
for smooth functions = O((n=1/2)?)

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion

e Online Newton step

— Rate: O((n™ Y22 4+ n=1) =0(n™1)
— Complexity: O(d) per iteration



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, (z,)))] at 6 is

equivalent to minimizing the quadratic approximation



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, (z,)))] at 6 is

equivalent to minimizing the quadratic approximation
9(0) = £(0) + (f'(0),0 = 0) + 5(0 — 0, f"(0)(6 — 9))
= [(O) + (ES},(0),0 = 0) + (0 — 0,Ef/(0)(0 — )

e Complexity of least-mean-square recursion for g is O(d)

On, = 01 — Y[ 2 (0) + F1(0)(8,—1 — 0)]

- f,,’l’(é) = 0" (yn, <9~, O (x,)))P(x,) ® ®(x,) has rank one
— New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: 9n = Hn_l — "}/[f,,/%((g_n_ﬂ + fg(ﬁ_n_l)(en_l — Hn_l)]

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 0,, = 60,,_1 — vf] (0,_1)



e Gaussian distributions - d = 20

log, [f(6)~f(6,)]

Simulations - synthetic examples

synthetic logistic — 1

log, [f(6)~f(6,)]

synthetic logistic — 2

-3 ——every 2°
| — every iter.

~4 — 2—-step

5l 2I—step—dpl. |
0 6

4
log, (n)



Simulations - benchmarks
e alpha (d — 500, n = 500 OOO), news (d = 1 300 000, n = 20 OOO)

05 alpha logistic C=1E test 05 alpha logistic C=opt test
0 0
o -0.5 -0.5
|
e Ll—ur? ~li|—-cIr?
G’g _1sl —— 1/R?n12 _1sl —— C/R2n2
o ——SAG ——SAG
—2|— Adagrad —2{| — Adagrad
— Newton — Newton
—-2.5¢ ‘ ‘ -2.5¢ ‘ ‘
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Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex

nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)
stochastic: BD//n stochastic: B%/(nu)

smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)
stochastic: LD?/\/n stochastic: L/(nu)

quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n




Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)
stochastic: BD//n stochastic: B%/(nu)
smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)
stochastic: LD?/\/n stochastic: L/(nu)
finite sum: n/t finite sum: exp(— min{1/n, u/L}t)
quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n
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1. Introduction

e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)

e Traditional statistical analysis through Rademacher complexity
2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)

e Non-smooth optimization (subgradient descent)

3. Classical stochastic approximation (not covered)

e Robbins-Monro algorithm (1951)
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4. Non-smooth stochastic approximation
e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds

5. Smooth stochastic approximation algorithms
e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, .y £(y,0 ' ®(z))



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ,y £(y,0 ' ®(z))

e Machine learning practice

— Finite data set (x1,91,...,%n, Yn)

— Multiple passes

— Minimizes training cost %2?21 0(y;, HT(P(%'))

— Need to regularize (e.g., by the ¢5-norm) to avoid overfitting

e Goal: minimize g(f) = %Zfz(ﬁ)
i=1



Stochastic vs. deterministic methods
e Minimizing g(0 Zfz ) with f;(0) = €(y;, 0" ®(x;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~:g'(0;_1) = 6;_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~ %)
— Iteration complexity is linear in n (with line search)
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Stochastic vs. deterministic methods
e Minimizing g(0 Zfz ) with f;(0) = €(y;, 0" ®(x;)) + pQ(6)

e Batch gradient descent: 6; = 0;_1—~:g'(0;_1) = 6;_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~ %)
— Iteration complexity is linear in n (with line search)

e Stochastic gradient descent: 6; = 0;_1 — fytfi’(t)(et_l)

— Sampling with replacement: ¢(¢) random element of {1,...,n}
— Convergence rate in O(1/t)
— Iteration complexity is independent of n (step size selection?)



Stochastic vs. deterministic methods
e Minimizing g(6 Zfz with f;(8) = £(y;, 0" ®(z;)) + us2(0)

e Batch gradlent descent: 9,5 = (975 1—7Ytg (975 1 = 975 1—— Zf (975 1

e Stochastic gradient descent: 6; = 0;_1 — fytfi’(t)(et_l)

/4" =~
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Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(1) iteration cost
Robustness to step size

L stochastic

deterministic

—

log(excess cost

time



Stochastic vs. deterministic methods

e Goal = best of both worlds: Linear rate with O(1) iteration cost

log(excess cost

hybri

Robustness to step size

stochastic

deterministic

time



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

" "0, If 2 = (¢t
— lteration: 6, = 0;_1 — i g yf with y?f = fi( 1t 2 ( )
n Y, otherwise



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
& [(0;—1) ifi=i(t
— lteration: 6, = 6;_1 — i ny with y} = fi( 1t ) ( )
n Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning

— Only need to store n real numbers



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is R*-smooth, i =1,....n

— 92%2?21 fi is p-strongly convex (with potentially 1 = 0)
— constant step size v, = 1/(16R?)

— initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is R*-smooth, i =1,....n

- 92%2?21 fi is p-strongly convex (with potentially 1 = 0)
— constant step size v, = 1/(16R?)

— initialization with one pass of averaged SGD

e Strongly convex case (Le Roux et al., 2012, 2013)

E|g(0:)—9(0.)] < (if+4R2H92_9*”2) exp (- tmin{gln’ 1(5122})

— Linear (exponential) convergence rate with O(1) iteration cost

_ I nu
— Aft “reduct f thb (— . {_7 })
€r on€ pass, reauction or Cost by €xp min R’ 16 R2



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is R*-smooth, i =1,....n

— 9:%2?:1 fi is p-strongly convex (with potentially 1 = 0)
— constant step size v, = 1/(16R?)

— initialization with one pass of averaged SGD

e Non-strongly convex case (Le Roux et al., 2013)

0 + B2[6— 0. 7
/n /

— Improvement over regular batch and stochastic gradient
— Adaptivity to potentially hidden strong convexity

E|g(0:) — g(6s)] <48



Convergence analysis - Proof sketch

e Main step: find “good” Lyapunov function J(6;, 3¢, ..., 9%)

— such that E[J (04,4, ..., y5 )| Fic1] < J(0r—1,y7 'yeo oyt h)
— no natural candidates

e Computer-aided proof

— Parameterize function J(6;, 4%, ..., 9y%) = g(0;) —g(0,) +quadratic
— Solve semidefinite program to obtain candidates (that depend on

n, u, L)
— Check validity with symbolic computations



Rate of convergence comparison

e Assume that L = 100, u = .01, and n = 80000 (L # R?)
— Full gradient method has rate
(1—£) =0.9999
— Accelerated gradient method has rate

(1 - /E) = 0.9900

— Running n iterations of SAG for the same cost has rate
(1—2)" =0.8825

— Fastest possible first-order method has rate

\/f—ﬁ)2 _
( T2 ) = 0.9608

e Beating two lower bounds (with additional assumptions)

— (1) stochastic gradient and (2) full gradient



Stochastic average gradient
Implementation details and extensions

e The algorithm can use sparsity in the features to reduce the storage
and iteration cost

e Grouping functions together can further reduce the memory
requirement

e We have obtained good performance when R? is not known with a
heuristic line-search

e Algorithm allows non-uniform sampling

e Possibility of making proximal, coordinate-wise, and Newton-like
variants



Objective minus Optimum

spam dataset (n = 92 189, d = 823 470)
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protein dataset (n = 145751, d = 74)

e Dataset split in two (training/testing)

10° 4 ! ! ! ! ! 5 0 ' ' ' ' ' u
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Q
O 14
-4
10 " 0.5
T T T T T L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Effective Passes Effective Passes

Training cost Testing cost



Extensions and related work
e Exponential convergence rate for strongly convex problems

e Need to store gradients

— SVRG (Johnson and Zhang, 2013)

e Adaptivity to non-strong convexity

— SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

e Simple proof

— SVRG, SAGA, random coordinate descent (Nesterov, 2012; Shalev-
Shwartz and Zhang, 2012)

e Lower bounds

— Agarwal and Bottou (2014)



Variance reduction

e Principle: reducing variance of sample of X by using a sample from
another random variable Y with known expectation

Zo=a(X —Y)+EY

~EZy=aEX + (1 — a)EY

— var Z, = | var X 4+ varY — 2cov(X,Y)

— a = 1: no bias, a < 1: potential bias (but reduced variance)
— Useful if Y positively correlated with X



Variance reduction

e Principle: reducing variance of sample of X by using a sample from
another random variable Y with known expectation

Zo=a(X —Y)+EY

~EZy=aEX + (1 — a)EY

— var Z, = | var X 4+ varY — 2cov(X,Y)

— a = 1: no bias, a < 1: potential bias (but reduced variance)
— Useful if Y positively correlated with X

e Application to gradient estimation : SVRG (Johnson and Zhang,
2013)

— Estimating the averaged gradient ¢'(6) = 137" | f/(6)
— Using the gradients of a previous iterate 6



Stochastic variance reduced gradient (SVRG)

e Algorithm divide into “epochs”

e At each epoch, starting from 6y = é perform the iteration

— Sample 7; uniformly at random

— Gradient step: 0, = 0,_1 — W{ {t(Qt—l) — {t(é) -+ gl(é) }

e Proposition: If each f; is R?-smooth and g = %2?21 fi is -
strongly convex, then after k = 20R? /s steps and with v = 1/10R?,
then f(0) — f(0,) is reduced by 10%
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1. Introduction

e Large-scale machine learning and optimization

e Classes of functions (convex, smooth, etc.)

e Traditional statistical analysis through Rademacher complexity
2. Classical methods for convex optimization

e Smooth optimization (gradient descent, Newton method)

e Non-smooth optimization (subgradient descent)

3. Classical stochastic approximation (not covered)

e Robbins-Monro algorithm (1951)
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4. Non-smooth stochastic approximation
e Stochastic (sub)gradient and averaging
e Non-asymptotic results and lower bounds

5. Smooth stochastic approximation algorithms
e Non-asymptotic analysis for smooth functions

e Least-squares regression without decaying step-sizes

6. Finite data sets

e Gradient methods with exponential convergence rates



Subgradient descent for machine learning

e Assumptions (f is the expected risk, fthe empirical risk)
— “Linear” predictors: 6(x) = 0'®(x), with ||®(2)|2 < R as.
= f(0) = >0 L(yi, @(x4) ' 6)

A

— G-Lipschitz loss: f and f are GR-Lipschitz on © = {||f||2 < D}

e Statistics: with probability greater than 1 — 9

A GRD 2
sup | (6) - 16)] < T2 |2+ 2108 |

e Optimization: after ¢ iterations of subgradient method

o . oa GRD
f(0) —gggf(ﬁ) < 7

e t = n iterations, with total running-time complexity of O(n?d)



Stochastic subgradient “descent” /method
e Assumptions

— fn convex and B-Lipschitz-continuous on {||0||> < D}

— (fn) i.i.d. functions such that Ef,, = f
— 6, global optimum of f on {||0||- < D}

2D
e Algorithm: 0,, =1IIp <6’n 1 — W o (On )>

e Bound: )
1 2DB
Efl— 0. — f(0,) <——
f(, > ) - 10 <20
e “Same” three-line proof as in the deterministic case
e Minimax rate (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

e Running-time complexity: O(dn) after n iterations



Summary of new results (Bach and Moulines, 2011)

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n™1) rate achieved without averaging for o = 1
— New: O(n™!) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

— Forgetting of initial conditions

— Robustness to the choice of C

e Convergence rates for E||0,, — 0.||?> and E||0,, — 0.

2
0 Vn

— no averaging: O( ) + O(e "™ )[|6y — 6,

tr H(0,)™ 1

160 —H*HQ)

—1 —2x —24«
+pu  O(n"““+n )+O( i

— averaging:



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (®(z,),0))?] with § € R

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(xy,)| = H = p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(z,)|| < R and |y, — (®(x,),0.)| < o almost surely
— No assumption regarding lowest eigenvalues of H

_ 4 2 4 2 — 9, 2
~ Main result: | Ef (8, 1) — f(6.) < 229 4F7000 = 0.]

n n

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(d/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: 9n = Hn_l — "}/[f,,/%((g_n_ﬂ + fg(ﬁ_n_l)(en_l — Hn_l)]

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 0,, = 60,,_1 — vf] (0,_1)



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement
& [(0;—1) ifi=i(t
— lteration: 6, = 6;_1 — i ny with y} = fi( 1t ) ( )
n Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning

— Only need to store n real numbers



Summary of rates of convergence
e Problem parameters

— D diameter of the domain
— B Lipschitz-constant

— L smoothness constant

— 1 strong convexity constant

convex strongly convex
nonsmooth | deterministic: BD/+\/t deterministic: B*/(tu)
stochastic: BD//n stochastic: B%/(nu)
smooth deterministic: LD?/t? deterministic: exp(—t+/ju/L)
stochastic: LD?/\/n stochastic: L/(nu)
finite sum: n/t finite sum: exp(— min{1/n, u/L}t)
quadratic | deterministic: LD?/t? deterministic: exp(—t+\/u/L)
stochastic: d/n + LD?/n | stochastic: d/n + LD?/n




Conclusions
Machine learning and convex optimization

e Statistics with or without optimization?

— Significance of mixing algorithms with analysis
— Benefits of mixing algorithms with analysis

e Open problems

— Non-parametric stochastic approximation

— Characterization of implicit regularization of online methods

— Structured prediction

— Going beyond a single pass over the data (testing performance)

— Further links between convex optimization and online
learning /bandits

— Parallel and distributed optimization
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