Machine Learning in Computational Biology

Jean-Philippe Vert
Jean-Philippe.Vert@mines.org

g g D PSL %

. . N EN S RESEARCH  UNIVERSITY  PARIS
 MINES institutCurie
I arl STeCh Together, let's beat cancer. SUPERIEURE

1/473



@ Introduction
@ Motivating examples
@ Learning in high dimension

2 /473



@ Introduction
@ Motivating examples
@ Learning in high dimension

© Learning with kernels

Ridge regression

Ridge logistic regression

Linear hard-margin SVM

Interlude: quick notes on constrained optimization
Back to hard-margin SVM

Soft-margin SVM

Large-margin classifiers

Kernel methods

Learning molecular classifiers with network information
Data integration with kernels

2 /473
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@ Motivations
o Feature space approach
@ Using generative models
@ Derive from a similarity measure
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© Learning with sparsity
@ Feature selection
@ Lasso and group lasso
@ Segmentation and classification of genomic profiles
@ Learning molecular classifiers with network information (bis)
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© Learning with sparsity
@ Feature selection
@ Lasso and group lasso
@ Segmentation and classification of genomic profiles
@ Learning molecular classifiers with network information (bis)

@ Reconstruction of regulatory networks
@ Introduction
@ De novo reconstruction based on mutual information
@ De novo reconstruction based on sparse regression
@ Supervised reconstruction with one-class methods
@ Supervised inference with PU learning
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@ Supervised graph inference
@ Introduction
@ Supervised methods for pairs
@ Learning with local models
@ From local models to pairwise kernels
@ Experiments
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Cells, chromosomes, DNA
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1 body = 10%* human cells (and 100x more non-human cells)
1 cell = 6 x 10° ACGT coding for 20,000+ genes
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Cancer

Normal 4 Cells with
cells damaged
DNA
¥ )
Q Cancer cell
division
VY

N\ s\ I

In normal cells,
cell division
eventually stops

http://rise.duke.edu/seek/pages/page.html70205
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http://rise.duke.edu/seek/pages/page.html?0205

Each cancer has a unique history

. " . . .o Chemotherapy-
. . . Early clonal Benign  Early invasive Late invasive .
Fertilized egg  Gestation Infancy Childhood  Adulthood expansion wmour cancer cancer r;iilrsrtear:‘c'e

Intrinsic ‘
mutation processes Environmental

and lifestyle exposures Mutator
Q Passenger mutation phenotype

Chemotherapy
¥y Driver mutation

A Chemotherapy
resistance mutation 1=10 or more

> driver mutations,

10s-1,000s of mitoses 10s-100s of mitoses 10s-100,000 or more
depending on the organ depending on the cancer passenger mutations

Stratton et al. [2009]
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...and responds differently to different treatments

Personalized CancerTherapy ﬁ st
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Molecular Profiling .« Prognostic Markers .-

Markers predictive of drug\“e“;
sensitivity/resistance

Markers predictive of ¢
adverse events

https://pct.mdanderson.org
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https://pct.mdanderson.org

Chromosomic aberrations in cancer

IRIRL (] ]
1 2 a 4
BB AR ®A OO0 wa @&l
8 7

8 9 10 1
a8 &M A oy a8
13 14 15 18 17
an sw - ..
2 X

w2

)1< )2| il ]
it /1711 '}l wou M

9 1w An

A b @ L
13

AL 15 16

(1] i
19 20

12 /473



Comparative Genomic Hybridization (CGH)

e Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe systematically
variants in DNA content

Log-ratio

Qhromcsome
A

9 10 11 12 13 14 15 16 17 18 1920092 23 X
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Cancer prognosis: can we predict the future evolution?
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Problem 1

From a CGH profile, can we predict whether a melanoma will relapse (left)
or not (right)?
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DNA — RNA — protein
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Tissue profiling with DNA chips

PreparelcDNA'Probe Prepare Microarray,
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Use in diagnosis

ALL AML

LT
s

EEEE

Problem 2

Given the expression profile of a leukemia,
myeloid leukemia (ALL or AML)?

is it an acute lymphocytic

or
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Use in prognosis

A Gene-Expression Profiling B St. Gallen Criteria
1.0 1.0
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Problem 3

Given the expression profile
5 years high?

of a breast cancer, is the risk of relapse within
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Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Protein annotation

Data available

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Problem 4
Given a newly sequenced protein, is it secreted or not?
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Drug discovery

active

inactive
aae

w inactive
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Problem 5
Given a new candidate molecule, is it likely to be active?
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Gene network inference
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Problem 6

Given known interactions, can we infer new ones?
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A common topic...
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Pattern recognition, aka supervised classification

Challenges

@ High dimension

Few samples
Structured data
Heterogeneous data

Prior knowledge

Fast and scalable
implementations

@ Interpretable models
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© Introduction

@ Learning in high dimension
© Learning with kernels
© Kernels for biological sequences
e Kernels for graphs
© Learning with sparsity
@ Reconstruction of regulatory networks

@ Supervised graph inference
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More formally
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@ X' the space of patterns or data (typically, X = RP)
@ ) the space of response or labels

o Binary classification or pattern recognition : J = {—1,1}
o Regression : Y =R

e Structured output: ) general
o S={(x1,%1),---,(Xn,yn)} a training set in (X x V)"
Output
@ A function f : X — ) to predict the output associated to any new
pattern x € X’ by f(x)

4
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Simple example 1 : ordinary least squares (O

(Hastie et al. The elements of statistical learning. Springer, 2001.)
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Simple example 2 : 1-nearest neighbor (1-NN)

(Hastie et al. The elements of statistical learning. Springer, 2001.)
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@ OLS: the linear separation is not appropriate = "large bias”

@ 1-NN: the classifier seems too unstable = "large variance”

29 /473



The fundamental " bias-variance” trade-off

@ Assume Y = f(X) + €, where € is some noise
@ From the training set S we estimate the predictor f

@ On a new point xp, we predict f(xo) but the "true” observation will
be Yo = f(xo0) + ¢

@ On average, we make an error of:
. 2
E.s (YO - f(xo))
. 2
=E.gs (f(xo) +€— f(x0)>
. 2
= B+ Es (f(x0) - (x0))
) . 2 . . 2
= £+ (f(x0) — Esf(x0)) + Es (F(x0) — Esf(x0))

= noise + bias® + variance
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Back to OLS

@ Parametric model for § € RPT!:
P
fs(X)=Bo+ Y _ BiXi=X'B
i=1
o Estimate 3 from training data to minimize
RSS(8) =D (vi — fa(x:)* = (Y = XB) (Y — Xp)
i=1
@ Solution if XTX is non-singular:

B= (XTX>_1 X7y
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Optimality of OLS

Gauss-Markov theorem

o Assume Y = X + ¢, where Ee =0 and Eee' = o?/.

@ Then the least squares estimator B is BLNUE (best IinearNunbiased
estimator), i.e., for any other estimator 5 = CY with Ef = (3,

Var(f) < Var(f)
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Optimality of OLS

Gauss-Markov theorem

o Assume Y = X + ¢, where Ee =0 and Eee' = o?/.

@ Then the least squares estimator BA is BLNUE (best IinearNunbiased
estimator), i.e., for any other estimator 5 = CY with Ef = (3,

Var(f) < Var(f)

v

Nevertheless, if variance may be very large, we may have smaller total risk
by increasing bias to decrease variance
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The curse of dimensionality
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In high dimensions, variance dominates, even for simple linear estimators.
BLUE estimators are useless.
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers”, e.g., linear predictors:

fs(x) = B'x for x € RP
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers”, e.g., linear predictors:

fs(x) = B'x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(B) = - D (f3) — %)
i=1
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers”, e.g., linear predictors:

fs(x) = B'x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:
1 o 5
R(B) = = (falxi) — yi)*.

n <
i=1

© Choose  that achieves the minimium empirical risk, subject to some
constraint:
mﬁin R(B) subjectto Q(B) <C.
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Why skrinkage classifiers?

mBin R(B) subjectto Q(B)<C.

b*
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Why skrinkage classifiers?

mﬁin R(5) subjectto Q(5)<C.

@ "Increases bias and decreases variance”
e Equivalent formulation:

mﬂin R(B) + XQ(5) .
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Choice of €2 can decrease the bias

mBin R(B) subjectto Q(B)<C.

est
b

b*
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Choice of C or \: structured regression and model

selection

@ Define a family of function classes F), where A controls the
" complexity”
@ For each )\, define

f\ = argmin EPE(f)
Fax

o Select f = % to minimize the bias-variance tradeoff.

High Bias Low Bias
Low Variance High Variance

Test Sample

Prediction Error

Training Sample

Low High
Model Complexity
38 /473



Cross-validation

A simple and systematic procedure to estimate the risk (and to optimize
the model's parameters)
@ Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n
@ For each portion, fit the model with different parameters on the
K — 1 other groups and test its performance on the left-out group
© Average performance over the K groups, and take the parameter with
the smallest average performance.
Taking K =5 or 10 is recommended as a good default choice.

39 /473



@ Many problems in computational biology and medicine can be
formulated as high-dimensional classification or regression tasks

@ The total error of a learning system is the sum of a bias and a
variance error

In high dimension, the variance term often dominates

Shrinkage methods allow to control the bias/variance trade-off

© 00

The choice of the penalty is where we can put prior knowledge to
decrease bias
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Choosing or designing a penalty...

mﬁin R(5) subjectto Q(5)<C.

We will only focus on convex penalties, which lead to efficient algorithms.
We will touch upon two important families of penalties:

@ Smooth convex penalty: ridge regression, SVM, kernels...

@ Nonsmooth convex penalty: lasso, group lasso, fused lasso,...

Welcome
Home
Latest Gift Ideas

*Free* Newsletter

Occasions
Mother's Day
Valentine's Day
Christmas

Easter

Homemade Gifts
Made Easy

Bsame (176 @

How to Make Paper Lanterns I
Search this site:

Looking for instructions on how to make paper lanterns? My husband designed an FREE Homemade
easy template for making paper lanterns in a cute round shape. They look a bit Gifts Newsletter!
oriental, don't you think? —
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© Learning with kernels
@ Ridge regression
Ridge logistic regression
Linear hard-margin SVM
Interlude: quick notes on constrained optimization
Back to hard-margin SVM
Soft-margin SVM
Large-margin classifiers
Kernel methods
Learning molecular classifiers with network information
Data integration with kernels

© Kernels for biological sequences
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© Introduction

© Learning with kernels
@ Ridge regression

© Kernels for biological sequences
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Ridge regression [Hoerl and Kennard, 1970]

© Consider the set of linear predictors:

VB eRP,  f3(x) =B8"x forxeRP.
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© Consider the set of linear predictors:

VB eRP,  f3(x) =B8"x forxeRP.

@ Consider the mean square error (MSE) as empirical risk:
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Ridge regression [Hoerl and Kennard, 1970]

© Consider the set of linear predictors:

VB eRP,  f3(x) =B8"x forxeRP.

@ Consider the mean square error (MSE) as empirical risk:

© Consider the Euclidean norm as a penalty:

P
QB =I1B8IE=>_ 87
=1

44 /473



o Let X =(xy,...,x,) the n x p data matrix, and
Y = (y1,-.. 7Yn)T € RP the response vector.
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o Let X =(xy,...,x,) the n x p data matrix, and
Y = (y1,-.. 7Yn)T € RP the response vector.

@ The penalized risk can be written in matrix form:

n

R(8) + \Q(B) = % SO () - x P+ A 32

i=1 i=1

= (Y= XB)T (Y XB)+ 2875,
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o Let X =(xy,...,x,) the n x p data matrix, and
Y = (y1,-.. 7Yn)T € RP the response vector.

@ The penalized risk can be written in matrix form:

n

R(8) + \Q(B) = % SO () - x P+ A 32

i=1 i=1

= (Y= XB)T (Y XB)+ 2875,

o Explicit minimizer:

N !
Bioee = arg min {R(8) +AQ(8)} = (X X +-anl)  XTY
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Limit cases

e = (XTX + )ml)il xTy

@ As A — 0, B;\idge — 3OS (low bias, high variance).

o As \ — 400, 3798 — 0 (high bias, low variance).
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Ridge regression example

500

beta

-500

[From Hastie et al.,

0.0 041 1.0 10.0

2001]
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Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated features:

> library(MASS) # for the lm.ridge command
> x1 <- rnorm(20)
> x2 <- rnorm(20,mean=x1,sd=.01)
> y <~ rnorm(20,mean=3+x1+x2)
> Im(y~x1+x2) $coef
(Intercept) x1 x2
3.070699  25.797872 -23.748019
> lm.ridge(y~x1+x2,lambda=1)
x1 x2
3.066027 1.015862 0.956560
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Generalization: /»-regularized learning

@ A general />-penalized estimator is of the form

mﬁin{R(ﬁ)ﬂLAIIﬁl\%} ) (1)

where
n

R(5) = = 3" (). 0)

i=1
for some general loss functions /.
@ Ridge regression corresponds to the particular loss

Uu,y) = (u—y).

e For general, convex losses, the problem (1) is strictly convex and has
a unique global minimum, which can usually be found by numerical

algorithms for convex optimization.
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Losses for reg ression

o Square loss : £(u,y) = (u—y)?
o e-insensitive loss : ((u,y) = (|u—y|— ),

@ Huber loss : mixed quadratic/linear

4 —square
—e¢—insensitive
—Huber

3

2

’..‘,\
"'" ';.;11'7'” SN

g ,"”, IIII‘\\\\\\\\\\
’%y"lll’l’l’%’, AN

0si,
Rt

y—f(x)
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© Introduction

© Learning with kernels

@ Ridge logistic regression

© Kernels for biological sequences
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Binary classification

o X = RP set of inputs

e YV ={-1,1} binary outputs

o S={(x1,%1),---,(Xn,yn)} a training set in (X x V)"

@ Goal: Estimate a function f : X — R to predict Y by sign(f(X))
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The 0/1 loss

@ The 0/1 loss measures if a prediction is correct or not:

0 if y =sign(f(x))
1 otherwise.

los1 (F(x),y)) = 1(yf(x) <0) = {

o It is them tempting to learn f3(x) = 3" x by solving:

min 7250/1 (fs (xi),yi)+ )\H/BH2

BERP N
~  regularization

misclassification rate

@ However:
e The problem is non-smooth, and typically NP-hard to solve
e The regularization has no effect since the 0/1 loss is invariant by
scaling of 3
o In fact, no function achieves the minimum when A\ > 0 (why?)
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The logistic loss

@ An alternative is to define a probabilistic model of y parametrized by
f(x), e.g.:

vy e (L1} Py F00) = e = 0 (v ()

T 1tef

= sigma(u)

| sigma(-u)

00 02 04 06 08 10

I I I
-5 0 5

@ The logistic loss is the negative conditional likelihood:

Ciogistic (F(X),y) = —Inp(y|f(x)) =In (1 + e—yf(X))
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Ridge logistic regression

[Le Cessie and van Houwelingen, 1992]

min J( In (1 + e ViP X’) +A

min J(8) = Z 1813

@ Can be interpreted as a regularized conditional maximum likelihood
estimator

@ No explicit solution, but smooth convex optimization problem that
can be solved numerically
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Solving ridge logistic regression

1o T
; _ = —yiB ' xi 2
minJ(8) = §i1:In (1+e77™) + 1813

No explicit solution, but convex problem with:

1< YiXi
Vpd(B) ===  —— +2)8
n Py 1+ e}’/ﬁ i

1 n
= D vill = Polyi | xi)] xi + 28
i=1

1 T ayiBT X
VAU =Y S o
n —1 (]_ —+ e}’iﬁ Xi)

1 n
== Pa(L]x) (1= Pa(L]x)) xix" +2)I
i=1
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Solving ridge logistic regression (cont.)

1 < T
. _ viB ' x; 2
mb!nJ(ﬁ)——n ;lln (1+e ) + A||Bll5

@ The solution can then be found by Newton-Raphson iterations:
-1
grew . gold _ [V%J <Bold>} VsJ (/Bold> _

@ Each step is equivalent to solving a weighted ridge regression problem
(left as exercise)

@ This method is therefore called iteratively reweighted least squares
(IRLS).
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© Introduction

© Learning with kernels

@ Linear hard-margin SVM

© Kernels for biological sequences
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Linear classifier
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Linear classifier
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Linear classifier
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Linear classifier
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Which one is better?
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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The margin of a linear classifier
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Largest margin classifier (hard-margin SVM)
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Support vectors
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More formally

@ The training set is a finite set of n data/class pairs:

S = {(>?1,y1), e -7()_{”7)/”)} ’

where x; € RP and y; € {—1,1}.
@ We assume (for the moment) that the data are linearly separable, i.e.,
that there exists (w, b) € RP x R such that:

w.x;+b>0 ify, =1,
WX 4+b<0  ify=—1.
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How to find the largest separating hyperplane?

For a given linear classifier f(x) = w.X + b consider the "tube" defined by
the values —1 and +1 of the decision function:

X+b=0
W.X : \A
\\ w.X+b > +1
\
\\ [ ]
o
O
w.x+b < -1 °
o ©O
w.X+b=+1
\ \\/
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The margin is 2/|| w |2

Indeed, the points X; and x5 satisfy:

By subtracting we get w.(X> — X1) = 1, and therefore:

2
w2

v=2[5% X |2=
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All training points should be on the correct side of the

dotted line

For positive examples (y; = 1) this means:
wXi+b>1.
For negative examples (y; = —1) this means:
w.x;+b<—1.
Both cases are summarized by:

Vi=1,...,n, yi(w.x;i +b) > 1.
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Finding the optimal hyperplane

Find (w, b) which minimize:

under the constraints:

Vi=1,....,n, yi(wx+b)—1>0.

This is a classical quadratic program on RP*L,
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Another view of hard-margin SVM

n
{thard—margin (W.x; + b,y;) + A|w ||%} )

min
w,b ‘
i=1

)

for the hard-margin loss function:

0 if yu>1,

Chard— in(u,y) =
hard margm( ) {—i—oo otherwise.

69 /473



© Introduction

© Learning with kernels

@ Interlude: quick notes on constrained optimization

© Kernels for biological sequences

70 /473



Optimization problems

@ We consider an equality and inequality constrained optimization
problem over a variable x € X:

minimize f(x)
subject to  hi(x)=0, i=1,....,m,
g(x)<o0, j=1,...,r,

making no assumption of f, g and h.

@ Let us denote by f* the optimal value of the decision function under
the constraints, i.e., f* = f (x*) if the minimum is reached at a global
minimum x*.

v
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Lagrangian and dual function

The Lagrangian of this problem is the function L : X x R™ x R" — R
defined by:

L(x, A ) = F(x -I-ZAh )+ D g

.
Il
—
X
~
\

Lagrangian dual function
The Lagrange dual function g : R™ x R" — R is:

q(A, 1) = inf L(x, A, p)
xeX

= inf, (f(x)JrZ)\,-h,- (x)+zujgj(x)) .
i=1 j=1
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Properties of the dual function

@ ¢ is concave in (A, u), even if the original problem is not convex.

@ The dual function yields lower bounds on the optimal value f* of the
original problem when g is nonnegative:

gAp) <, YAeR"VueR, p>0.
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@ For each x, the function (A, 1) — L(x, A, ) is linear, and therefore
both convex and concave in (A, p). The pointwise minimum of
concave functions is concave, therefore g is concave.

@ Let X be any feasible point, i.e., h(x) =0 and g(x) < 0. Then we
have, for any A and p > O:

Do Xihi(x)+ > migi(x) <0,
i=1 i=1

= L(x,\p)=f(x +Z)\h —f-z,u,g, ) < f(X),

= g\ p) =infL(x, A\, p) < L(x, A\ p) <f(x), Vx. O
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Dual problem

For the (primal) problem:

minimize f(x)
subject to h(x) =0, g(x)<0,

the Lagrange dual problem is:

maximize q(\, p)
subjectto w© >0,

where g is the (concave) Lagrange dual function and A and p are the
Lagrange multipliers associated to the constraints h(x) = 0 and g(x) < 0.
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Weak duality

o Let d* the optimal value of the Lagrange dual problem. Each g(\, u)
is an lower bound for f* and by definition d* is the best lower bound
that is obtained. The following weak duality inequality therefore

always hold:
dr<f*.

@ This inequality holds when d* or f* are infinite. The difference
d* — * is called the optimal duality gap of the original problem.
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Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.

d* = f*.

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

Strong duality does not hold for general nonlinear problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex problems are called
constraint qualification.
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Slater's constraint qualification

Strong duality holds for a convex problem:

minimize f(x)
subject to  gj(x) <0, j=1,...,r,
Ax = b,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:
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@ Slater’s conditions also ensure that the maximum d* (if > —o0) is
attained, i.e., there exists a point (\*, u*) with

@ They can be sharpened. For example, strict feasibility is not required
for affine constraints.

@ There exist many other types of constraint qualifications
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Dual optimal pairs

Suppose that strong duality holds, x* is primal optimal, (\*, u*) is dual
optimal. Then we have:

f(x*) = q (A", %)

x€ER

= inf {0+ Y N+ Y uigix)
i=1 j=1

< F(X) + D AThi(x) + > pigi(x?)
i=1 j=1

< f(x7)

Hence both inequalities are in fact equalities.
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Complimentary slackness

The first equality shows that:
O, X%, w7) = inf L A% 0%)

showing that x* minimizes the Lagrangian at (\*, u*). The second
equality shows that:

pigi(x*)=0, j=1,...,r.

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint is
active at the optimum.
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© Introduction

© Learning with kernels

@ Back to hard-margin SVM

© Kernels for biological sequences
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In order to minimize:

under the constraints:
Vi=1,...,n, yi(w.xi+b)—12>0,

we introduce one dual variable «; for each constraint, i.e., for each
training point. The Lagrangian is:

oo 1 . L
L(w,b,a):5!\w|!2—Za,-(yf(w-x,-+b)—1)-
=1
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e L(w,b,q) is convex quadratic in w. It is minimize for:
n n
Val=w -3 ay%i=0 = W=) ayk.
i—1 i=1
o L(w,b,d) is affine in b. Its minimum is —oo except if:

VbL:Za,-y;:O.

i=1
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Dual function

@ We therefore obtain the Lagrange dual function:

¥) = inf L(W,b,d
q(@) = __inf . L(W.b,a)
i = 3 N Y ivieie%i % i 30 gy =0,
—00 otherwise.

@ The dual problem is:

maximize q (&)
subject to @ > 0.
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Dual problem

Find o € R™ which maximizes

n

n n
L(d) = Z aj — % Z Z QoG yiXiX;,
i—1

i=1 j=1
under the (simple) constraints «; > 0 (for i =1,...,n), and

n

Z QY = 0.

i=1

This is a quadratic program on RN, with "box constraints”. &* can be
found efficiently using dedicated optimization softwares.
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Recovering the optimal hyperplane

Once @* is found, we recover (w*, b*) corresponding to the optimal
hyperplane. w* is given by:

n
w* = § ai)_(}a
i=1
and the decision function is therefore:

F*(R) = w*.% + b*

3

1
A
Rl
X
+
o
*
—
N
N—r
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Interpretation: support vectors
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Primal (for large n) vs dual (for large p) optimization

@ Find (W, b) € RP*! which minimize:
w13
under the constraints:
Vi=1,...,n,  yi(Wxi+b)—-12>0.
@ Find a* € R” which maximizes
) n 1 o
L(a) = ;ai —5 ;;aiaj%iji-xjv

under the (simple) constraints «; > 0 (for i =1,...,n), and

n
Z ajy;i = 0.
i—1
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© Introduction

© Learning with kernels

@ Soft-margin SVM

© Kernels for biological sequences
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What if data are not linearly separable?
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What if data are not linearly separable?
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What if data are not linearly separable?
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What if data are not linearly separable?

91 /473



Soft-margin SVM

o Find a trade-off between large margin and few errors.

@ Mathematically:

) 1
min {n‘)arg’[n(f) —+ C X errors(f)}

f

o C is a parameter
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Soft-margin SVM formulation

@ The margin of a labeled point (X, y) is
margin(x,y) = y (w.X + b)

@ The error is

o 0if margin(x,y) > 1,

o 1 — margin(X,y) otherwise.
@ The soft margin SVM solves:

. 112 RN
C 0,1—y;(wx + b
rvg;g{wn +CY max(0.1— y; (W + ))}

i=1
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Soft-margin SVM and hinge loss

n

rg’lg {Zlehinge (M_;'XI' + bd’i) + )\H w H%} )
=

for A = 1/C and the hinge loss function:

0 if yu>1,

1 —yu otherwise.

\ 1(f(x),y)
° \ yE(x)

1

Ehinge(uay) - max(l — yu, 0) - {
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Dual formulation of soft-margin SVM (exercice)

Maximize
n n

n

1 S

L(d) = E a5 aiaGyiyiXi.X;,
i=1 i=1 j=1

under the constraints:

0<aa;<C, fori=1,...,n
Z?:lai}/izo-
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Interpretation: bounded and unbounded support vectors
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© Introduction

© Learning with kernels

@ Large-margin classifiers

© Kernels for biological sequences
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Loss functions for classifications

We already saw 3 loss functions for binary classification problems
@ The 0/1 loss £y/1 (f(x),y) = 1(yf(x) <0)
o The logistic l0ss £jogistic (f(x),y) = In (1 + e™¥ )
@ The hinge loss £pjnge (f(x),y) = max(0,1 — yf(x))

Definition

In binary classification () = {—1,1}), the margin of the function f for a
pair (x,y) is:
yf(x).

In all cases the loss is a decreasing function of the margin, i.e.,
(f(x),y) =@ (yf(x)), with¢non-increasing

What about other similar loss functions?
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Loss function examples

5
— 0-1
4 — hinge
square
3 —— logistic
2
1

%S % 4 o0 1 2 3 a

Method o(u)
Logistic regression log (1 +e™")
Support vector machine (1-SVM) | max (1 — u,0)
Support vector machine (2-SVM) | max (1 — u, 0)?
Boosting e !

99 /473



Large-margin classifiers

Given a non-increasing function ¢ : R — R, a large-margin linear
classifier is an algorithm that estimates a function fz(x) = BT x by solving

1
mﬂln; g @(Yifﬁ(xi))"‘)‘nﬂﬂg
i=1

Hence, ridge logistic regression and SVM are large-margin classifier,
corresponding to ¢(u) =In(1+ e ") and ¢(u) = max(0,1 — u),
respectively. Many more are possible.

Questions:
© Can we solve the optimization problem for other ¢'s?
@ Is it a good idea to optimize this objective function, if at the end of
the day we are interested in the {g/; loss, i.e., learning models that

make few errors?
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Solving large-margin classifiers

1O
min > (8 xi) + Al 813
i=1

@ When ¢ is convex, this is a stricly convex function of §

@ It can then be solved numerically by generic or specific algorithms for
convex optimization, e.g., Newton's or gradient method

@ When n is large, stochastic optimization is particularly useful (at each
step, only approximate the gradient with one or a batch of examples)
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A tiny bit of learning theory

Assumptions and notations

Let P be an (unknown) distribution on X x ), and
n(x) = P(Y = 1| X = x) a measurable version of the conditional
distribution of Y given X
Assume the training set S, = (X, Y,-),-:L__’n are i.i.d. random
variables according to P.
The risk of a classifier f : X — R is R(f) = P (sign(f(X)) # Y)
The Bayes risk is

R*= inf  R(f)

f measurable
which is attained for f*(x) = n(x) — 1/2
The empirical risk of a classifier f : X — R is

Zl sign(f(X;)) # Yi)
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@ Let the empirical ¢-risk be the empirical risk optimized by a
large-margin classifier:

RUF) = = 3" 0 (Vi (X))
i=1

@ It is the empirical version of the y-risk
Ro(f) = Elp (Yf (X))]

@ Can we hope to have a small risk R(f) if we focus instead on the
p-risk R,(f)?
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A small ¢-risk ensures a small 0/1 risk

Theorem [Bartlett et al., 2003]

Let ¢ : R — Ry be convex, non-increasing, differentiable at 0 with
¢'(0) < 0. Let f: X — R measurable such that

Ro(f)= min R,(g)=R;.
g measurable
Then
R(f)= min R(g)=R".
g measurable
Remarks:

@ This tells us that, if we know P, then minimizing the ¢-risk is a good
idea even if our focus is on the classification error.

@ The assumptions on ¢ can be relaxed; it works for the broader class
of classification-calibrated loss functions [Bartlett et al., 2003].

@ More generally, we can show that if R,(f) — R,; is small, then
R(f) — R* is small too [Bartlett et al., 2003].
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A small ¢-risk ensures a small 0/1 risk

Proof sketch:
Condition on X = x:

Ro(f | X =x) = E[p (YF (X)) [ X = x] = n(x)e (f(x)) + (1 = n(x)) ¢ (=F(x))
Ro(=F X =x) = E[p (=YF (X)) | X =x] = n(x)¢ (= (x)) + (1 = n(x)) ¢ (f(x))
Therefore:

Ro(f | X =x) = Ro(=f [ X = x) = [2n(x) — 1] x [¢ (f(x)) — ¢ (=£(x))]
This must be a.s. <0 because R,(f) < R,(—f), which implies:
o if n(x) > 3, v (f(x)) < p(~f(x)) = f(x)=0
o if n(x) < 3, ¢(f(x)) > ¢ (—f(x)) = f(x)<0

These inequalities are in fact strict thanks to the assumptions we made on ¢ (left
as exercice). O
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Empirical risk minimization (ERM)

To find a function with a small (-risk, the following is a good candidate:

Definition

The ERM estimator on a functional class F is the solution (when it exists)
of:

f, = argmin RS(f).
feF
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Empirical risk minimization (ERM)

To find a function with a small (-risk, the following is a good candidate:

Definition

The ERM estimator on a functional class F is the solution (when it exists)
of:

fy, = argmin RS(f).
feF

Questions:
@ Is R}(f) a good estimate of the true risk Ry,(f)?

Q Is R,(f,) small?
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Class capacity

A

o The ERM principle gives a good solution if R, (f) is similar to the
minimum achievable risk infscx R ().
@ This can be ensured if F is not “too large".

@ We need a measure of the “capacity” of F.

| A\

Definition: Rademacher complexity
The Rademacher complexity of a class of functions F is:

2 n
n;U;f(X,-)

where the expectation is over (X;),_; , and the independent uniform
{*1}-valued (Rademacher) random variables (0i);_; -

Rad, (F) = Ex |sup

feF

)

\
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Basic learning bounds

Suppose ¢ is Lipschitz with constant L:
Vu,u' €R,  |p(u) — ()| < Ly |u—d|.

Then the ¢-risk of the ERM estimator satisfies (on average over the
sampling of training set)

Es,R, <f> ~ R} < 4L,Rad, (F) + inf Ry(f) — R;

~~

E - Estimation error
xcess (p-risk

Approximation error

This quantifies a trade-off between:

e F "large” = overfitting (approximation error small, estimation error
large)
e F "small" = underfitting (estimation error small, approximation error

large)
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ERM for bounded linear classifiers

Consider the set of linear functions f5(x) = 3" x where /3 is bounded:

Fe={fs : | Bll2<B}.

2B, /E| X |12
Rad, (Fg) < — YV~ 2

Vvn
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Rad, (Fg) =Ex, | sup
_fE]:B

n

2
;;a;f(x,-)

2 n
(9250}

2 n
=Ex,.o BHEZU,'XI' 2
L i1

:EXU sup
151<B

(linearity)

(Cauchy-Schwarz)

2B :
= —Ex, [ 1Y oiXi 3
i=1

n
<= | Exo | D oiopX X

ihj=1

(Jensen)
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But E, [oj0;] is 1 if i = j, O otherwise. Therefore:

2B n
Rad,, <= |E E, [ojo]] X:-T X;
ad, (Fg) < = xlz [io) XX

2B u
<- Ex Y [ Xi13
i=1

2B+\/Ex|| X |I3

- Vn
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Basic learning bounds in RKHS balls

Suppose || X || < k a.s. Then the ERM estimator in Fp satisfies

A «  8L,kB _ .
ER, (£) - Ry < St L.En;B R.(f) — Rw} .

Remarks
@ B controls the trade-off between approximation and estimation error

@ The bound on expression error is independent of P and decreases
with n

@ The approximation error is harder to analyze in general

@ In practice, B (or A, next slide) is tuned by cross-validation
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ERM as penalized risk minimization

o ERM over Fjg solves the constrained minimization problem:

{ming % >oiq e (vifa (xi))

subject to || B |2 < B.

@ To make this practical we assume that ¢ is convex.

@ The problem is then a convex problem in 8 for which strong duality
holds. In particular 3 solves the problem if and only if it solves for
some dual parameter \ the unconstrained problem:

1
ﬁrg]ll&{n;@()/ifﬁ (Xi))+>\’|ﬁ“§} :

113 /473



Summary: large margin classifiers

o ]

]

n

o

— 1-SVM

o | — 2-SVM

N —— Logistic
3w —— Boosting
£ <4 7]
o

o ]

S

o |

o

o |

o

1 n
ind = of (%)) + Al f |2
;nelﬂ{ni:lso(y (xi)) + Al ”H}

@  calibrated (e.g., decreasing, ©'(0) < 0) = good proxy for
classification error

@  convex + representer theorem = efficient algorithms
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© Introduction

© Learning with kernels

@ Kernel methods

© Kernels for biological sequences
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Sometimes linear methods are not interesting

oOO
5 e)
o ° o
e)

o © © ¢}
e) [ )

° o e)
e) e)
e) O

O O

e) o O
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Solution: non-linear mapping to a feature space

O e ° O,
R. 4 ° (0]@)
R P O °® ® 0 00 y22
O O
O

Let (x) = (x2,x2)', w = (1,1)’ and b = 1. Then the decision function is:
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Definition

For a given mapping ® from the space of objects X to some feature space,
the kernel between two objects x and x’ is the inner product of their
images in the features space:

Vx,x' € X, K(x,x') = d(x)Td(x).

Example: if ®(X) = (x2,x2)’, then

K(%,x') = ®(X).8(X) = (x1)2(4)* + (x)*(4)°.
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The kernel tricks

© Many linear algorithms (in particular ¢>-regularized methods) can be
performed in the feature space of ®(x) without explicitly computing
the images ®(x), but instead by computing kernels K(x, x’).

@ It is sometimes possible to easily compute kernels which correspond
to complex large-dimensional feature spaces: K(x,x’) is often much
simpler to compute than ®(x) and ®(x’)
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Trick 1 illustration: SVM in the original space

@ Train the SVM by maximizing
n 1 n n
L(@) =) - 5 S aiagyiyix' 5,
i=1 i=1 j=1
under the constraints:

0<a;<C, fori=1,...,n
27:1%}420-

@ Predict with the decision function

n
F(X)=> ajx/ X+ b
i=1
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Trick 1 illustration: SVM in the feature space

@ Train the SVM by maximizing

under the constraints:

0<a;<C, fori=1,...,n
27:1%}420-

@ Predict with the decision function

F(R) =3 a0 () @ (%) + b
i=1

121 /473



Trick 1 illustration: SVM in the feature space with a kernel

@ Train the SVM by maximizing
Zaf - *ZZ@ oyiyiK (5,%)
i=1 j=1
under the constraints:

0<a;<C, fori=1,...,n
27:1%}420-

@ Predict with the decision function

ZaK (X, X) + b*.
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Trick 2 illustration: polynomial kernel

x1 x12

For X = (x1,x) " € R?, let 5()?) = (x12, \@Xlxz,xzz) € R3:

2

|

—~

=
R

+

S
RS
~—
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Trick 2 illustration: polynomial kernel

x1 x12
5 P o o
o] 0% o
o o}
o O /—*
©) oo O
o)
o o © o X2 ° 0%
o ® ] Qoo
°
Re| o o oo © 000 x2?
o o
o) O
o O

More generally,
K(%, %)= (%% +1)¢

is an inner product in a feature space of all monomials of degree up to d
(left as exercice.)
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Combining tricks: learn a polynomial discrimination rule

with SVM

@ Train the SVM by maximizing

L(a@) = Za, QZZany,yJ (X Xj—i—l)d7

i=1 j=1

under the constraints:

27:1 aiyi =0.

@ Predict with the decision function

{Oga,-SC, fori=1,...,n

n d
F(R)=> (z,&w 1) + b

i=1
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lllustration: toy nonlinear problem

> plot(x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))

Training data
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%AA%AAA o
@ 7 A AR A > °
Aa W2 e
IN RS
IN
~
IN
o
X
- IN
IN
N
a8 N
NS
IN IN
o - AAAA A A
Loah
a
N IN
-
I
IN
T T T T T
-1 0 1 2 3

x1
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lllustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel="vanilladot’)
> plot(svp,data=x)

SVM classification plot
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lllustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc",
kernel=polydot (degree=2))
> plot(svp,data=x)

SVM classification plot
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More generally: trick 1 for ¢,-regularized estimators

Representer theorem

Let f3(x) = BT ®(x). Then any solution 5 of

RN
mﬁln; E U(f3(xi), vi) + AlBII5
i=1

can be expanded as
n
= Z aiK(x;i, x)
i=1

where o € R" is a solution of:

amel]lr{;'";zé Zaj XnXJ) Yi +)\Zaaj XHXj .

ij=1

v
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Representer theorem: proof

@ For any 8 € RP, decompose 8 = s + 51 where
Bs € span(®(x1),...,P(x,)) and 5, is orthogonal to it.

@ On any point x; of the training set, we have:

f3(xi) = BT P(x;) = B (xi) + B] P(x;) = B D) = fa5(%) -

o On the other hand, we have || 82 = || Bs |3+ | 8. 13 > I s 12
with strict inequality if 5, # 0.

o Consequently, Bs is always as good as 3 in terms of objective
function, and strictly better if 5, # 0. This implies that at any
minimum, 3, = 0 and therefore § = Bs = > _I_; ;®(x;) for some
a c RN

@ We then just replace S by this expression in the objective function,
noting that

1813 = | Za (x)[13 = Z ajaj®(x) () = > aioiK(xi, X)) -

ij=1 ij=1
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Example: kernel ridge regression

o Let & : X — RP be a feature mapping from the space of data to a
Euclidean or Hilbert space.

o Let f5(x) = BT ®(x) and K the corresponding kernel.

@ By the representer theorem, any solution of:

n

~ o1
f= argfmln; Z (yi — fs (Xi))2 + Al B ”%
B =1

can be expanded as:

3
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Example: kernel ridge regression

Let Y = (y1, ... ,y,,)T € R"” the vector of response variables.
Let a = (v, ... ,oz,,)T € R" the unknown coefficients.
Let K be the n x n Gram matrix: K;j = K (x;, x;) .

We can then write in matrix form:

(F(xl),...,F(xn))T ~ Ka,

@ Moreover,

n n
1815 = ZZOZ,’O&J‘K(X,',XJ') =a' Ka.

i=1 j=1
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Example: kernel ridge regression

@ The problem is therefore equivalent to:

1
argmin= (Ka — YY) (Ka—Y)+ X' Ka.
aeRrn N

@ This is a convex and differentiable function of a. Its minimum can
therefore be found by setting the gradient in a to zero:

2
0= K (Ka - Y)+2\Ka
=K[(K+Anl)a—Y]

e For A > 0, K+ Anl is invertible (because K is positive semidefinite)
so one solution is to take:

a=(K+n)lty.
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Example (KRR with Gaussian RBF kernel)
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Example (KRR with Gaussian RBF kernel)

lambda = 1000
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Example (KRR with Gaussian RBF kernel)

lambda = 100
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Example (KRR with Gaussian RBF kernel)

lambda = 10
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Example (KRR with Gaussian RBF kernel)

lambda =1
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Example (KRR with Gaussian RBF kernel)

lambda = 0.1
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Example (KRR with Gaussian RBF kernel)

lambda = 0.01
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Example (KRR with Gaussian RBF kernel)

lambda = 0.001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.0001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.00001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.000001
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Example (KRR with Gaussian RBF kernel)

lambda = 0.0000001
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Remark: uniqueness of the solution

Let us find all &'s that solve
K[(K+Anl)a—Y]]=0

@ K being a symmetric matrix, it can be diagonalized in an orthonormal
basis and Ker(K) L Im(K).

o In this basis we see that (K + Anl)™" leaves Im(K) and Ker(K)
invariant.

@ The problem is therefore equivalent to:

(K+Anl)a— Y € Ker(K)
sa—(K+ )Y e Ker(K)
sa=(K+Anl)1Y +e with Ke =0.
o However, if &' = o + € with Ke = 0, then:
|8-F1B=(a—a) K(a-a)=0,
therefore 3 = 3’. KRR has a unique solution /3, which can possibly be

expressed by several a's if K is singular.
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Comparison with "standard” ridge regression

Let X the n x p data matrix, K = XX T the kernel Gram matrix.

@ In "standard” ridge regression, we have f(x) = BTx with
N -1
B= (XTX n n)\l> xTy .

@ In "kernel” ridge regression, we have f(x) = ST aix x = AT x with

n
~ —1
F=>apx=XTa=XT (xxT —i—)\nl) Y.
=1

Oups... which one is correct?
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Comparison with "standard” ridge regression

Matrix inversion lemma

For any matrices B and C, and «y > 0 the following holds (when it makes

sense):
B(CB+-1)"'=(BC+~1)'B

We deduce that (of course...):

~ -1 -1 ~
B= (XTX n n)\l> XTy =xT (xxT n Anl) Y=3

. 2

pXp nxn

Computationally, inverting the matrix is the expensive part, which suggest
to implement:

e KRR when p > n (high dimension)
@ RR when p < n (many points)
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Generalization

e We learn the function f(x) = Y7 ; a;K(xi, x) by solving in a the
following optimization problem, with adequate loss function ¢:

1 n n n
in =S ¢ K(xi, ), vi | + A K (xi, X))
Orénelﬁnniz_; jz_;aj (XIaXJ)ayI + I"Jz_:lalaj (XI)XJ)

@ No explicit solution, but convex optimization problem

o Note that the dimension of the problem is now n instead of p (useful
when n < p)
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The case of SVM

@ Soft-margin SVM with a kernel solves:

min thinge ZO@'K(X;,XJ'),)/:' +)\Zai0éjK(Xi,Xj)
i—1 =1

QR =
ij=1

o By Lagrange duality we saw that this is equivalent to
n 1 n n
max k() =D ai =5 2 ) cvyyiiK ()
i=1 i=1 j=1
under the constraints:
0<;<C, fori=1,...,n
27:1 a;yi =0.

@ This is not a surprise, both problems are also dual to each other
(exercise).
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Kernel example: polynomial kernel

x1 x12

For X = (x1,x) " € R?, let 5()?) = (x12, \@Xlxz,xzz) € R3:

2

|

—~

=
R

+

S
RS
~—
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Kernel example: polynomial kernel

x1 x12
5 P o o
o] 0% o
o o}
o O /—*
©) oo O
o)
o o © o X2 ° 0%
o ® ] Qoo
°
Re| o o oo © 000 x2?
o o
o) O
o O

More generally,
K(%, %)= (%% +1)¢

is an inner product in a feature space of all monomials of degree up to d
(left as exercice.)
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Which functions K(x, x") are kernels?

Definition

A function K(x, x’) defined on a set X" is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

X —H,

such that, for any x,x’ in X:

K (x,x') =(®(x),® (X/)>,H .
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@ An inner product on an R-vector space H is a mapping
(f,g) — (f,g)4y from H? to R that is bilinear, symmetric and such
that (f,f) > 0 for all f € H\{0}.

@ A vector space endowed with an inner product is called pre-Hilbert. It
is endowed with a norm defined by the inner product as

1
1l = {F. )3,

@ A Hilbert space is a pre-Hilbert space complete for the norm defined
by the inner product.
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Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set X is a function
K : X x X — R symmetric:

V(x,x’) e X2, K(x,x’) = K(x’,x),

and which satisfies, for all N € N, (x1,xa,...,xy) € XN et
(31,32,...,3/\/) e RN:

ZZaaj (xi,x;) > 0.

i=1 j=1

144 / 473



Kernels are p.d. functions

Theorem (Aronszajn, 1950)

K is a kernel if and only if it is a positive definite function.
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Proof: kernel =— p.d.

o (& (x),®(x))gs = (®(X), P (x)go) |
o SN SN aia (@ (xi), ® (x))ga = || Sy 2 (%) 124 >0
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Proof: p.d. = kernel (1/5)

@ Assume K: X x X — Ris p.d.
o Forany x € &, let Ky : X — R defined by:

Ki:t— K(x,t).

o Let Hg be the vector subspace of R* spanned by the functions
{Kx}xex: i-e. the functions f : X = R for the form:

f= in: a,'le.
i=1

for some m € N and (a1,...,am) € R™.
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Proof: p.d. = kernel (2/5)

o For any f, g € Ho, given by:

m

f=> aikyg, &= bk,
j=1

i=1
let:

(f. &)y, = Z aibiK (xi,y;)) -
i
° <f,g)H0 does not depend on the expansion of f and g because:

(F.8)n, = Y _aig (xi) = > _ bif (y))-
i=1 j=1

o This also shows that (.,.);, is a symmetric bilinear form.
@ This also shows that for any x € X and f € Hj:

(f, Kx)yy, = (%)
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Proof: p.d. = kernel (3/5)

@ K is assumed to be p.d., therefore:

m
1B = 3" sk (x1x) > 0.
ij=1
In particular Cauchy-Schwarz is valid with (., ‘>7-Lo'

@ By Cauchy-Schwarz we deduce that Vx € X

N=

[F )| = [ (F, Ky | < I [lao-K (x,%)2

therefore || f ||, =0 = f =0.

@ Hy is therefore a pre-Hilbert space endowed with the inner product

(s )24y
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Proof: p.d. = kernel (4/5)

e For any Cauchy sequence (f,)s>0 in (Ho, (., >Ho) we note that:

Y (x,m,n) € X x Nz, [ fn (X)) = o (X) | < || — F1 ||HO.K(X,X)% .

Therefore for any x the sequence (f,(x)),~, is Cauchy in R and has
therefore a limit.

o If we add to Hg the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is therefore
a Hilbert space (up to a few technicalities, left as exercice). [
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Proof: p.d. = kernel (5/5)

@ Let now the mapping ® : X — H defined by:
Vxe X, &(x)= K.
@ By the reproducing property we have:

V(xy) € X% (0(x), 0(y))y = (Ka Ky)y = K(xy). O
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Kernel examples

@ Polynomial (on R9):
K(x,x') = (x.x' 4+ 1)?

@ Gaussian radial basis function (RBF) (on R)

U112
K(X,X/) — exp <_HX2)2(H>
g

o Laplace kernel (on R)
K(x,x") = exp (=[x — X'|)
e Min kernel (on R})

K(x,x") = min(x, x)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x,x") = (®(x), d(x'))
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Example: SVM with a Gaussian kernel

@ Training:

@ Prediction
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Example: SVM with a Gaussian kernel

Z < HX—X:H )
o exp 2o

SVM classification plot

1.0

— 0.5

— 0.0

— —0.5

1
|y
o
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How to choose or make a kernel?

| don't really know...
Design features?

Adapt a distance or similarity measure?

Design a regularizer on f7?
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Example: design features (Gartner et al., 2003)

1d
2 c 3c 3e
la 2b 2d
4

4c 4e
Gl e Gl x &

K(Gi, G) =1TAZ 1

Show that the features are the counts of labeled walks of length n in the
graph.
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Example: adapt a similarity measure (Saigo et al., 2004)

CGGSLIAMM------ WEFGV

P R R RN
C----LIVMMNRLMWFGV

ssg(m) =S(C,C)+ S(L, L)+ S(I,1)+ S(A, V) +25(M, M)
+S(W, W)+ S(F,F)+ S(G,G)+ S(V,V) —g(3) —g(4)

SWs g(x,y) :== max ssq(m) is not a kernel
wen(x,y)

Kff\) (x,y) = Z exp (fss g (x,y,7m)) is a kernel
meN(x,y)
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Example: design a regularizer

o Remember f3(x) = x' ®(x), the regularizer is Q(f3) = |3/
@ Regularize in the Fourier domain:
o2

() = [ 17 exw 75 o K(uy) = e (‘(X_y)2>

202

@ Sobolev norms

1
Q(f) = /0 f’(u)zdu K(x,y) = min(x,y)
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© Introduction

© Learning with kernels

@ Learning molecular classifiers with network information

© Kernels for biological sequences
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Molecular diagnosis / prognosis / theragnosis
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Gene networks

N Glycan
biosynthesis

Glycolysis /
Gluconeogenesis
Porphyri N
and ™™ suitur
chlorophy] metabolism
metabolism
Nitrogen,
asparagine

metabolism

Folate
biosynthesis ¥

/polymerase

subunits
Biosynthesis of steroids, N\

ergosterol metabolism

Lysine
biosynthesis phosphorylation,
TCA cycle
Phenylalanine, tyrosine and,

tryptophan biosynthesis Purine
metabolism

161 /473



Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be *“coherent” with
respect to this prior knowledge
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Graph based penalty

fa(x) = BT x min R(f5) + XQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weights.
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Graph based penalty

fa(x) = BT x min R(f5) + XQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weights.

An idea Rapaport et al. [2007]
Q(B8) =) (8 — B)?,

inj

il (g 52 > (Bi—86)-

i~j
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Graph-based penalty as a kernel

The function f(x) = 3T x where 3 is solution of

min - €<BTX,,y,> —i—)\z

BeRe,°E | f=0 1 4 =~

7T ®(x) where v is solution of

mm—Zé( )+>\’y v,

YERP N

is equal to g(x) =

and where
TL*X/

d(x)"d(x') = x

for L* the pseudo-inverse of the graph Laplacian.

So we can just train a kernel method with K(x, x’)

=xL*x
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 o0
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Properties of the Laplacian

Lemma

Let L = D — A be the Laplacian of a connected graph with p vertices:

@ Forany f € RP,

S (F- = fTLe

inj

@ L is a symmetric positive semi-definite matrix

e 0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1,...,1)

@ The image of L is

/m(L):{feRP:if,:o}
i=1
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Proof: link between Q(f) and L

> (fi=6) =2 (f + £ —2ff)

i~j inj

m

= Diif? 2> fif
i=1

invj
= f'Df — fTAf
=fTLf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.

For any f € RP, f'Lf = Q(f) > 0, therefore the (real-valued)
eigenvalues of L are > 0 : L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0

iff FTLF=0

iff Ziwj (fi — 6)2 =0,

iff f; = f; when | ~ j,

iff 7 is constant (because the graph is connected).

L being symmetric, Im(L) is the orthogonal supplement of Ker(L),

that is, the set of functions orthogonal to 1. [
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Pseudo-inverse of L

Remember the pseudo-inverse L* of L is the linear application that is equal
to:

e 0 on Ker(L)

o L= on Im(L), that is, if we write:

P
L= Z )\,’U,’U,T
i=1
the eigendecomposition of L:
L= Z M) ]
A0

@ In particular it holds that L*L = LL* = Iy, the projection onto
Im(L) =H.

o Similarly, L 31> =L

N
N[

L= =y, where L3 = (L*)2.
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Proof of the theorem

mn ) ZE (,BTx,,y,) A3 (5

PSP
ﬁeR 72,: INJ

BTxi,vi) + ABT LA

“pin 2t
(

— min 725 (M2.3) x,,y,> +ABTLE

,BEH n

—m.nfze (L) L2, y1) + A(L2B) T (L25)

BEH N (
,l
= Lne'ﬂﬁ (’YT 2Xia)’i) + My Ty
_1

171 /473



0.88 —-0.12 0.08 —-0.32 —-0.52

-0.12 0.88 0.08 —-0.32 —-0.52

L = 0.08 0.08 0.28 -0.12 -0.32
-032 -0.32 -0.12 048 0.28

-052 -052 -032 0.28 1.08
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Classifiers
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Classifier
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Other penalties with kernels

0(x)T0(x) = x Kex
with:
@ Kg = (c+ L)1 leads to

P
QB)=cd B+ (Bi—8).
i=1 invj
@ The diffusion kernel:

Ke = expp(—2tL).

penalizes high frequencies of 5 in the Fourier domain.
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© Introduction

© Learning with kernels

@ Data integration with kernels

© Kernels for biological sequences
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@ Assume we observe K types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).

@ We saw in the previous part how to make kernels for each type of
data, and learn with kernels

o Kernels are also well suited for data integration!
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o For a kernel K(x,x') = ®(x)T®(x"), we know how to learn a function
fﬁ(X) = ,3T¢(X) by solving:

min R(£) + Al A1
@ By the representer theorem, we know that the solution is
n
f(x)= Z aiK(x,xi),
i=1

where a € R" is the solution of another optimization problem:

. T .
min R(Ka)+ ' Ka = min Jk(a).
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The sum kernel

o Let Ki,..., Ky be M kernels corresponding to M sources of data

@ Summing the kernel together defines a new "integrated” kernel

Theorem

Learning with K = le\il Ki is equivalent to work with a feature vector
®(x) obtained by concatenation of ®1(x),...,Pp(x). It solves the
following problem:

M M
min R <Z fB;) + A3 1162
=1 =1

fB1>-:18y

Proof left as exercise.
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Example: protein network inference

Vol. 20 Suppl. 12004, pages i363-1370
DOI: 10.1093/bioinformatics/bth910

[§ Protein network inference from multiple
013:3 genomic data: a supervised approach
Y. Yamanishi®*, J.-P. Vert? and M. Kanehisa'
‘ " Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,

Uji, Kyoto 611-0011, Japan and 2Computational Biology group, Ecole des Mines de
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

o

True positive

Kexp (Expression)

Kppi (Protein interaction) 3
Kjoc (Localization)
Kphy (Phylogenetic profile) N
Kexp + Kppi + Kioc + Kphy
(Integration) False pasiive
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Multiple kernel learning (Lanckriet et al., 2004)

@ Perhaps a more clever approach is to learn a weighted linear
combination of kernels:

M
KTZ = ZU/K,' with ni >0.
i=1

o MKL learns the weights with the predictor by solving:

mio? Jk, () such that  Trace(K,) =1.

@ The problem is jointly convex in (7, &) and can be solved efficiently

@ The output is both a set of weights 7, and a predictor corresponding
to the kernel method trained with kernel K;,.
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Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

' 4

A statistical framework for genomic data fusion

o1 Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini*,
1 Michael I. Jordan? and William Stafford Noble5 *
‘ " Department of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
SDepanment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, *Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA
1.0
o —
g 0.9
0.8
0.7
B SW Pfam FFT LI D E  al
o 40
Kernel Data Similarity measure T3
& 20
10
Ksw protein sequences Smith-Waterman 0
Kp protein sequences BLAST B SW Pfam FFT LI D E all
Kpfam protein sequences Pfam HMM P 1
Kgpr hydropathy profile FFT g
Ku1 protein interactions linear kernel 05
Kp protein interactions diffusion kernel =
Kg gene expression radial basis kernel 0
KrND random numbers linear kernel

(B) Membrane proteins
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MKL revisited

Theorem (Bach et al., 2004)

MKL solves the following problem:

min (Z fg,> + AZ 18il

fo15-r By

@ This is an instance of (kernelized) group lasso (more later...)
@ This promotes sparsity at the kernel level

o MKL is mostly useful if only a few kernels are relevant; otherwise the
sum kernel may be a better option.
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© Introduction
© Learning with kernels

© Kernels for biological sequences
@ Motivations
@ Feature space approach
@ Using generative models
@ Derive from a similarity measure
@ Application: remote homology detection

@ Kernels for graphs

e Learning with sparsity

O Reconstriiction of rectlatory networks 184 /473



Kernels for Biological Sequences
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© Introduction
© Learning with kernels

© Kernels for biological sequences
@ Motivations

@ Kernels for graphs

e Learning with sparsity

O Reconstriiction of rectlatory networks 186 /473



Short history of genomics

1866 : Laws of heredity (Mendel)

1909 : Morgan and the drosophilists

1944 : DNA supports heredity (Avery)

1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)

1960-70 : Genetic engineering

1977 : Method for sequencing (Sanger)

1982 : Creation of Genbank

1990 : Human genome project launched
2003 : Human genome project completed
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microtubules > chromatin
nuclear envelope
nucleus
nuclear pore
nucleolus

Golgi complex

. lysosome
vesicle

cytosol
flagellum

plagsma membrane

™. smooth )
endoplasmic

endoplasmic :
reticulum

reticulum ribosomes
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Chromosomes

b)

Centromere

Telomere

HUMAN CHROMOSOMES

XX XX XK

X AR

KK KK Yh XOh JHKK A%
TREELE X} XRAD

XX XA XX xa B2
19 20

21

22 xBy

(3}
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Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)
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The double helix

Nucleotide

192 /473



Central dogma

LME%?M
M%M
/ Mature MANA

Transp:
protein synthes

Proteins
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Amino Acid
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DNA =4 letters (ATCG)

C:ﬂ? RNA =4 letters (AUCG)

C A anticodon AUG
5 A G U codon . UAC mRNA 3
2nd base in codon

U[CIAlG Protein = 20 letters (amino acids)

Phe | Ser Tyt Cys
Phe | Sor | Tyr | O
Leu | Ser | sToP | sTOP

Leu | Ser | STOP | T
Lou | Pro | His | Arg

Lou | Pro | His | Arg

U
C| el pe | Gin Arg
A

uopod U 352q PIE

Leu | Pro | Gl | Am

fle | The | Asn | Ser
lle The | Asn | Ser

1stbase in codon

1 amino acid

lle Tor | Lys Arg
Met | Thr Lys Arg

Val | Ala | Asp | Gly
G|V | Ma | as | Gy

val | Ala | 6w | Gly
val | Ala | Glu | Gly

The Genetic Code

OFrOCIO>»0CO>»0C|O>»0C

3 nucleotides
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Human genome project

@ Goal : sequence the 3,000,000,000 bases of the human genome
@ Consortium with 20 labs, 6 countries
@ Cost : about 3,000,000,000 USD
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2003: we study "the” human genome

Science
La

HUMAN
GENOMI

@ About 25,000 genes only (representing 1.2% of the genome)

@ Automatic gene finding with graphical models
@ 97% of the genome is considered “junk DNA"
@ Superposition of a variety of signals (many to be discovered)
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2003-2014: towards personalized genomics

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

$1K
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013




Protein sequence

Primary protein structure
s sequenca of a chain of aming acids

Amino Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence over
the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the sequencing
programs)

@ Need for algorithms to compare, classify, analyze these sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. ..
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQOFTDFPIEGEQFEDFLPIIGNP. .

@ Build a classifier to predict whether new proteins are secreted or not.
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Supervised classification with vector embedding

The idea
@ Map each string x € X to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1),...,®(x,) of the
training set (nearest neighbor, linear perceptron, logistic regression,

support vector machine...)
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Kernels for protein sequences

@ Kernel methods have been widely investigated since Jaakkola et al.'s
seminal paper (1998).
@ What is a good kernel?

o it should be mathematically valid (symmetric, p.d. or c.p.d.)
e fast to compute
e adapted to the problem (give good performances)
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
e Mutual information kernel
e Marginalized kernel

@ Derive a kernel from a similarity measure

o Local alignment kernel
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@ Feature space approach
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector ® (x) € R”".
How to perform this embedding?
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Vector embedding for strings

Represent each sequence x by a fixed-length numerical vector ® (x) € R”".
How to perform this embedding?

| A

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence
@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity), using
for example:
o Fourier transforms (Wang et al., 2004)
o Autocorrelation functions (Zhang et al., 2003)

12
- hihiy;
O n _J ; +J
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Substring indexation

Alternatively, index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (%)) yeur

where @, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum kernel
(Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of

X = CGGSLIAMMWFGV
is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

@ Let ®, (x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K (x,x') := Z ®, (x) d, (X) .

ue Ak
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Example: spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over |A|¥ terms, but
at most | x| — k + 1 terms are non-zero in ® (x) = Computation in
O (| x|+ |x"|) with pre-indexation of the strings.

e Fast classification of a sequence x in O (| x|):

| x|—k+1

F)=w-®(x)=> wy®y(x) = > W u,, .
u S

Remarks

i
| \

e Work with any string (natural language, time series...)
e Fast and scalable, a good default method for string classification.

@ Variants allow matching of k-mers up to m mismatches.
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Example 2: Substring kernel (1/11)

@ For 1 < k <neN, we denote by Z(k, n) the set of sequences of
indices i = (i1,...,ik), with 1 < i < <...<ix <n.

@ For a string x = x7 ... x, € X of length n, for a sequence of indices
i € Z(k, n), we define a substring as:

x (i) == X, Xi, - - - X, -

@ The length of the substring is:

/(i):ik*i1+1.
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Example 2: Substring kernel (2/11)

ABRACADABRA

e i=(3,4,7,8,10)
o x (i) =RADAR
0 /(i)=10-3+1=8
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Example 2: Substring kernel (3/11)

The kernel

o Let k e Nand \ € R fixed. For all u € A, let &, : X — R be
defined by:

Vx e X, ®,(x) = > A
i€Z(k,|x]):  x(i)=u

@ The substring kernel is the p.d. kernel defined by:

V(x,x’)€X2, Kk)\ xx Zd)
uc Ak

212 /473



Example 2: Substring kernel (4/11)

u ‘ ca ct at ba bt cr ar br
Pycat) [A2 X3 X2 0 0 0 0 O
Pycar) [A2 0 0 0 0 A X 0
dybat) [ 0 0 A2 X2 X 0 0 0
dybar) | 0 0 0 X2 0 0 A A3

K (cat,cat) = K (car,car) = 2\* + \°
K (cat,car) = \*
K (cat,bar) =0

213 /473



Example 2: Substring kernel (5/11)

Kernel computation

@ We need to compute, for any pair x,x’ € X, the kernel:

Kn (x,x’) = Z b, (x) Dy (x’)

ue Ak

=Y YT N0+,

uc Ak ix(i)=ui’:x'(i")=u

o Enumerating the substrings is too slow (of order |x [¥).
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Example 2: Substring kernel (6/11)

Kernel computation (cont.)

e For u € A¥ remember that:

Dy (x)= ) APTAEL
i:x(i)=

u

o Let now:

W, (x) = Z IR

ixx(i)=u
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Example 2: Substring kernel (7/11)

Kernel computation (cont.)

Let us note x (1,/) = x1...x;. A simple rewriting shows that, if we note
a € A the last letter of u (u = va):

Pua()= > W (x(Lj- 1),

JE[L,|x|]:xj=a
and .
Vo (x) = Y Wy (x(1,j— 1) AxIE

JE[L[x[]:xj=a
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Example 2: Substring kernel (8/11)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last letter
is a € A), then:

@ If the last letter of u is not a:

{cbu (xa) =Py (x),
Y, (xa) = AV, (x).

o If the last letter of u is a (i.e., u = va with v € A""1):

by, (xa) = Dya(x) + AV, (x)
Uy, (xa) = AV, (x) + AV, (x) .
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Example 2: Substring kernel (9/11)

Kernel computation (cont.)
Let us now show how the function:

B, (x,x’) = Z v, (x) ¥, (x’)

uc A"

and the kernel:

K, (x,x’) = Z b, (x) Dy (x')

uc A"
can be computed recursively. We note that:

By (x,x") = Ko (x,x') =0  for all x,x’
Bk (x,x') = Kk (x,x') =0 if min(|x]|,|x]) < k
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Example 2: Substring kernel (10/11)

Recursive computation of B,

By (xa, x’)

- Z vy, (xa) ¥, (x')

uc A"
=AY W)W (X) A DT Wy (x) W (X)
ucAn veAn-1
= )\Bn (X7 X/) =

A Z Wy (x) ( Z W, (X' (1,5 — 1)) )\X’j+1)

veAn—1 JEL|X [:x/=a

=ABy (x,X) + Y Bpa(xx(1,j—1)N¥ITH

JELIx [l:x/=a

219 /473



Example 2: Substring kernel (10/11)

Recursive computation of K,

Ky (xa7 x')

= Z Py (xa) Dy (x')

uc A"

= Z Py (x) Dy (X') + A Z W, (x) ya (X')
ucAn veAn—l

= Ky (x,x') +

A \Ilv(x)( > \Ilv(x’(l,jl)))\)

veAn—1

JElL [ [l:x/=a

= )\Kn (X,X/) aF )\2 Z anl (X; x' (17J _ 1))

JelL [ [l:x=a

220/473



Summary: Substring indexation

@ Implementation in O(|x| + [x|) in memory and time for the spectrum
and mismatch kernels (with suffix trees)

@ Implementation in O(|x| x [x/|) in memory and time for the substring
kernels

o The feature space has high dimension (|.A|¥), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (x1,X2,...,Xp)

@ Chose a measure of similarity s (x,x’)

o Define the mapping ®p (x) = (S(vai))x,-ED

222 /473



Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (x1,X2,...,Xp)

@ Chose a measure of similarity s (x,x’)

o Define the mapping ®p (x) = (S(vai))x,-ED

This includes:
o Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
o Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between

sequences.
v
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@ Using generative models

@ Kernels for graphs
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel designs.

Important models include HMM for protein sequences, SCFG for RNA
sequences.

Parametric model

A model is a family of distribution

{Pg,0 € © CR™} C M{ (X)
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Fisher kernel

e Fix a parameter 0y € © (e.g., by maximum likelihood over a training
set of sequences)

@ For each sequence x, compute the Fisher score vector:
(DQO(X) = Vg Iog Pg(x)|9:90 5
o Form the kernel (Jaakkola et al., 1998):

K (x,x) = gy (x) " 1(60) P4, (X)

where 1(60) = Eg, [®g,(x)®Pg,(x) "] is the Fisher information matrix.
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Fisher kernel properties

@ The Fisher score describes how each parameter contributes to the
process of generating a particular example

@ The Fisher kernel is invariant under change of parametrization of the
model

o A kernel classifier employing the Fisher kernel derived from a model
that contains the label as a latent variable is, asymptotically, at least
as good a classifier as the MAP labelling based on the model
(Jaakkola and Haussler, 1998).

@ A variant of the Fisher kernel (called the Tangent of Posterior kernel)
can also improve over the direct posterior classification by helping to
correct the effect of estimation errors in the parameter (Tsuda et al.,
2002).
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Fisher kernel in practice

®g,(x) can be computed explicitly for many models (e.g., HMMs)

I(0o) is often replaced by the identity matrix

Several different models (i.e., different 6p) can be trained and
combined

Feature vectors are explicitly computed
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Mutual information kernels

@ Chose a prior w(df) on the measurable set ©
o Form the kernel (Seeger, 2002):

K (x,x’) = ./eee Py(x)Py(x"Yw(dB) .

@ No explicit computation of a finite-dimensional feature vector
o K(x,x') =< ¢ (x), 9 (X') >L,(w) with

¢ (x) = (Po (x))peo -
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Example: coin toss

o Let Py(X =1) =6 and Py(X =0) =1 — 0 a model for random coin
toss, with 6 € [0, 1].

o Let df be the Lebesgue measure on [0, 1]

@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =6(1—0)°
Py(xX) =62(1—0),

3|4|
3 _
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Context-tree model

A context-tree model is a variable-memory Markov chain:

Ppo(x) = Pp,g (x H Ppg (xi|Xi—p - . . Xi-1)
i=D+1

@ D is a suffix tree

o 9 € P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0as(A)0A(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)

@ For particular choices of priors, the context-tree kernel:
K (x,x) = Z /0 o Pp o(x)Pp (X" )w(d6| D)7 (D)
D Joe

can be computed in O(|x| + |x/|

) with a variant of the Context-Tree
Weighting algorithm.
o This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of mutual
information between strings.
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Marginalized kernels

@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability Py (dy).

@ Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a marginalized
kernel (Kin et al., 2002):

Kx (x,X) := Ep,(ay) <y (ay) Kz (2,7

//KZ x,¥), (X,y') Px (dy) P (dy) -
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Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore there exists a Hilbert space ‘H and
bz : Z — H such that:

Kg (Z,Z/) = <CDZ (Z) s CDZ (Z/)>H .
@ Marginalizing therefore gives:

Kx (x,X') = Ep,(dy)xp,(dy) Kz (2,7
= Ep(dy)xPy(dy) (P2 (2),®z (Z)),,
= (Ep,(ay)®z (2), Ep(ay) P2 (Z) )4,

therefore Ky is p.d. on X. [
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Example: HMM for normal/biased coin toss

e Normal (N) and biased (B)
coins (not observed)

0.85
@ Observed output are 0/1 with probabilities:

7(0[N) = 1 — 7(1|N) = 0.5,
m(0|B) =1 —n(1|B) = 0.8.

e Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

o If both x € A* and y € §* were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

Kz (Z, ZI) = Z Ny s (Z) Nas (Z) )

(a,s)€EAXS

where n, s (x,y) for a=0,1 and s = N, B is the number of
occurrences of s in y which emit a in x.

o Example:

z=1001011101111010010111001111011,
Z/ =0011010110011111011010111101100101,

Kz (z, z') = no (z) no (z') + ng (z) ng (z’) +n(z)m (z') +n(z)m (z/)
=7x154+9x124+13x642x1=293.
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1-spectrum marginalized kernel on observed data

@ The marginalized kernel for observed data is:

Ke (x,X) = Y Kz((xy),(xy) P(y) P (y|x)
y,y'€S*

ST 0.

(a,5)€eAXS

with

P, (x) = Z P (y[x) na,s (x,y)

yeES*
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Computation of the 1-spectrum marginalized kernel

P, (x) = ZP (y[x) nas (x,y)

yeES*
= Z 'D(y,x {25 Xiya }/17 }
yeS*
—Zé x,,a){ZPyx (vi,s }
yeS*

= 25(&'7 a) P (yi = slx).
i—1

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand
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HMM example (protein)

44444444



G for RNA sequences

A2

» iy 17

W S — aS
S —a

©

i)
]
20 in

L

™ Tog st

E, »oF
» %

Marginalized kernel (Kin et al., 2002)

o Feature: number of occurrences of each (base,state) combination

e Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

@ Spectrum kernel on the hidden states of a HMM for protein sequences
(Tsuda et al., 2002)

o Kernels for RNA sequences based on SCFG (Kin et al., 2002)

o Kernels for graphs based on random walks on graphs (Kashima et al.,
2004)

o Kernels for multiple alignments based on phylogenetic models (Vert
et al., 2005)
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Marginalized kernels: example

PC2
A set of 74 human tRNA

+§T¢ sequences is analyzed using a
. kernel for sequences (the
e o + second-order marginalized
° kernel based on SCFG). This
set of tRNAs contains three
oo PCl classes, called Ala-AGC (white
© circles), Asn-GTT (black
o circles) and Cys-GCA (plus
o % symbols) (from Tsuda et al.,
o 2003).

e
o
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Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWFGV
X2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM------ WEGV

[P e
G LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RAXA
@ a gap penalty function g : N — R

Any alignment is then scored as follows

CGGSLIAMM------ WEGV

[P e
C----LIVMMNRLMWFGV

ss.g(m) = S(C,C) + S(L,L) + S(I, 1) + S(A, V) + 25(M, M)
+ S(W, W)+ S(F,F)+ S(G,G) + S(V, V) — g(3) — g(4)
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined by:

SWs g(x,y) = oS ss.g(™).

@ It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined by:

SWs g(x,y) = R ss.g(™).

@ It is symmetric, but not positive definite...

LA kernel

The local alignment kernel:

Kéf\) (X7 y) - Z eXp (/BSS,g (X7 y7 7T)) )
wen(x,y)

| \

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma

o If K1 and K5 are p.d. kernels, then:

K1 + Ko,
K1K2, and
cKi, for ¢ > 0,

are also p.d. kernels

o If (Ki),~; is a sequence of p.d. kernels that converges pointwisely to
a function K:

V(x,x) € X2, K(x,X)= lim K; (x,x'),

n—oo

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma

Let A and B be n x n positive semidefinite matrices. By diagonalization of

A: .,
Aij = Z fo (1) (/)
p=1

for some vectors fi,...,f,. Then, for any ¢ € R":
ZaajA,JB,J—ZZaf Na;f,(j)Bi,j > 0.
ij=1 p=1lij=1

The matrix C;j = A; ;B is therefore p.d. Other properties are obvious
from definition. [

249 /473



LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = &7 x &». Let K7 be a p.d. kernel on &7, and K> be a p.d. kernel
on X>. Then the following functions are p.d. kernels on X’:

@ the direct sum,

K ((x1,%2); (y1,¥2)) = K1 (x1,¥1) + K2 (x2,¥2) ,

@ The direct product:

K ((x1,%2) ; (y1,¥2)) = K1 (x1,¥1) K2 (x2,y2) -
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LA kernel is p.d.: proof (4/11)

Proof of lemma
If K1 is a p.d. kernel, let ®; : X7 — H be such that:

Ki (x1,y1) = (®1(x1) , 1 (y1))y -
Let & : A7 x Ao — H be defined by:
® ((x1,%2)) = ®1 (x1) -
Then for x = (x1,x2) and y = (y1,y2) € X, we get
(@ ((x1,%2)), @ ((y1,¥2)))3 = Ki (x1,%2) ,

which shows that K (x,y) := K1 (x1,y1) is p.d. on X1 X X5. The lemma
follows from the properties of sums and products of p.d. kernels. [J

251 /473



LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X, and let P (X) be the set of finite subsets of
X. Then the function Kp on P (X) x P (X') defined by:

VA,BEP(X), Kp(AB)=Y > K(xy)

xcAyeB

is a p.d. kernel on P (X).
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LA kernel is p.d.: proof (6/11)

Proof of lemma

Let & : X — H be such that

Then, for A, B € P (X), we get:

Ke(AB) =) > (®(x),®(y)y

xceAyeB
- <z¢<x>,z¢<y>>
xEA yeB H

= (®p(A),Pp(B))4
with ®p(A) =3 AP (x). O
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K> be two p.d. kernels for strings. The convolution of K and
K>, denoted Ki x K3, is defined for any x,x’ € X by:

K1 * Ka(x,y) := Z Ki(x1, y1)Ka(x2,y2).

X1X2=X,y1¥2=Y

v

If K1 and K are p.d. then Ky x K is p.d..
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LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x € X, let

R(x) = {(x1,%2) € X X X : x=x1x2} C X X X.
We can then write
Kix Ko(x,y) = ) > Ki(x1,y1)Ka(x2,y2)
(x1,x2)€R(x) (y1,y2)ER(Y)

which is a p.d. kernel by the previous lemmas. [
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LA kernel is p.d.: proof (9/11)

3 basic string kernels

@ The constant kernel:

KO (X7Y) =1.

@ A kernel for letters:

) (o0 if |x|# 1 where |y|#1,
K3 (x,y) .—{ exp (8S(x,y)) otherwise.

@ A kernel for gaps:

K (x,y) = exp [B(g (1 x]) + g (|x]))] -
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LA kernel is p.d.: proof (10/11)

e S: A% — R is the similarity function between letters used in the

)

alignment score. K;SB is only p.d. when the matrix:

(exp (Bs(a, b)))(a,b)eA2

is positive semidefinite (this is true for all 5 when s is conditionally
p.d..

@ g is the gap penalty function used in alignment score. The gap kernel
is always p.d. (with no restriction on g) because it can be written as:

K (x,y) = exp (Bg (| x])) x exp (Bg (¥ ])) -
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LA kernel is p.d.: proof (11/11)

Lemma

The local alignment kernel is a (limit) of convolution kernel:
= (n—1)
KR =3 Kox (K5 kD) k) o
n=0

As such it is p.d..

Proof (sketch)

@ By induction on n (simple but long to write).
@ See details in Vert et al. (2004).
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LA kernel computation

@ We assume an affine gap penalty:

g(0) =0,
gln) =d+e(n—1)sin>1,
@ The LA kernel can then be computed by dynamic programming by:

KD (x,y) = 1+ Xao(|x], ly]) + Ya(Ix|, ly]) + M(|x], ly]),

where M(I,J),X(I,_/), Y(’aJ)7X2(’aJ)v and Y2(’a./) for 0 <i< |X|v
and 0 < j < |y| are defined recursively.
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LA kernel is p.d.: proof (/)

(M(i,0) = M(0,]) =0,
X(i,0) = X(0,j) =0,
Y (i,0) = Y(0,j) =0,
Xo(i,0) = X2(0,/) =0,
Y>(i,0) = Y2(0,/) =0,
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LA kernel is p.d.: proof (/)

Recursion

For i =

,

1,...,]xland j=1,...,|y|:

M(iJ) = exp(BS(xi, ) [1+X(i =1, 1)
+Y(i—1,j—1)+M(i—1,j—1)},

X(i,j)  =exp(Bd)M(i —1,j) + exp(Be)X(i — 1)),

Y(i,j)  =exp(Bd)[M(i,j — 1)+ X(i,j = 1)]
+exp(Be)Y(i,j— 1),

Xao(irj) = MC(i—1,j)+ X2(i = 1,j),

Ya(ij) =M(i,j—1)+X(i,j — 1)+ Ya(i,j — 1).
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LA kernel in practice

@ Implementation by a finite-state transducer in O(|x| x [x|)
0:01

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)

v
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Remote homology

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence comparison
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SCOP database

SCOP
Fold
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A benchmark experiment

o Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from the
same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.
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Difference in performance

- ' ' ' SVM-LA —+—
SVM-pairwise ---x---
g SVM-Mismatch ------
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2
z 20 |
&
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gor . _&&
g X% .\><.>g< N
0 1 1 1 1 *X%
0 0.2 0.4 0.6 0.8 1

ROC50

Performance on the SCOP superfamily recognition benchmark (from Vert
et al., 2004).
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String kernels: Summary

A variety of principles for string kernel design have been proposed.

Good kernel design is important for each data and each task.
Performance is not the only criterion.

Still an art, although principled ways have started to emerge.

Fast implementation with string algorithms is often possible.

Their application goes well beyond computational biology.
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Kernels for graphs
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Virtual screening for drug discovery

active

a

inactive eul

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Our approach
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Our approach

O Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x") = &(x)Td(x).
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Our approach

O Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x") = &(x)Td(x).

@ Use a linear method for classification in H.
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The approach

|
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The approach

© Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
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The approach

© Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.

@ Use an algorithm for regression or pattern recognition in RP.
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Example

2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

Q8 A s

N4

| BNNNEEENNEEE EERREEN N

[N o U9%

I
o

@ Use a machine learning algorithms such as SVM, NN, PLS, decision
tree, ...
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Challenge: which descriptors (patterns)?

O S0 AN A A, =
G PRI

| ENEEEEEENNEN EEEREEE N

@ Expressiveness: they should retain as much information as possible
from the graph

e Computation : they should be fast to compute

@ Large dimension of the vector representation: memory storage, speed,
statistical issues
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Indexing by substructures

) AN N NG N N
Ny

| EENEEEEEEEEE EEEEEEE N

@ Often we believe that the presence substructures are important
predictive patterns

@ Hence it makes sense to represent a graph by features that indicate
the presence (or the number of occurrences) of particular
substructures

@ However, detecting the presence of particular substructures may be
computationally challenging...

v
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Subgraphs

Definition
A subgraph of a graph (V, E) is a connected graph (V’, E') with V' C V

and E' C E.

! 22392
Lo e lods Lo
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Indexing by all subgraphs?
@D
(®(0,...,0,1,0,...,0,1,0,...)
t t

@®) @
G
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Indexing by all subgraphs?
@<
(®(0,...,0,1,0,...,0,1,0,...)
t t

@®) @
G

Computing all subgraph occurrences is NP-hard. l
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Indexing by all subgraphs?

(0,...,O,fl,0,...,O,fl,O,...)
(&®)
o

Computing all subgraph occurrences is NP-hard. \

Proof.

@ The linear graph of size n is a subgraph of a graph X with n vertices
iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

O]
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Definition

@ A path of a graph (V, E) is sequence of distinct vertices
Vi,...,vp € V (i#j = v; # v;) such that (v;, vj41) € E for
i=1,...,n—1.

o Equivalently the paths are the linear subgraphs.

<] 89392
Lo e Lods e
3223
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Indexing by all paths?

@‘@ ® (0r--r0,1,0,...,0,1,0,...)
BF—® ¢ ¢
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Indexing by all paths?

@‘@ ® (0r--r0,1,0,...,0,1,0,...)
BF—® ¢ ¢
(e—a] (e—e—a)

Computing all path occurrences is NP-hard. I
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Indexing by all paths?

@"3 ® (0r--r0,1,0,...,0,1,0,...)
BF—® ¢ ¢

(e—3] [(e—e—a)

Computing all path occurrences is NP-hard. l
Same as for subgraphs. O l
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Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all path up to length k (Openeye fingerprint, Nicholls 2005)

o all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

all frequent subgraphs in the database (Helma et al., 2004)

284 /473



Example : Indexing by all shortest paths
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Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

o There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

o Naive enumeration scales as O(n*).

o Enumeration of connected graphlets in O(nd“~!) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.
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@ Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)

@ Several ideas to reduce the set of substructures considered

@ In practice, NP-hardness may not be so prohibitive (e.g., graphs with
small degrees), the strategy followed should depend on the data
considered. )
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O Represent implicitly each graph x by a vector ®(x) € H through the
kernel
K(x,x') = CD(X)T(D(X') .
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O Represent implicitly each graph x by a vector ®(x) € H through the
kernel
K(x,x') = CD(X)T(D(X') .

@ Use a kernel method for classification in H.
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Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:
VGl,GzeX, dK(G]_,G2):O — G~ Gy.

Equivalently, ®(G;) # ®(Gy) if Gi and Gy are not isomorphic.
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Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:
VGl,GQEX, dK(Gl,Gz):O — G~ Gy.

Equivalently, ®(G;) # ®(Gy) if Gi and Gy are not isomorphic.

| A,

Expressiveness vs Complexity trade-off

o If a graph kernel is not complete, then there is no hope to learn all
possible functions over X: the kernel is not expressive enough.

@ On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

@ Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

@ For any kernel K the complexity of computing dk is the same as the
complexity of computing K, because:

dK(Gl, G2)2 = K(Gl, Gl) -+ K(GQ, G2) = 2K(G1, G2) .

o If K is a complete graph kernel, then computing dk solves the graph
isomorphism problem (dkx(Gi, G2) =0 iff G; ~ Gp). O
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Subgraph kernel

@ Let (Ag)ccr a set or nonnegative real-valued weights

e For any graph G € X, let

VH e X, ®&u(G)=|{G isasubgraphof G : G'~H}|.

@ The subgraph kernel between any two graphs G; and G, € X' is

defined by:
Ksubgraph(Gla GZ) — Z /\HCDH(GI)CDH(G2)-
Hex
(?; ,;)E (0,...,0,1,0,...,0,1,0,...)
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
@ Let P, be the path graph with n vertices.

@ Subgraphs of P, are path graphs:
®(P,) =nep, +(n—1)ep, + ...+ ep, .

@ The vectors ®(Py),...,P(P,) are linearly independent, therefore:
ép, = Z a,-CD(P,-) .
i=1

where the coefficients «; can be found in polynomial time (solving a
n X n triangular system).
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
o If G is a graph with n vertices, then it has a path that visits each node
exactly once (Hamiltonian path) if and only if ®(G) e, >0, i.e.,

¢(G)T (i a;dD(P;)) = iaiKsubgraph(Ga P,') > 0.
i=1

i=1

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete. [
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Path kernel

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpatn(G1, G2) = Y Au®p(G1)PH(G),
HeP

where P C X is the set of path graphs.
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Path kernel

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) = Z AHPH(G1)PH(G),
HeP

where P C X is the set of path graphs.

Proposition (Gartner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off

@ It is intractable to compute complete graph kernels.

@ It is intractable to compute the subgraph kernels.

@ Restricting subgraphs to be linear does not help: it is also intractable
to compute the path kernel.

@ One approach to define polynomial time computable graph kernels is
to have the feature space be made up of graphs homomorphic to
subgraphs, e.g., to consider walks instead of paths.
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Definition

o A walk of a graph (V/, E) is sequence of vy, ..., vp € V such that
(vi,vit1) € Efori=1,..., n—1.

@ We note W,(G) the set of walks with n vertices of the graph G, and
W(G) the set of all walks.

! 2233
Lo e dole Lo
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Walks # paths
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = Up>1S,.

@ For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = ($5(G)),.s be defined by:

o, (G) = Z Ag(w)1 (s is the label sequence of w) .
weW(G)
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = Up>1S,.

@ For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = ($5(G)),.s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weW(G)

o A walk kernel is a graph kernel defined by:

Kuwaik(G1, G2) = Zd’ (G1)®
seS
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, O otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, O otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where Pg
is a Markov random walk on G. In that case we have:

K(Gi, Go) = P(label(W;) = label(W)),

where W; and W, are two independant random walks on G; and G,
respectively (Kashima et al., 2003).
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Walk kernel examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, O otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where Pg
is a Markov random walk on G. In that case we have:

K(Gi, Go) = P(label(W;) = label(W)),

where W; and W, are two independant random walks on G; and G,
respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Mg (w) = pleneth(w) for B> 0. In that case the feature space is of
infinite dimension (Gartner et al., 2003).
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.
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Product graph

Definition

Let G; = (V4, E1) and Gy = (Va, Ep) be two graphs with labeled vertices.
The product graph G = Gj x Gy is the graph G = (V/, E) with:

Q@ V={(vi,»w) € Vi x Vo : vy and v, have the same label} ,
Q@ E={((v1,v2),(vi, ) e VxV :(v1,v) € E1 and (w2, V}) € Ep}.

1 a b 1b 2a 1d
o0 O
2 c 3c 3e
la 2b 2d
3 4 d e
4c 4e

Gl X Gl x &
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Walk kernel and product graph

There is a bijection between:

© The pairs of walks wy € Wp(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G1 x Gy).
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Walk kernel and product graph

There is a bijection between:

© The pairs of walks wy € Wp(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G1 x Gy).

Corollary

Kuaik(G1, G2) = Y 05(G1)0s(Gy)
seS

_ 3 A, (W) Ag, (w2)1(/(w1) = I(w2))

(W1,W2)€W(G1)><W(Gl)

= Z AGix G (W)

WEW(Gl X G2)
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have Ag, xg,(w) = 1 if the length of
w is n, 0 otherwise.

@ Therefore:
Knth—order (G17 G2) = Z 1.
WGW,,(G1><G2)
@ Let A be the adjacency matrix of G; X Gp. Then we get:

Kith—order (G17 G2) = Z [An]iJ = ].TAn]. 2

i

Computation in O(n|Gy||Gz|d1d>), where dj is the maximum degree
of G,'.
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Computation of random and geometric walk kernels

@ In both cases Ag(w) for a walk w = v; ... v, can be decomposed as:
Ae(va - ovn) = N(w) [T A (vie1, )
i=2
o Let A; be the vector of A(v) and A; be the matrix of Af(v,v/):

Kuwaik(G1, G2) = i > N[N w)

n=1 weW,(G1 X Gp) i=2

=> NATL

0
=A(I—N) M1

e Computation in O(|G1|3|G2|?)

v
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 2 4
1 1 2 2 4 5
q q
il ol 2 o1 4 03
No Morgan Indices O1 Order 1indices O1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible (graph coloring).

e Faster computation with more labels (less matches implies a smaller
product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk w = vy ... v, with v; = vj ., for some i.

@ (@ VNon-tottering

OO0 @
@ (@ rottering

o Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et al.,

2005)

@ Second-order Markov random walk to prevent tottering walks
o Written as a first-order Markov random walk on an augmented graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).

o—0c

O

/

}1<:ffi —p> @(c) ‘\(ID\E;§:>
Cl \@':_@

o
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Example: Tree-like fragments of molecules

N— N—C—C—C

311 /473



Computation of the subtree kernel

o Like the walk kernel, amounts to compute the (weighted) number of
subtrees in the product graph.

@ Recursion: if T (v, n) denotes the weighted number of subtrees of
depth n rooted at the vertex v, then:

T(v,n+1) = Z H/\ (v, V) ,n),

RCN(v) V'ER

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset

@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in Salmonella
typhimurium.

@ 188 compouunds: 125 + / 63 -

Results

| A\

10-fold cross-validation accuracy

Method ‘ Accuracy
Progoll 81.4%
2D kernel | 91.2%
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Screening of inhibitors for 60 cancer cell lines.
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination

(M).

Performance comparison on Corel14
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Summary: graph kernels

@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns

@ They allow to work with approximate subgraphs (walks, subtrees), in

infinite dimension, thanks to the kernel trick

@ However: using kernels makes it difficult to come back to patterns

after the learning stage
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© Introduction
© Learning with kernels
© Kernels for biological sequences
@ Kernels for graphs
© Learning with sparsity
@ Feature selection
@ Lasso and group lasso

@ Segmentation and classification of genomic profiles
@ Learning molecular classifiers with network information (bis)

@ Reconstruction of regulatory networks
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© Introduction

© Learning with kernels

© Kernels for biological sequences
@ Kernels for graphs

© Learning with sparsity
@ Feature selection

@ Reconstruction of regulatory networks
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o In feature selection, we look for a linear function f(x) = x' 3, where
only a limited number of coefficients in 8 are non-zero.
@ Motivations
e Accuracy: by imposing a constraint on (3, we increase the bias but

decrease the variance. This should be helpful in particular in high
dimension.

o Interpretation: simpler to understand and communicate a sparse model.

e Implementation: a device based on a few markers can be cheaper and
faster.

Of course, this is particularly relevant if we believe that there exist good
predictors which are sparse (prior knowledge).
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Best subset selection

Q(B) = ||B]lo = number of non-zero coefficients

@ In best subset selection, we must solve the problem:
minR(f;) st [ Alo<k

fork=1,...,p.
@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ This is usually a NP-hard problem, feasible for p as large as 30 or 40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

o Filter methods : the predictors are preprocessed and ranked from the
most relevant to the less relevant. The subsets are then obtained
from this list, starting from the top.

@ Wrapper method: here the feature selection is iterative, and uses the
ERM algorithm in the inner loop

@ Embedded methods : here the feature selection is part of the ERM
algorithm itself (see later the shrinkage estimators).
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
@ Many scores / criteria can be used

Loss of the ERM trained on a single feature

Statistical tests (Fisher, T-test)

Other performance criteria of the ERM restricted to a single feature
(AUC, ...)

Information theoretical criteria (mutual information...)
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.
@ Many scores / criteria can be used

o Loss of the ERM trained on a single feature

Statistical tests (Fisher, T-test)

Other performance criteria of the ERM restricted to a single feature
(AUC, ...)

e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success
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Filter methods

@ Associate a score S(i) to each feature i, then rank the features by
decreasing score.

@ Many scores / criteria can be used

Loss of the ERM trained on a single feature

Statistical tests (Fisher, T-test)

Other performance criteria of the ERM restricted to a single feature
(AUC, ...)

Information theoretical criteria (mutual information...)

Simple, scalable, good empirical success

@ Selection of redundant features

@ Some variables useless alone can become useful together
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Measuring dependency: correlation coefficients

Assume X and Y take continuous values

(X1, Y1),...,(Xn, Yn) the n expression values of both genes

Pearson correlation:

. cov(X,Y) _ Zi(Xi_)_()(Y"_ Y)
XOY X XS - VY

@ Spearman correlation: similar but replace X; by its rank.
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[llustration

Spearman correlation=1
Pearson correlation=0.88
T T T

Spearman correlation=0.35
Pearson correlation=0.37
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Limit of correlations
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Mutual information

)= J, s (5

e /(X;Y)>0
I(X;Y)=0if and only if X and Y are independent
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Wrapper methods

@ A greedy approach to

min R(fz) st. ||Bllo < k

e For a given set of seleted features, we know how to minimize R(f)

o We iteratively try to find a good set of features, by adding/removing
features which contribute most to decrease the risk (using ERM as an
internal loop)

v
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Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the fit
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Two flavors of wrapper methods

Forward stepwise selection

e Start from no features
@ Sequentially add into the model the feature that most improves the fit

Backward stepwise selection (if njp)

o Start from all features

@ Sequentially removes from the model the feature that least degrades
the fit
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Two flavors of wrapper methods

Forward stepwise selection

e Start from no features
@ Sequentially add into the model the feature that most improves the fit

Backward stepwise selection (if nip)
o Start from all features

@ Sequentially removes from the model the feature that least degrades
the fit

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best” move

| A\
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© Introduction

© Learning with kernels

© Kernels for biological sequences
@ Kernels for graphs

© Learning with sparsity

@ Lasso and group lasso

@ Reconstruction of regulatory networks
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@ The following problem is NP-hard:
min R(fg) st. ||Bllo < k

@ As a proxy we can consider the more general problem:
min R(fz) st. Q(B) <~

where Q([3) is a penalty function that leads to sparse solutions and
to computationally efficient algorithms.
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LASSO regression (Tibshirani, 1996)

Basis Pursuit (Chen et al., 1998)

p
QB) =118l =) 15
i=1
e LASSO or BP:
p
mlnR (f3) = Z(fg Yi)2+>\2|5i‘ (3)
i=1

@ No explicit solution, but this is just a quadratic program.

e LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all \'s simultaneously (regularization path)
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LASSO regression example

500
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2
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Generalization: Atomic Norm [Chandrasekaran et al.,
2012]

Definition

Given a set of atoms A, the associated atomic norm is

Ix]]4 =inf{t > 0| x € tconv(A)}.

NB: This is really a norm if A is centrally symmetric and spans R”

Primal and dual form of the norm
Ix|la = inf{zca | x=> ca, >0, VaEA}

acA acA

IxI%a = sup{a,x)
acA

v
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Examples

@ Vector {1-norm: x € RP — ||x||1
A={+te | 1<k<p}
e Matrix trace norm: Z € R™M*™ — || Z||, (sum of singular value)

A={ab" : acR™ beR™ ||a], =] bl =1}
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Group lasso [Yuan and Lin, 2006]

For x € RP and G = {g1,...,8c} a partition of [1, p|:

Ixliz =" lIx 2

geg
is the atomic norm associated to the set of atoms

Ag = {ueRP : supp(u) =g, | ull2 =1}
geg

g={{1,2},{3}}

Ix 12 = G, x2) T2 + [1xs]2

=\E+G + /3
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Group lasso with overlaps

How to generalize the group lasso when the groups overlap?
@ Set features to zero by groups [Jenatton et al., 2011]

Ixli2 = llxe 2

geg
@ Select support as a union of groups [Jacob et al., 2009]
[ x1].4g
see also MKL [Bach et al., 2004]

1 1-

05 05-

g= {{1’ 2} ) {27 3}}

05 05
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Extension to other loss functions

Of course we can learn sparse or group-sparse linear models with any
different (smoothly convex) loss function:

mm—Zﬂ (5 (i), yi) + AllBIIx or [IB]l1.2
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© Introduction

© Learning with kernels

© Kernels for biological sequences
@ Kernels for graphs

© Learning with sparsity

@ Segmentation and classification of genomic profiles

@ Reconstruction of regulatory networks
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

e Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe systematically
variants in DNA content

Log-ratio

Qhromcsome
A

9 10 11 12 13 14 15 16 17 18 1920092 23 X
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are the breakpoints?
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Optimal breakpoint detection

o Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
in|lY -3 h that 1(5; D) < k
min || Y = 8| such tha 2; (Bia1 # i) <
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Optimal breakpoint detection

o Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
in||Y—g]° h that 1(86; D) < k
min || Y = 8| such tha 2; (Bia1 # i) <

@ This is an optimization problem over the (’Z) partitions...
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Optimal breakpoint detection

o Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
in||Y—g]° h that 1(86; D) < k
min || Y = 8| such tha 2; (Bia1 # i) <

@ This is an optimization problem over the (’Z) partitions...
e Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

344 /473



Optimal breakpoint detection

o Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
in||Y—g]° h that 1(86; D) < k
min || Y = 8| such tha 2; (Bia1 # i) <

@ This is an optimization problem over the (’Z) partitions...

e Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 100 ~ 10°...
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Promoting piecewise constant profiles

p—1

QB) = I18llrv = Y 1Bir1 — Bil

i=1

The total variation / variable fusion penalty

If R(3) is convex and "smooth”, the solution of

p—1
Bné]ilgp R(B) + )\Iz; |Bir1 — Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = 811 — B, up = 51
@ We obtain a Lasso problem in u € RP~1
@ u sparse means 3 piecewise constant
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TV signal approximator

p—1

in|lY—38|> h that 11— G| <
,@[E}IQJH G| such tha ;\5/+1 Bil < p

Adding additional constraints does not change the change-points:
o > P .| Bi| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e Y P % < v (Mairal et al. 2010)

Signal
2 4 0 1 2 3
=]
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Solving TV signal approximator

p—1
i Y — 2 h that i1 — B <
min || Y = 8]* such tha ;WH Bil <p

@ QP with sparse linear constraints in O(p?) -; 135 min for p = 10°
(Tibshirani and Wang, 2008)

Coordinate descent-like method O(p)? -i 3s s for p = 10° (Friedman
et al., 2007)

For all 1 with the LARS in O(pK) (Harchaoui and Levy-Leduc, 2008)
For all £ in O(pIn p) (Hoefling, 2009)
For the first K change-points in O(pIn K) (Bleakley and V., 2010)
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TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation
Require: % number of intervals, (/) gain function to split an interval [ into Iy, (1), Ir(I)
1: Iy represents the interval [1,n]
2 P = {Io}
3: fori=1tokdo
4 I* + argmax~y (I*)
IeP
50 P« P\{I*}
6: P« PU{IL(I"),Ir(I*)}
7: end for
8: return P

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy” dichotomic segmentation
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TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation
Require: % number of intervals, (/) gain function to split an interval [ into Iy, (1), Ir(I)
1: Iy represents the interval [1,n]
2 P = {Io}
3: fori=1tokdo
4 I* + argmax~y (I*)
IeP
50 P« P\{I*}
6: P« PU{IL(I"),Ir(I*)}
7: end for
8: return P

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy” dichotomic segmentation

Apparently greedy algorithm finds the global optimum!
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Speed trial : 2's. for K =100, p =

Speed for K=1, 10, 1e2, 1e3, 1e4, 1e5
T T

09f B . i
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Applications

Vol. 27 no. 2 2011, pages 268-269
AP P Ll CATI ON S N O TE doi:10.1093/bioinformatics/btq635

Genome analysis Advance Access publication November 15, 2010

Control-free calling of copy number alterations in
deep-sequencing data using GC-content normalization

Valentina Boeva'-2-3-4* Andrei Zinovyev'-2-3, Kevin Bleakley'-2-3, Jean-Philippe Vert'-2:3,
Isabelle Janoueix-Lerosey'-4, Olivier Delattre’# and Emmanuel Barillot'-2-3

Tinstitut Curie, 2INSERM, U900, Paris, F-75248, 3Mines ParisTech, Fontainebleau, F-77300 and 4INSERM, U830,
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Extension 1: finding multiple change points shared by
several profiles

L L L L L L
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Extension 1: finding multiple change points shared by
several profiles

L L L
o 100 200 300 400 500 600 700 800 900 1000
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"Optimal” segmentation by dynamic programming

@ Define the "optimal’ piecewise constant approximation U € RPX1 of
Y as the solution of

p—1
i Y —U|? h that 1(Uii1e # Uid) < k
UgI]RJpX" I ” suc ; ( i+1, # i ) =

o DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 10° ~ 10°...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ¢1/¢2-norm
induces sparse solutions at the group level.

Qgroup( Z [wgll2

05
Qwr, wa, wz) = [|(w, wa)l|2 + [[wall2

=/ w2+ wi+\/wE

05
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GFLseg (Bleakley and V., 2011)

Replace
p—1
Ugﬂ{ipxn |Y —UJ|> such that ; 1(Uig1,0 # Uie) < k
by
p—1
Jmin | Y = UJ|?® such that ; Wil|Uit1.e — Urel| <

GFLseg = Group Fused Lasso segmentation
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GFLseg (Bleakley and V., 2011)

Replace
p—1
ymin (1Y —U | such that ;1 (Uis1,e # Uie) < k
by
p—1
Jmin | Y = UJ|?® such that ; Wil|Uit1.e — Uil <

GFLseg = Group Fused Lasso segmentation

@ Practice: can we solve it efficiently?
@ Theory: does it recover the correct segmentation?
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TV approximator implementation

p—1

; _ 2 AL 1
Ugﬂ{.pxnuv U||?> such that ’Z_;W,HU,H,. Uiell < 1

Theorem

The TV approximator can be solved efficiently:
@ approximately with the group LARS in O(npk) in time and O(np) in
memory

@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Speed trial

time (s)
time (s)
éc

GFLars
— GFlLasso

s FlLars
— GFlLasso

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k& = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.
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Consistency

Suppose a single change-point:

@ at position u = ap

e with increments (53;)i=1,..n S.t. 32 = limg_oo 2 304 32
2

@ corrupted by i.i.d. Gaussian noise of variance o

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as p

increases?
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Consistency of the weighted TV approximator

p—1

. ) L
Ug;gpmHY*Ull such that ;W,HU,H, Uiall < 1t

Theorem

The weighted TV approximator with weights
Vie[lp—1, w= itp=1)
p

correctly finds the first change-point with probability tending to 1 as
n — +0o0.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Consistency for a single change-point

1
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions v = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: v = 5042 to v = 90+ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.
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Estimation of several change-points

0.9 b 0.9 0.9
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P P

Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian

noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.
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Application: detection of frequent abnormalities

Log-ratio
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Extension 2: Supervised classification of genomic profiles

@ Xxi,...,X, € RP the n profiles of length p
® y1,...,yn € [-1,1] the labels
@ We want to learn a function f : RP — [—1,1]
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Prior knowledge

We expect 3 to be
@ sparse : not all positions should be discriminative, and we want to
identify the predictive region (presence of oncogenes or tumor
suppressor genes?)
@ piecewise constant : within a selected region, all probes should
contribute equally
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Fused lasso for supervised classification (Rapaport et al.,

2008)

n P p—1
- T
BrgRr{L > ¢ (y,-, B x,-) + A\ Zl |Bi] + A2 Z; |Biv1 — Bil -

where £ is, e.g., the hinge loss /(y, t) = max(1 — yt,0).
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Fused lasso for supervised classification (Rapaport et al.,

2008)

n P p—1
ﬂné}R?p ;E (y,-, ﬁTX,'> + A1 ; |Bi] + A2 ; |Bi+1 — Bil -

where £ is, e.g., the hinge loss /(y, t) = max(1 — yt,0).

Implementation

@ When ¢ is the hinge loss (fused SVM), this is a linear program -; up
to p = 103 ~ 10*

@ When / is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -; up to p = 108 ~ 10°
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Example: predicting metastasis in melanoma

Weight
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© Introduction

© Learning with kernels

© Kernels for biological sequences
@ Kernels for graphs

© Learning with sparsity

@ Learning molecular classifiers with network information (bis)

@ Reconstruction of regulatory networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be *“coherent” with
respect to this prior knowledge
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Graph-based penalty

mﬁi” R(8) + AQ¢(B)

Hypothesis

We would like to design penalties Q¢ (3) to promote one of the following
hypothesis:

@ Hypothesis 1: genes near each other on the graph should have similar
weights (but we do not try to select only a few genes), i.e., the
classifier should be smooth on the graph

@ Hypothesis 2: genes selected in the signature should be connected to
each other, or be in a few known functional groups, without
necessarily having similar weights.
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Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths.
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Graph based penalty with kernels

Prior hypothesis

Genes near each other on the graph should have similar weigths.

Network kernel (Rapaport et al., 2007)
Qspect‘ral(ﬂ) — Z(/BI - Bj)2 )

in~j

min R(8) + 2D (8 = 6%

in~j
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Other penalties without kernels

@ Gene selection + Piecewise constant on the graph

Q) => 18- /3,|+Z|ﬁ,

i~j

@ Gene selection 4+ smooth on the graph

=> (8- 8) +Z|ﬂ,

inj
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How to select jointly genes belonging to predefined

pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ¢1/¢2-norm
induces sparse solutions at the group level.

Qgroup( Z [wgll2

05

Q(wr, wa, wz) = || (w1, wa)|2 + [[wal|2
05
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What if a gene belongs to several groups?

Issue of using the group-lasso

° Qgroup(W) = Zg ||WgH2 sets groups to 0.

@ One variable is selected < all the groups to which it belongs are

selected.
Gl
Cell 0
cycle
= )
G2 G2
et llwey ll2=llwgs l2=0 -
%%
A& /’)?E»,"“’o, G3 O
C P % o
Ly g7
@ (73
%
. ) Removal of any group
IGF selection = selection of . .
containing a gene = the weight
unwanted groups

of the gene is 0.
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Latent group lasso (Jacob et al., 2009)

Introduce latent variables v,:

o ||
mmL +>‘ZHVg“2 v e g
G

g w = [+ v2

W= deg Ve

0 I

supp (vg) C &- RPN

Properties

@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.

@ Equivalent to group lasso when there is no overlap
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A new norm

Overlap norm

min L(w) + 2 [|vgll2

W= Vggeg = min L(w) + Aovertap(w)
supp (vg) C g.
with min > [|vgl2
Qoveriap(W) = w :gggeg Vg (*)

supp (vg) C g.

Property

| A\

® Qoveriap(w) is a norm of w.

® Qoveriap(-) associates to w a specific (not necessarily unique)
decomposition (vg)geg which is the argmin of (x).
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Overlap and group unity balls

Balls for QF,,,, (-) (middle) and QY ... () (right) for the groups

G = {{1,2},{2,3}} where ws is represented as the vertical coordinate. Left:
group-lasso (G = {{1,2},{3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)

@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that
W =3, Vg and QJ .0 (W) = 3 [

@ Consider the regularized empirical risk minimization problem
L(w)+ Q9 (w).

overlap
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Theoretical results

Consistency in group support (Jacob et al., 2009)

@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that
W=, Vg and QF ¢ (W) = 2 (|72

@ Consider the regularized empirical risk minimization problem
L(w) + AQF 1, (W).

Then

@ under appropriate mutual incoherence conditions on X,

@ as n — oo,

@ with very high probability,

the optimal solution W admits a unique decomposition (V;)geg such that

{g €G|Vg #0} = {g € G|vg #0}.
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

. —overlapping
x lasso
1

20,

RMSE

og,(%) 10g,0) log, o(n)

Frequency of selection of each variable with the lasso (left) and ngerlap ()

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Two solutions

Qint‘erse(:l”ion(ﬁ) — Z 5,2 + 512 )

i~j

Qunion(ﬁ) — sup O‘Tﬁ-

iroi la2ta2
a€RPVinj,[|lof +of||<1
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Graph lasso vs kernel on graph

@ Graph lasso:

Qgraph Iasso(W) — Z A/ W,-2 aF W_/2 .

i~j
constrains the sparsity, not the values

@ Graph kernel
Qgraph kerneI(W) = Z(Wl - WJ)2 o

in~j

constrains the values (smoothness), not the sparsity

380 /473



Preliminary results

Breast cancer data
@ Gene expression data for 8,141 genes in 295 breast cancer tumors.

@ Canonical pathways from MSigDB containing 639 groups of genes,
637 of which involve genes from our study.

METHOD A QY rar ()
ERROR 0.38+0.04 0.36+0.03
MEAN f PATH. 130 30
@ Graph on the genes.
METHOD A .
ERROR 0.39+£0.04 0.36£0.01

Av. SIZE C.C. 1.03 1.30
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signature

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40  POLD1 — POLD4

eer1aL
PCSK6 — BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT PDE6B  TGFB2
MYCBP GRP. DLEU2  ALDH3A2  VEGFE  PSMD7  CXCLI3 FLT3 PPAT ULK1
SLC16A3  AKRIC4  BATF PLP2 SYTL2  CCNB2  SLC39A7  HYPK PDHB. UBD
FBXO2 E2F1 LRPS. PIK3CG  ZCCHC8  NLRP2  ANKZF1  PRCL cTsL2 TKL

PTPN3  CASC3  IGFBPS RTN3  DNAJB2  CDH19  GLRX2
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Graph Lasso signature
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© Introduction

© Learning with kernels

© Kernels for biological sequences
@ Kernels for graphs

© Learning with sparsity

@ Reconstruction of regulatory networks
@ Introduction
@ De novo reconstruction based on mutual information
@ De novo reconstruction based on sparse regression
@ Supervised reconstruction with one-class methods
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© Introduction

© Learning with kernels

© Kernels for biological sequences

@ Kernels for graphs

© Learning with sparsity

@ Reconstruction of regulatory networks

@ [ntroduction
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Gene expression
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Image adapted from: National Human Genome Research Institute.
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Gene expression regulation
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Gene regulatory network
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Gene regulatory network of E. coli
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Gene expression data
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Reconstruction of gene regulatory network
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Two flavours: de novo or supervised

o Alpha _cdels_cde28 Flu

Icis2
et
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v

De novo inference

Given a matrix of expression data, infer regulations

Supervised inference

Given a matrix of expression data and a set of knows regulations, infer
other unknown regulations
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If A regulates B, then we should expect some form of " correlation”
between the expression levels of A and B across different experiments.

We can therefore try to detect these correlations to infer regulation.
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Measuring dependency: correlation coefficients

e (X1, Y1),...,(Xn, Yn) the n expression values of both genes

@ Pearson correlation:
_ cov(X,)Y) > i(Xi = X)(Yi—Y)

oxoy \/Zi(x,- - )'()2\/2,-(3/,- - Y)2

@ Spearman correlation: similar but replace X; by its rank.
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[llustration
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Limit of correlations

397 /473



Mutual information

)= J, s (5

e /(X;Y)>0
I(X;Y)=0if and only if X and Y are independent
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@ The dynamic equation of the mRNA concentration of a gene is of the

form: X
— =f(X,R
dt ( Y )
where R represent the set of concentrations of transcription factors
that regulate X.
o At steady state, dX/dt =0 = f(X,R)

o If we linearize f(X, R) = 0 we get linear relation of the form
X =3 BiX;
i€ER

@ This suggests to look for sets of transcription factors whose
concentration is sufficient to explain the level of X across different
experiments.
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Predicting regulation by sparse regression

Let Y the expression of a gene, and Xi, ..., X, the expression of all TFs.
We look for a model

P
Y = Zﬁ,-X,- + noise
i=1
where [ is sparse, i.e., only a few [3; are non-zero.
We can estimate the sparse regression model from a matrix of expression
data.
Non-zero §;'s correspond to predicted regulators.
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Example: sparse regression with the Lasso

2
n

P P
min > [ ;=) " X;,jB;| suchthat > | <t
j=1

€RP
A i=1

@ No explicit solution, but this is just a quadratic program.

e LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all t's simultaneously (regularization path)

o When t is not too large, the solution will usually be sparse
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LASSO regression example

500

0
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2
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Improved feature selection with stability selection

@ Fort=1to T do

e Bootstrap a random sample S; from the training set
e Randomly reweight each feature
e Select M features, e.g., with the Lassp

@ The score of a feature is the number of times it was selected among
the T repeats

@ Rank features by decreasing score.
@ See Meinshausen and Biihimann (2009).
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Examples of de novo me

OPEN @ ACCESS Freely available online PLOS sioLosy

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faithw, Boris l-layete'I "", Joshua T. Thadenz”, llaria Mognoz", Jamey Wievzbowskiz‘f', Guillaume Cottarell's,
Simon Kasif' ", James J. Cnllins"’, Timothy S. Gardner'' %"

number of known interactions inferred
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Motivations

@ In many cases, we already know quite a few regulations.

@ Can we use them, in addition to expression data, to predict unknown
regulations?
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Using expression data for supervised inference

o If a gene has an expression profile similar to other genes known to be
regulated by a TF, then it is likely to be regulated by the TF itself

@ Underlying hypothesis: genes regulated by the same TF have similar
expression variations

@ Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF

@ This is only possible if we already have a list of known regulations.
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e For a given TF, let P C [1, n] be the set of genes known to be
regulated by it
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e For a given TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to assess
which expression profiles X are similar
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e For a given TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to assess
which expression profiles X are similar

@ Then classify the genes not in P by decreasing score
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Estimating the scoring function: examples

o Kernel density estimation
s(X) =Y exp (= X = X |?)
ieP
@ One-class SVM
s(X) = Za,- exp (—v[| X = X; Hz)
ieP
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Estimating the scoring function: examples

o Kernel density estimation
s(X) = Zexp (—'yH X —X; ||2)
ieP
@ One-class SVM
s(X) = Za,-exp (= X = X |1?)
iceP
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Since we know in advance all genes, can we use them instead of relying
only on genes in P to estimate the scoring function?
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Since we know in advance all genes, can we use them instead of relying
only on genes in P to estimate the scoring function?
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From one-class to PU learning

@ One class: given genes in P, estimate the function s(X)
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From one-class to PU learning

%%
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% %
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@ One class: given genes in P, estimate the function s(X)

@ PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(X;) for j € U
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PU learning in practice (Mordelet and V., 2014)

#3
xx")&‘)*

@ Train a classifier to discriminate P from U (eg, SVM or random
forest)

@ Rank genes in U by decreasing training score
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Example: E. coli regulatory network

Ratio of true positives

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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o 04
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0
0.2 0.4 0.6 1 0 0.2 0.4 0.6 0.8
Ratio of false positives Recall

Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%
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Application: predicted regulatory network (E. coli)
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Proteins




Network 1: protein-protein interaction
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Network 2: metabolic network

Methans
metaholism

13622
L-Serineg 2774 Adenylylsulfate lel;hﬂ?;m&%r

- —— TeREL] {APS) 3137 |Suate &
Sulfate \ —_—

1831
1821 EE

» 1.13.11.15]

Sulfur

11399

Acetyl-L-Serine O

O-Acetyl-L-
homoserine

o] O‘—' 2.
Trithiomate

422 /473



Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles

@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. ’
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Our goal

o Gene expression,

@ Protein-protein interactions,

o Gene sequence, @ Metabolic pathways,

@ Protein localization, ... @ Signaling pathways, ...
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More precisely

Formalization

o V={1,..., N} vertices (e.g., genes, proteins)
o D=(xi,...,xy) € H" data about the vertices (# Hilbert space)
@ Goal: predict edges £ C V x V. We focus on undirected graphs.

426 /473



More precisely

Formalization

o V={1,..., N} vertices (e.g., genes, proteins)
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More precisely

Formalization

o V={1,..., N} vertices (e.g., genes, proteins)
o D=(xi,...,xy) € H" data about the vertices (# Hilbert space)
@ Goal: predict edges £ C V x V. We focus on undirected graphs.

“De novo” inference

@ Given data about individual genes and proteins D, ...

@ ... Infer the edges between genes and proteins &£

v
n " o-

“Supervised” inference

@ Given data about individual genes and proteins D, ...

@ ... and given some known interactions &;nin C &, ...

@ ... infer unknown interactions Etest = E\Etrain
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De novo methods

Typical strategies

e Fit a dynamical system to time series (e.g., PDE, boolean networks,
state-space models)

@ Detect statistical conditional independence or dependency (Bayesian
netwok, mutual information networks, co-expression)
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De novo methods

Typical strategies

e Fit a dynamical system to time series (e.g., PDE, boolean networks,
state-space models)

@ Detect statistical conditional independence or dependency (Bayesian
netwok, mutual information networks, co-expression)

Pros Cons

@ Excellent approach if the @ Specific to particular data
model is correct and enough and networks
data are available @ Needs a correct model!
o Interpretability of the model o Difficult integration of
@ Inclusion of prior knowledge ) heterogeneous data
@ Often needs a lot of data
and long computation time

v
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Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Supervised methods

In actual applications,

@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic data as
side information

Supervised method

@ Given genomic data and the
currently known network...

@ Infer missing edges between
current nodes and additional
nodes.
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Pattern recognition

© 0 0q,
O O o

@ Given a training set of patterns in two classes, learn to discriminate
them

e Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition

@ Given a training set of patterns in two classes, learn to discriminate
them

e Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xi, X2)
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Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xi, X2)

Two solutions

e Consider each pair (X1, X2) as a single data - learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -; local models
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected and
non-connected pairs

@ However the genomic data characterize individual proteins; we need
to work with pairs of proteins instead!
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2 o
@
4

e3
3 2@

Known graph Genomic data
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected and
non-connected pairs

@ However the genomic data characterize individual proteins; we need
to work with pairs of proteins instead!
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected and
non-connected pairs

@ However the genomic data characterize individual proteins; we need
to work with pairs of proteins instead!
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Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ Depending on the network, we are interested in ordered or unordered
pairs of proteins.

@ We must represent a pair of proteins (u, v) by a vector ¥(u, v) € RY
in order to estimate a linear classifier

@ Question: how build ¢¥(u, v) from u and v, in the ordered and
unordered cases?
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Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

’(/J(U,V)U@V(i).
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Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

’(/J(U,V)U@V(i).

@ Problem: a linear function then becomes additive...

flu,v)=w'y(u,v)=w] u+w'v.
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Direct product for ordered pairs

o Alternatively, make the direct product, i.e., the p>-dimensional vector
whose entries are all products of entries of u by entries of v:

Wuv) = uev
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Direct product for ordered pairs

o Alternatively, make the direct product, i.e., the p>-dimensional vector
whose entries are all products of entries of u by entries of v:

Wuv) = uev

@ Problem: can get really large-dimensional...

@ Good news: inner product factorizes:

(1 @wv1) (r @ vp) = (uiruz) X (vl—rvz) ,
which is good for algorithms that use only inner products (SVM...):

Kp ((Ul, Vl)7 (U2, V2)) = 1/1(u1, V]_)T’(/)(U2, V2) = K(Ul./ U2)K(V17 V2)
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Representing an unordered pair

o Often we want to work with unordered pairs, e.g., PPI network:

{u7 V} = {(U, V)? (V7 U)}
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o Often we want to work with unordered pairs, e.g., PPI network:
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@ This suggest to symmetrize the representation of ordered pairs:

wU({u’ V}) = ¢(U7 V) + ¢(V7 u)
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Representing an unordered pair

o Often we want to work with unordered pairs, e.g., PPI network:

{u7 V} = {(U, V)? (V7 U)}

@ This suggest to symmetrize the representation of ordered pairs:

wU({u’ V}) = ¢(U7 V) + ¢(V7 u)

@ When 9(u,v) = u® v, this leads to the symmetric tensor product
pairwise kernel (TPPK) (Ben-Hur and Noble, 2005):

K1ppk ({ul./ Vl} , {u2, Vz}) = K(Ul7 UQ)K(V;[7 V2) + K(ul, VQ)K(Vl7 u2)
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

dy(u,v) = (u—v)"M(u—v).
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

dy(u,v) = (u—v)"M(u—v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?

438 /473



Another idea: metric learning

@ For two vectors u, v € H let the metric:

dy(u,v) = (u—v)"M(u—v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?

@ We consider the problem:
: 2: 2
Ar}?'z% /(uivvayf)'i_)‘HMHFrobeniusv

1

where [ is a hinge loss to enforce:

<1-—~ if(uj,vi)is connected ,

dm(ui, Vi){

> 14~ otherwise.
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Link with metric learning

Theorem (V. et al., 2007)
@ A SVM with the representation

Y({u,v}) = (u—v)*

trained to discriminate connected from non-connected pairs, solves
this metric learning problem without the constraint M > 0.

o Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

Kuepk ({ur, vi}, {u, vo}) = ¢({ur, vi}) T ({uz, va})
= [K(u1, 1) — K(u1, va) — K(v1, u2) + K(uz, v2)]?
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B and
B — A to predict the interaction {A, B}
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B and
B — A to predict the interaction {A, B}

@ Weak hypothesis:

e if A is connected to B,
o if C is similar to B,
o then A is likely to be connected to C.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B and
B — A to predict the interaction {A, B}
@ Weak hypothesis:
e if A is connected to B,
e if Cis similar to B,
o then A is likely to be connected to C.
o Computationally: much faster to train N local models with N training
points each, than to train 1 model with N? training points.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B and
B — A to predict the interaction {A, B}
@ Weak hypothesis:
e if A is connected to B,
e if Cis similar to B,
o then A is likely to be connected to C.
o Computationally: much faster to train N local models with N training
points each, than to train 1 model with N? training points.
o Caveats:

e each local model may have very few training points
@ no sharing of information between different local models
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In the case of unordered pairs {A, B}, pairwise kernels such as the TPPK
and local models look very different:

@ Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori

o Pairwise kernels symmetrize the data a priori and learn in the space or
unordered pairs

Can be clarify the links between these approaches, and perhaps interpolate
between them?
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@ A the set of individual proteins, endowed with a kernel K4

o X = A? the set of ordered pairs of the form x = (a, b) endowed with
a kernel Ky (usually deduced from Kj4)

@ P the set of unordered pairs of the form p = {(a, b), (b, a)}

@ We want to learn over P from a set of labeled training pairs

(P17Y1); .. -:(Pna)/n) € P X {_17 ]‘}

X =A
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky:

1
K’P(p7 p/) =T 1 E KX(X7 X/) 0
Pl 1Pl e

@ Train a classifier over P e.g., a SVM, using the kernel Kp
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky:
1
K’p(p,p/) = T Z KX(X,X/).
Pl 1Pl e

@ Train a classifier over P e.g., a SVM, using the kernel Kp

v

Strategy 2: Inference over X with a pair duplication

© Duplicate each training pair p = {a, b} into 2 ordered paired

@ Train a classifier over X, e.g., a SVM, using the kernel Ky

© The classifier over P is then the a posteriori average:

o (p) = ﬁ S fel(x)
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The TPPK kernel

Krppk ({a, b}, {c,d}) = Ka(a, c)Ka(b,d) + Ka(a,d)K4(b, c).

Let X = A% be endowed with the p.d. kernel:

Kx ((av b),(C, d)) = 2K.A(av C)KA(b’ d) (4)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy 2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).
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The local models

+1
O?
8 -
-1 s T O
L0 N0
O +1 O-?

Theorem
Let X = A% be endowed with the p.d. kernel:

Kx ((av b)7 (C7 d)) - 5(37 C)KA(b7 d) )

where ¢ is the Kronecker kernel (§(a, c) =1 if a = ¢, 0 otherwise). Then
the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of the
learning algorithm, see details in Hue and V. (ICML 2010)..

449 /473



Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky =Ka® Ka TPPK TPPK
Ky =00 Ky new Local model
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky =Ka® Ka TPPK TPPK
Ky =00 Ky new Local model

Interpolation:
Ky =((1-ANKa+ X)) @Ky

for A € [0, 1]
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protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)

1,
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Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine metabolic

and protein-protein interaction networks experiments, with the kernel K* for
A€ [0,1].

benchmark best kernel
interaction, exp Duplicate, A = 0.7
interaction, loc Pair kernel, A = 0.6
interaction, phy Duplicate, A = 0.8
interaction, y2h Duplicate / Pair kernel, A =0
interaction, integrated Duplicate / Pair kernel, A =0
metabolic, exp Pair kernel, A = 0.6
metabolic, loc Pair kernel, A =1
metabolic, phy Pair kernel, A = 0.6

metabolic, integrated  Duplicate / Pair kernel, A =0
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Interpolation kernel
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Metabolic networks with localization data (left); PPl network with
expression data (right)
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation
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Conclusion

@ When the network is known in part, supervised methods are more
adapted than unsupervised ones.
@ A variety of methods have been investigated recently (metric learning,
matrix completion, pattern recognition).
e work for any network
o work with any data
e can integrate heterogeneous data, which strongly improves performance

@ Promising topic: infer edges simultaneously with global constraints on
the graph?

v
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Machine learning in computational and systems biology

@ Biology faces a flood of data following the development of
high-throughput technologies (sequencing, DNA chips, ...)
@ Many problems can be formalized in the framework of machine
learning, e.g.:
e Protein annotation
o Drug discovery, virtual screening
o Gene network inference
@ These data have often complex structures (strings, graphs,
high-dimensional vectors) and often require dedicated algorithms.

aFFME TR
A0
[ I
GeneChip
Gernme e v
SP A
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Support vector machines (SVM)

A general-purpose algorithm for pattern recognition
Based on the principle of large margin ("séparateur a vaste marge”)

Linear or nonlinear with the kernel trick

Control of the regularization / data fitting trade-off with the C
parameter

State-of-the-art performance on many applications
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Kernels

@ A central ingredient of SVM

@ Allows nonlinearity

@ Allows to work implicitly in a high-dimensional feature space
@ Allows to work with structured data (e.g., graphs)
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G network inference

@ Ab initio reconstruction of regulatory network can be formulated as
feature selection, and solved, e.g., by the Lasso or random forests

@ Supervised reconstruction is more powerful when edges (e.g.,
regulations) are already known

@ PU learning is more powerful than one-class learning in this setting,
and can be solved by SVM

@ Predicting edges requires learning over pairs with specific kernels in
the case of SVM
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Using gene networks

@ Gene networks can be used as prior knowledge to analyze gene
expression data
@ Spectral graph analysis and graph kernels are useful tools

o It allows to capture pathways or protein complexes instead of
individual genes
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