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Cells, chromosomes, DNA



Chromosomic aberrations in cancer



Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research to observe
systematically variants in DNA content
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Cancer prognosis: can we predict the future evolution?
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Problem 1
From a CGH profile, can we predict whether a melanoma will relapse
(left) or not (right)?



DNA→ RNA→ protein



Tissue profiling with DNA chips



Use in diagnosis

Problem 2
Given the expression profile of a leukemia, is it an acute lymphocytic or
myeloid leukemia (ALL or AML)?



Use in prognosis

Problem 3
Given the expression profile of a breast cancer, is the risk of relapse
within 5 years high?



Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine



Protein annotation

Data available
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Problem 4
Given a newly sequenced protein, is it secreted or not?



Drug discovery

inactive

active

active

active

inactive

inactive

Problem 5
Given a new candidate molecule, is it likely to be active?



Gene network inference

Problem 6
Given known interactions, can we infer new ones?



A common topic...
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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More formally

Input
X the space of patterns or data (typically, X = Rp)
Y the space of response or labels

Classification or pattern recognition : Y = {−1,1}
Regression : Y = R

S = {(x1, y1) , . . . , (xn, yn)} a training set in (X × Y)n

Output
A function f : X → Y to predict the output associated to any new
pattern x ∈ X by f (x)



Simple example 1 : ordinary least squares (OLS)2.3 Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response
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FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by xT β̂ = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR2 classified as ORANGE corresponds to {x : xT β̂ > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : xT β̂ = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of

(Hastie et al. The elements of statistical learning. Springer, 2001.)



Simple example 1 : 1-nearest neighbor (1-NN)16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and



What’s wrong?
2.3 Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response
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FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by xT β̂ = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR2 classified as ORANGE corresponds to {x : xT β̂ > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : xT β̂ = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of

16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

OLS: the linear separation is not appropriate = "large bias"
1-NN: the classifier seems too unstable = "large variance"



The fundamental "bias-variance" trade-off

Assume Y = f (X ) + ε, where ε is some noise
From the training set S we estimate the predictor f̂
On a new point x0, we predict f̂ (x0) but the "true" observation will
be Y0 = f (x0) + ε

On average, we make an error of:

Eε,S
(

Y0 − f̂ (x0)
)2

= Eε,S
(

f (x0) + ε− f̂ (x0)
)2

= Eε2 + ES
(

f (x0)− f̂ (x0)
)2

= Eε2 +
(

f (x0)− ES f̂ (x0)
)2

+ ES
(

f̂ (x0)− ES f̂ (x0)
)2

= noise + bias2 + variance



Back to OLS

Parametric model for β ∈ Rp+1:

fβ(X ) = β0 +

p∑

i=1

βiXi = X>β

Estimate β̂ from training data to minimize

RSS(β) =
n∑

i=1

(yi − fβ(xi))2 = (Y− Xβ)> (Y− Xβ)

Solution if X>X is non-singular:

β̂ =
(

X>X
)−1

X>Y



Optimality of OLS

Gauss-Markov theorem
Assume Y = Xβ + ε, where Eε = 0 and Eεε> = σ2I.
Then the least squares estimator β̂ is BLUE (best linear unbiased
estimator), i.e., for any other estimator β̃ = CY with E β̃ = β,

Var(β̂) ≤ Var(β̃)

Nevertheless, if variance may be very large, we may have smaller total
risk by increasing bias to decrease variance



Optimality of OLS

Gauss-Markov theorem
Assume Y = Xβ + ε, where Eε = 0 and Eεε> = σ2I.
Then the least squares estimator β̂ is BLUE (best linear unbiased
estimator), i.e., for any other estimator β̃ = CY with E β̃ = β,

Var(β̂) ≤ Var(β̃)

Nevertheless, if variance may be very large, we may have smaller total
risk by increasing bias to decrease variance



The curse of dimensionality
2.3 Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response
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FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by xT β̂ = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR2 classified as ORANGE corresponds to {x : xT β̂ > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : xT β̂ = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of

Small dimension

16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier
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FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

Large dimension

In high dimensions, variance dominates, even for simple linear
estimators. BLUE estimators are useless.



A solution: shrinkage estimators

1 Define a large family of "candidate classifiers", e.g., linear
predictors:

fβ(x) = β>x for x ∈ Rp

2 For any candidate classifier fβ, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(β) =
1
n

n∑

i=1

(fβ(xi)− yi)
2 .

3 Choose β that achieves the minimium empirical risk, subject to
some constraint:

min
β

R(β) subject to Ω(β) ≤ C .
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Why skrinkage classifiers?

min
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C

Bias

Variance

"Increases bias and decreases variance"
Equivalent formulation:

min
β

R(β) + λΩ(β) .
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Choice of C or λ: structured regression and model
selection

Define a family of function classes Fλ, where λ controls the
"complexity"
For each λ, define

f̂λ = argmin
Fλ

EPE(f )

Select f̂ = f̂λ̂ to minimize the bias-variance tradeoff.38 2. Overview of Supervised Learning
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)

2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.



Cross-validation

A simple and systematic procedure to estimate the risk (and to
optimize the model’s parameters)

1 Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n

2 For each portion, fit the model with different parameters on the
K − 1 other groups and test its performance on the left-out group

3 Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.



Summary

1 Many problems in computational biology and medicine can be
formulated as high-dimensional classification or regression tasks

2 The total error of a learning system is the sum of a bias and a
variance error

3 In high dimension, the variance term often dominates
4 Shrinkage methods allow to control the bias/variance trade-off
5 The choice of the penalty is where we can put prior knowledge to

decrease bias



Choosing or designing a penalty...

min
β

R(β) subject to Ω(β) ≤ C .

We will only focus on convex penalties, which lead to efficient
algorithms. We will touch upon two important families of penalties:

1 Smooth convex penalty: ridge regression, SVM, kernels...
2 Nonsmooth convex penalty: lasso, group lasso, fused lasso,...
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Ridge regression (Hoerl and Kennard, 1970)

1 Consider the set of linear predictors:

∀β ∈ Rp , fβ(x) = β>x for x ∈ Rp .

2 Consider the mean square error (MSE) as empirical risk:

R(β) =
1
n

n∑

i=1

(fβ(xi)− yi)
2 .

3 Consider the Euclidean norm as a penalty:

Ω(β) = ‖β ‖22 =

p∑

i=1

β2
i .
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Solution

Let X = (x1, . . . , xn) the n × p data matrix, and
Y = (y1, . . . , yn)> ∈ Rp the response vector.
The penalized risk can be written in matrix form:

R(β) + λΩ(β) =
1
n

n∑

i=1

(fβ (xi)− xi)
2 + λ

p∑

i=1

β2
i

=
1
n

(Y − Xβ)> (Y − Xβ) + λβ>β .

Explicit minimizer:

β̂
ridge
λ = arg min

β∈Rp
{R(β) + λΩ(β)} =

(
X>X + λnI

)−1
X>Y .
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Limit cases

β̂
ridge
λ =

(
X>X + λnI

)−1
X>Y

Corollary

As λ→ 0, β̂ridge
λ → β̂OLS (low bias, high variance).

As λ→ +∞, β̂ridge
λ → 0 (high bias, low variance).



Ridge regression example

(From Hastie et al., 2001)



Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated
features:

> library(MASS) # for the lm.ridge command
> x1 <- rnorm(20)
> x2 <- rnorm(20,mean=x1,sd=.01)
> y <- rnorm(20,mean=3+x1+x2)
> lm(y~x1+x2)$coef
(Intercept) x1 x2

3.070699 25.797872 -23.748019
> lm.ridge(y~x1+x2,lambda=1)

x1 x2
3.066027 1.015862 0.956560



Generalization: `2-regularized learning

A general `2-penalized estimator is of the form

min
β

{
R(β) + λ‖β‖22

}
, (1)

where

R(β) =
1
n

n∑

i=1

`(fβ(xi), yi)

for some general loss functions `.
Ridge regression corresponds to the particular loss

`(u, y) = (u − y)2 .

For general, convex losses, the problem (1) is strictly convex and
has a unique global minimum, which can usually be found by
numerical algorithms for convex optimization.



Loss for regression

Square loss : `(u, y) = (u − y)2

ε-insensitive loss : `(u, y) = (|u − y | − ε)+

Huber loss : mixed quadratic/linear



Loss for pattern recognition

Large margin classifiers
For pattern recognition Y = {−1,1}
Estimate a function f : X → R.
The margin of the function f for a pair (x , y) is: yf (x).
The loss function is usually a decreasing function of the margin :
` (f (x) , y) = φ (yf (x)),

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

margin

lo
ss

0−1
logistic
hinge
hinge^2
exp



Example: Ridge logistic regression
(Le Cessie and van Houwelingen, 1992)

`logistic(u, y) = ln
(
1 + e−yu)

min
β

J(β) =
1
n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖22



Probabilistic interpretation

min
β

J(β) =
1
n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖22

Exercice
Show that ridge logistic regression finds the penalized maximum
likelihood estimator:

max
β

1
n

n∑

i=1

ln Pβ(Y = yi |X = xi)− λ‖β‖22 ,

for the following model:




Pβ(Y = 1 |X = x) = eβ>x

1+eβ>x

Pβ(Y = −1 |X = x) = 1
1+eβ>x



Solving ridge logistic regression

min
β

J(β) =
1
n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖22

No explicit solution, but convex problem with:

∇βJ(β) = −1
n

n∑

i=1

yixi

1 + eyiβ>xi
+ 2λβ

= −1
n

n∑

i=1

yi [1− Pβ(yi | xi)] xi + 2λβ

∇2
βJ(β) =

1
n

n∑

i=1

xix>i eyiβ
>xi

(
1 + eyiβ>xi

)2 + 2λI

=
1
n

n∑

i=1

Pβ(1 | xi) (1− Pβ(1 | xi)) xix>i + 2λI



Solving ridge logistic regression (cont.)

min
β

J(β) =
1
n

n∑

i=1

ln
(

1 + e−yiβ
>xi
)

+ λ‖β‖22

The solution can then be found by Newton-Raphson iterations:

βnew ← βold −
[
∇2
βJ
(
βold

)]−1
∇βJ

(
βold

)
.

Each step is equivalent to solving a weighted ridge regression
problem (left as exercise)
This method is therefore called iteratively reweighted least
squares (IRLS).
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Which one is better?



The margin of a linear classifier
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The margin of a linear classifier



Largest margin classifier (hard-margin SVM)



Support vectors



More formally

The training set is a finite set of n data/class pairs:

S =
{

(~x1, y1), . . . , (~xn, yn)
}
,

where ~xi ∈ Rp and yi ∈ {−1,1}.
We assume (for the moment) that the data are linearly separable,
i.e., that there exists (~w ,b) ∈ Rp × R such that:

{
~w .~xi + b > 0 if yi = 1 ,
~w .~xi + b < 0 if yi = −1 .



How to find the largest separating hyperplane?

For a given linear classifier f (x) = ~w .~x + b consider the "tube" defined
by the values −1 and +1 of the decision function:

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

w.x+b=0



The margin is 2/‖ ~w ‖2

Indeed, the points ~x1 and ~x2 satisfy:
{
~w .~x1 + b = 0 ,
~w .~x2 + b = 1 .

By subtracting we get ~w .(~x2 − ~x1) = 1, and therefore:

γ = 2‖~x2 − ~x1 ‖2 =
2

‖ ~w ‖2
.



All training points should be on the correct side of the
dotted line

For positive examples (yi = 1) this means:

~w .~xi + b ≥ 1 .

For negative examples (yi = −1) this means:

~w .~xi + b ≤ −1 .

Both cases are summarized by:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
≥ 1 .



Finding the optimal hyperplane

Find (~w ,b) which minimize:
‖ ~w ‖22

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 .

This is a classical quadratic program on Rp+1.



Another view of hard-margin SVM

min
~w ,b

{
n∑

i=1

`hard−margin
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
,

for the hard-margin loss function:

`hard−margin (u, y) =

{
0 if yu ≥ 1 ,
+∞ otherwise.
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Optimization problems

Setting
We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi(x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.
Let us denote by f ∗ the optimal value of the decision function
under the constraints, i.e., f ∗ = f (x∗) if the minimum is reached at
a global minimum x∗.



Lagrangian and dual function

Lagrangian
The Lagrangian of this problem is the function L : X × Rm × Rr → R
defined by:

L (x , λ, µ) = f (x) +
m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x) .

Lagrangian dual function
The Lagrange dual function g : Rm × Rr → R is:

q(λ, µ) = inf
x∈X

L (x , λ, µ)

= inf
x∈X


f (x) +

m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x)


 .



Properties of the dual function

q is concave in (λ, µ), even if the original problem is not convex.
The dual function yields lower bounds on the optimal value f ∗ of
the original problem when µ is nonnegative:

q(λ, µ) ≤ f ∗ , ∀λ ∈ Rm,∀µ ∈ Rr , µ ≥ 0 .



Proofs

For each x , the function (λ, µ) 7→ L(x , λ, µ) is linear, and therefore
both convex and concave in (λ, µ). The pointwise minimum of
concave functions is concave, therefore q is concave.
Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0. Then we
have, for any λ and µ ≥ 0:

m∑

i=1

λihi(x̄) +
r∑

i=1

µigi(x̄) ≤ 0 ,

=⇒ L(x̄ , λ, µ) = f (x̄) +
m∑

i=1

λihi(x̄) +
r∑

i=1

µigi(x̄) ≤ f (x̄) ,

=⇒ q(λ, µ) = inf
x

L(x , λ, µ) ≤ L(x̄ , λ, µ) ≤ f (x̄) , ∀x̄ . �



Dual problem

Definition
For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

where q is the (concave) Lagrange dual function and λ and µ are the
Lagrange multipliers associated to the constraints h(x) = 0 and
g(x) ≤ 0.



Weak duality

Let d∗ the optimal value of the Lagrange dual problem. Each
q(λ, µ) is an lower bound for f ∗ and by definition d∗ is the best
lower bound that is obtained. The following weak duality inequality
therefore always hold:

d∗ ≤ f ∗ .

This inequality holds when d∗ or f ∗ are infinite. The difference
d∗ − f ∗ is called the optimal duality gap of the original problem.



Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.:

d∗ = f ∗ .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight
Strong duality does not hold for general nonlinear problems.
It usually holds for convex problems.
Conditions that ensure strong duality for convex problems are
called constraint qualification.



Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize f (x)

subject to gj(x) ≤ 0 , j = 1, . . . , r ,
Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:

gj(x) < 0 , j = 1, . . . , r , Ax = b .



Remarks

Slater’s conditions also ensure that the maximum d∗ (if > −∞) is
attained, i.e., there exists a point (λ∗, µ∗) with

q (λ∗, µ∗) = d∗ = f ∗

They can be sharpened. For example, strict feasibility is not
required for affine constraints.
There exist many other types of constraint qualifications



Dual optimal pairs

Suppose that strong duality holds, x∗ is primal optimal, (λ∗, µ∗) is dual
optimal. Then we have:

f (x∗) = q (λ∗, µ∗)

= inf
x∈Rn



f (x) +

m∑

i=1

λ∗i hi(x) +
r∑

j=1

µ∗j gj(x)





≤ f (x∗) +
m∑

i=1

λ∗i hi(x∗) +
r∑

j=1

µ∗j gj(x∗)

≤ f (x∗)

Hence both inequalities are in fact equalities.



Complimentary slackness

The first equality shows that:

L (x∗, λ∗, µ∗) = inf
x∈Rn

L (x , λ∗, µ∗) ,

showing that x∗ minimizes the Lagrangian at (λ∗, µ∗). The second
equality shows that:

µjgj(x∗) = 0 , j = 1, . . . , r .

This property is called complementary slackness:
the i th optimal Lagrange multiplier is zero unless the i th constraint is
active at the optimum.



Outline

1 Introduction

2 Learning with kernels
Ridge regression and `2-regularized learning
Linear hard-margin SVM
Interlude: fundamentals of constrained optimization
Back to hard-margin SVM
Soft-margin SVM
Kernel methods
Learning molecular classifiers with network information
Data integration with kernels

3 Kernels for biological sequences

4 Kernels for graphs

5 Learning with sparsity

6 Reconstruction of regulatory networks

7 Supervised graph inference



Lagrangian

In order to minimize:
1
2
‖ ~w ‖22

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 ,

we introduce one dual variable αi for each constraint, i.e., for each
training point. The Lagrangian is:

L
(
~w ,b, ~α

)
=

1
2
||~w ||2 −

n∑

i=1

αi
(
yi
(
~w .~xi + b

)
− 1
)
.



Lagrangian

L
(
~w ,b, ~α

)
is convex quadratic in ~w . It is minimize for:

∇~wL = ~w −
n∑

i=1

αiyi~xi = 0 =⇒ ~w =
n∑

i=1

αiyi~xi .

L
(
~w ,b, ~α

)
is affine in b. Its minimum is −∞ except if:

∇bL =
n∑

i=1

αiyi = 0 .



Dual function

We therefore obtain the Lagrange dual function:

q (~α) = inf
~w∈Rp,b∈R

L
(
~w ,b, ~α

)

=

{∑n
i=1 αi − 1

2
∑n

i=1
∑n

j=1 yiyjαiαj~xi .~xj if
∑n

i=1 αiyi = 0 ,
−∞ otherwise.

The dual problem is:

maximize q (~α)

subject to ~α ≥ 0 .



Dual problem

Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyj~xi .~xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . ,n), and

n∑

i=1

αiyi = 0.

This is a quadratic program on RN , with "box constraints". ~α∗ can be
found efficiently using dedicated optimization softwares.



Recovering the optimal hyperplane

Once ~α∗ is found, we recover (~w∗,b∗) corresponding to the optimal
hyperplane. w∗ is given by:

~w∗ =
n∑

i=1

αi~xi ,

and the decision function is therefore:

f ∗(~x) = ~w∗.~x + b∗

=
n∑

i=1

αi~xi .~x + b∗ .
(2)



Interpretation: support vectors

α>0

α=0



Primal (for large n) vs dual (for large p) optimization

1 Find (~w ,b) ∈ Rp+1 which minimize:

‖ ~w ‖22

under the constraints:

∀i = 1, . . . ,n , yi
(
~w .~xi + b

)
− 1 ≥ 0 .

2 Find α∗ ∈ Rn which maximizes

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyj~xi .~xj ,

under the (simple) constraints αi ≥ 0 (for i = 1, . . . ,n), and

n∑

i=1

αiyi = 0.
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What if data are not linearly separable?



What if data are not linearly separable?



What if data are not linearly separable?



What if data are not linearly separable?



Soft-margin SVM

Find a trade-off between large margin and few errors.
Mathematically:

min
f

{
1

margin(f )
+ C × errors(f )

}

C is a parameter



Soft-margin SVM formulation

The margin of a labeled point (~x , y) is

margin(~x , y) = y
(
~w .~x + b

)

The error is
0 if margin(~x , y) > 1,
1−margin(~x , y) otherwise.

The soft margin SVM solves:

min
~w ,b

{
||~w ||2 + C

n∑

i=1

max
(
0,1− yi

(
~w .~xi + b

))
}



Soft-margin SVM and hinge loss

min
~w ,b

{
n∑

i=1

`hinge
(
~w .xi + b, yi

)
+ λ‖ ~w ‖22

}
,

for λ = 1/C and the hinge loss function:

`hinge(u, y) = max (1− yu,0) =

{
0 if yu ≥ 1,
1− yu otherwise.

yf(x)

l(f(x),y)

1



Dual formulation of soft-margin SVM (exercice)

Maximize

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyj~xi .~xj ,

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . ,n∑n
i=1 αiyi = 0.



Interpretation: bounded and unbounded support
vectors

C
α=0

0<α<C

α=



Summary: `2-regularize linear methods

fβ(x) = β>x , min
β

1
n

n∑

i=1

`(fβ(xi), yi) + λ‖β‖22

Many popular methods for regression and classification are
obtained by changing the loss function: ridge regression, logistic
regression, SVM...
Needs to solve numerically a convex optimization problem, well
adapted to large datasets (stochastic gradient...)
In practice, very similar performance between the different
variants in general
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Sometimes linear methods are not interesting



Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let ~Φ(~x) = (x2
1 , x

2
2 )′, ~w = (1,1)′ and b = 1. Then the decision function

is:
f (~x) = x2

1 + x2
2 − R2 = ~w .~Φ(~x) + b,



Kernels

Definition
For a given mapping Φ from the space of objects X to some feature
space, the kernel between two objects x and x ′ is the inner product of
their images in the features space:

∀x , x ′ ∈ X , K (x , x ′) = Φ(x)>Φ(x ′) .

Example: if ~Φ(~x) = (x2
1 , x

2
2 )′, then

K (~x , ~x ′) = ~Φ(~x).~Φ(~x ′) = (x1)2(x ′1)2 + (x2)2(x ′2)2.



The kernel tricks

2 tricks
1 Many linear algorithms (in particular `2-regularized methods) can

be performed in the feature space of Φ(x) without explicitly
computing the images Φ(x), but instead by computing kernels
K (x , x ′).

2 It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K (x , x ′)
is often much simpler to compute than Φ(x) and Φ(x ′)



Trick 1 illustration: SVM in the original space

Train the SVM by maximizing

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyj~x>i ~xj ,

under the constraints:
{

0 ≤ αi ≤ C , for i = 1, . . . ,n∑n
i=1 αiyi = 0 .

Predict with the decision function

f
(
~x
)

=
n∑

i=1

αi~x>i ~x + b∗ .



Trick 1 illustration: SVM in the feature space

Train the SVM by maximizing

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyjΦ
(
~xi
)>

Φ
(
~xj
)
,

under the constraints:
{

0 ≤ αi ≤ C , for i = 1, . . . ,n∑n
i=1 αiyi = 0 .

Predict with the decision function

f
(
~x
)

=
n∑

i=1

αiΦ
(
~xi
)>

Φ
(
~x
)

+ b∗ .



Trick 1 illustration: SVM in the feature space with a
kernel

Train the SVM by maximizing

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyjK
(
~xi , ~xj

)
,

under the constraints:
{

0 ≤ αi ≤ C , for i = 1, . . . ,n∑n
i=1 αiyi = 0 .

Predict with the decision function

f
(
~x
)

=
n∑

i=1

αiK
(
~xi , ~x

)
+ b∗ .



Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

For ~x = (x1, x2)> ∈ R2, let ~Φ(~x) = (x2
1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (~x , ~x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(
~x .~x ′

)2
.



Trick 2 illustration: polynomial kernel

2R

x1

x2

x1

x2

2

More generally,
K (~x , ~x ′) =

(
~x .~x ′ + 1

)d

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Combining tricks: learn a polynomial discrimination
rule with SVM

Train the SVM by maximizing

L(~α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyj

(
~x>i ~xj + 1

)d
,

under the constraints:
{

0 ≤ αi ≤ C , for i = 1, . . . ,n∑n
i=1 αiyi = 0 .

Predict with the decision function

f
(
~x
)

=
n∑

i=1

αi

(
~x>i ~x + 1

)d
+ b∗ .



Illustration: toy nonlinear problem

> plot(x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))
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Illustration: toy nonlinear problem, linear SVM

> library(kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel=’vanilladot’)
> plot(svp,data=x)
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Illustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", ...
kernel=polydot(degree=2))

> plot(svp,data=x)
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More generally: trick 1 for `2-regularized estimators

Representer theorem

Let fβ(x) = β>Φ(x). Then any solution f̂β of

min
β

1
n

n∑

i=1

`(fβ(xi), yi) + λ‖β‖22

can be expanded as

f̂β(x) =
n∑

i=1

αiK (xi , x) ,

where α ∈ Rn is a solution of:

min
α∈Rn

1
n

n∑

i=1

`




n∑

j=1

αjK (xi , xj), yi


+ λ

n∑

i,j=1

αiαjK (xi , xj) .



Representer theorem: proof

For any β ∈ Rp, decompose β = βS + β⊥ where
βS ∈ span(Φ(x1), . . . ,Φ(xn)) and β⊥ is orthogonal to it.
On any point xi of the training set, we have:

fβ(xi) = β>Φ(xi) = β>S Φ(xi) + β>⊥Φ(xi) = β>S Φ(xi) = fβS (xi) .

On the other hand, we have ‖β ‖22 = ‖βS ‖22 + ‖β⊥ ‖22 ≥ ‖βS ‖22,
with strict inequality if β⊥ 6= 0.
Consequently, βS is always as good as β in terms of objective
function, and strictly better if β⊥ 6= 0. This implies that at any
minimum, β⊥ = 0 and therefore β = βS =

∑n
i=1 αiΦ(xi) for some

α ∈ RN .
We then just replace β by this expression in the objective function,
noting that

‖β‖22 = ‖
n∑

i=1

αiΦ(xi)‖22 =
n∑

i,j=1

αiαjΦ(xi)
>Φ(xj) =

n∑

i,j=1

αiαjK (xi , xj) .



Example: kernel ridge regression

Let Φ : X → Rp be a feature mapping from the space of data to a
Euclidean or Hilbert space.
Let fβ(x) = β>Φ(x) and K the corresponding kernel.
By the representer theorem, any solution of:

f̂ = arg min
fβ

1
n

n∑

i=1

(yi − fβ (xi))2 + λ‖β ‖22

can be expanded as:

f̂ =
n∑

i=1

αiK (xi , x) .



Example: kernel ridge regression

Let Y = (y1, . . . , yn)> ∈ Rn the vector of response variables.
Let α = (α1, . . . , αn)> ∈ Rn the unknown coefficients.
Let K be the n × n Gram matrix: Ki,j = K

(
xi , xj

)
.

We can then write in matrix form:
(

f̂ (x1) , . . . , f̂ (xn)
)>

= Kα,

Moreover,

‖β ‖22 =
n∑

i=1

n∑

j=1

αiαjK (xi , xj) = α>Kα.



Example: kernel ridge regression

The problem is therefore equivalent to:

arg min
α∈Rn

1
n

(Kα− Y )> (Kα− Y ) + λα>Kα .

This is a convex and differentiable function of α. Its minimum can
therefore be found by setting the gradient in α to zero:

0 =
2
n

K (Kα− Y ) + 2λKα

= K [(K + λnI)α− Y ]



Example: kernel ridge regression

K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K ) ⊥ Im(K ).
In this basis we see that (K + λnI)−1 leaves Im(K ) and Ker(K )
invariant.
The problem is therefore equivalent to:

(K + λnI)α− Y ∈ Ker(K )

⇔α− (K + λnI)−1 Y ∈ Ker(K )

⇔α = (K + λnI)−1 Y + ε, with K ε = 0.



Example: kernel ridge regression

However, if α′ = α + ε with K ε = 0, then:

‖β − β′ ‖22 =
(
α−α′

)> K
(
α−α′

)
= 0 ,

therefore β = β′.
One solution to the initial problem is therefore:

f̂ =
n∑

i=1

αiK (xi , x) ,

with
α = (K + λnI)−1 Y .



Comparison with "standard" ridge regression

Let X the n × p data matrix, K = XX> the kernel Gram matrix.
In "standard" ridge regression, we have f̂ (x) = β̂>x with

β̂ =
(

X>X + nλI
)−1

X>Y .

In "kernel" ridge regression, we have f̃ (x) =
∑n

i=1 αix>i x = β̃>x
with

β̃ =
n∑

i=1

αixi = X>α = X>
(

XX> + λnI
)−1

Y .

Of course β̂ = β̃! (left as exercise: use the SVD decomposition of
X).
Standard RR is better when p < n (big data), kernel RR is better
when n < p (high-dimension).



Generalization

We learn the function f (x) =
∑n

i=1 αiK (xi , x) by solving in α the
following optimization problem, with adequate loss function `:

min
α∈Rn

1
n

n∑

i=1

`




n∑

j=1

αjK (xi , xj), yi


+ λ

n∑

i,j=1

αiαjK (xi , xj) .

No explicit solution, but convex optimization problem
Note that the dimension of the problem is now n instead of p
(useful when n < p)



The case of SVM

Soft-margin SVM with a kernel solves:

min
α∈Rn





n∑

i=1

`hinge




n∑

j=1

αjK (xi , xj), yi


+ λ

n∑

i,j=1

αiαjK (xi , xj)



 .

By Lagrange duality we saw that this is equivalent to

max
α∈Rn

L(α) =
n∑

i=1

αi −
1
2

n∑

i=1

n∑

j=1

αiαjyiyjK (xi , xj) ,

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . ,n∑n
i=1 αiyi = 0 .

This is not a surprise, both problems are also dual to each other
(exercise).



Kernel example: polynomial kernel

2R

x1

x2

x1

x2

2

For ~x = (x1, x2)> ∈ R2, let ~Φ(~x) = (x2
1 ,
√

2x1x2, x2
2 ) ∈ R3:

K (~x , ~x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(
~x .~x ′

)2
.



Kernel example: polynomial kernel

2R

x1

x2

x1

x2

2

More generally,
K (~x , ~x ′) =

(
~x .~x ′ + 1

)d

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Which functions K (x , x ′) are kernels?

Definition
A function K (x , x ′) defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) H and a mapping

Φ : X 7→ H ,

such that, for any x , x ′ in X :

K
(
x , x ′

)
=
〈
Φ (x) ,Φ

(
x ′
)〉
H .

φ
X F



Reminder ...

An inner product on an R-vector space H is a mapping
(f ,g) 7→ 〈f ,g〉H from H2 to R that is bilinear, symmetric and such
that 〈f , f 〉 > 0 for all f ∈ H\{0}.
A vector space endowed with an inner product is called
pre-Hilbert. It is endowed with a norm defined by the inner product

as ‖ f ‖H = 〈f , f 〉
1
2
H.

A Hilbert space is a pre-Hilbert space complete for the norm
defined by the inner product.



Positive Definite (p.d.) functions

Definition
A positive definite (p.d.) function on the set X is a function
K : X × X → R symmetric:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= K

(
x′,x

)
,

and which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN et
(a1,a2, . . . ,aN) ∈ RN :

N∑

i=1

N∑

j=1

aiajK
(
xi ,xj

)
≥ 0.



Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.

φ
X F



Proof: kernel =⇒ p.d.

〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,
∑N

i=1
∑N

j=1 aiaj
〈
Φ (xi) ,Φ

(
xj
)〉

Rd = ‖ ∑N
i=1 aiΦ (xi) ‖2Rd ≥ 0 .



Proof: p.d. =⇒ kernel (1/5)

Assume K : X × X 7→ R is p.d.
For any x ∈ X , let Kx : X 7→ R defined by:

Kx : t 7→ K (x, t) .

Let H0 be the vector subspace of RX spanned by the functions
{Kx}x∈X , i.e. the functions f : X 7→ R for the form:

f =
m∑

i=1

aiKxi

for some m ∈ N and (a1, . . . ,am) ∈ Rm.



Proof: p.d. =⇒ kernel (2/5)

For any f ,g ∈ H0, given by:

f =
m∑

i=1

aiKxi , g =
n∑

j=1

bjKyj ,

let:
〈f ,g〉H0

:=
∑

i,j

aibjK
(
xi ,yj

)
.

〈f ,g〉H0
does not depend on the expansion of f and g because:

〈f ,g〉H0
=

m∑

i=1

aig (xi) =
n∑

j=1

bj f
(
yj
)
.

This also shows that 〈., .〉H0
is a symmetric bilinear form.

This also shows that for any x ∈ X and f ∈ H0:

〈f ,Kx〉H0
= f (x) .



Proof: p.d. =⇒ kernel (3/5)

K is assumed to be p.d., therefore:

‖ f ‖2H0
=

m∑

i,j=1

aiajK
(
xi ,xj

)
≥ 0 .

In particular Cauchy-Schwarz is valid with 〈., .〉H0
.

By Cauchy-Schwarz we deduce that ∀x ∈ X :

| f (x) | =
∣∣∣ 〈f ,Kx〉H0

∣∣∣ ≤ ‖ f ‖H0 .K (x,x)
1
2 ,

therefore ‖ f ‖H0 = 0 =⇒ f = 0.
H0 is therefore a pre-Hilbert space endowed with the inner
product 〈., .〉H0

.



Proof: p.d. =⇒ kernel (4/5)

For any Cauchy sequence (fn)n≥0 in
(
H0, 〈., .〉H0

)
, we note that:

∀ (x,m,n) ∈ X × N2, | fm (x)− fn (x) | ≤ ‖ fm − fn ‖H0 .K (x,x)
1
2 .

Therefore for any x the sequence (fn(x))n≥0 is Cauchy in R and
has therefore a limit.
If we add to H0 the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space (up to a few technicalities, left as
exercice). �



Proof: p.d. =⇒ kernel (5/5)

Let now the mapping Φ : X → H defined by:

∀x ∈ X , Φ(x) = Kx .

By the reproducing property we have:

∀ (x,y) ∈ X 2, 〈Φ(x),Φ(y)〉H = 〈Kx,Ky〉H = K (x,y) . �

φ
X F



Kernel examples

Polynomial (on Rd ):

K (x , x ′) = (x .x ′ + 1)d

Gaussian radial basis function (RBF) (on Rd )

K (x , x ′) = exp
(
−||x − x ′||2

2σ2

)

Laplace kernel (on R)

K (x , x ′) = exp
(
−γ|x − x ′|

)

Min kernel (on R+)

K (x , x ′) = min(x , x ′)

Exercice
Exercice: for each kernel, find a Hilbert space H and a mapping
Φ : X → H such that K (x , x ′) = 〈Φ(x),Φ(x ′)〉



Example: SVM with a Gaussian kernel

Training:

min
α∈Rn

n∑

i=1

αi −
1
2

n∑

i,j=1

αiαjyiyj exp

(
−||

~xi − ~xj ||2
2σ2

)

s.t. 0 ≤ αi ≤ C, and
n∑

i=1

αiyi = 0.

Prediction

f (~x) =
n∑

i=1

αi exp
(
−||

~x − ~xi ||2
2σ2

)



Example: SVM with a Gaussian kernel

f (~x) =
n∑

i=1

αi exp
(
−||

~x − ~xi ||2
2σ2

)
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How to choose or make a kernel?

I don’t really know...
Design features?
Adapt a distance or similarity measure?
Design a regularizer on f?



Example: design features (Gärtner et al., 2003)

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

K (G1,G2) = 1>An
G1×G2

1

Exercice
Show that the features are the counts of labeled walks of length n in
the graph.
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Example: adapt a similarity measure (Saigo et al.,
2004)

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G,G) + S(V ,V )− g(3)− g(4)

SWS,g(x,y) := max
π∈Π(x,y)

sS,g(π) is not a kernel

K (β)
LA (x,y) =

∑

π∈Π(x,y)

exp
(
βsS,g (x,y, π)

)
is a kernel



Example: design a regularizer

Remember fβ(x) = x>Φ(x), the regularizer is Ω(fβ) = ‖β‖2
Regularize in the Fourier domain:

Ω(f ) =

∫
‖f̂ (ω)‖2 exp

σ2ω2

2
dω K (x , y) = exp

(
−(x − y)2

2σ2

)

Sobolev norms

Ω(f ) =

∫ 1

0
f ′(u)2du K (x , y) = min(x , y)
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge



Graph based penalty

fβ(x) = β>x min
β

R(fβ) + λΩ(β)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ω(β) =
∑

i∼j

(βi − βj)
2 ,

min
β∈Rp

R(fβ) + λ
∑

i∼j

(βi − βj)
2 .



Graph based penalty

fβ(x) = β>x min
β

R(fβ) + λΩ(β)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ω(β) =
∑

i∼j

(βi − βj)
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β∈Rp

R(fβ) + λ
∑
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(βi − βj)
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =




1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1






Graph-based penalty as a kernel

Theorem
The function f (x) = β>x where β is solution of

min
β∈Rp,

∑p
i=1 βi =0

1
n

n∑

i=1

`
(
β>xi , yi

)
+ λ

∑

i∼j

(
βi − βj

)2

is equal to g(x) = γ>Φ(x) where γ is solution of

min
γ∈Rp

1
n

n∑

i=1

`
(
γ>Φ(xi), yi

)
+ λγ>γ ,

and where
Φ(x)>Φ(x ′) = x>KGx ′

for KG = L∗, the pseudo-inverse of the graph Laplacian.



Example

1

2

3

4

5

L∗ =




0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52

0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08



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Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8



Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Other penalties with kernels

Φ(x)>Φ(x ′) = x>KGx ′

with:
KG = (c + L)−1 leads to

Ω(β) = c
p∑

i=1

β2
i +

∑

i∼j

(
βi − βj

)2
.

The diffusion kernel:

KG = expM(−2tL) .

penalizes high frequencies of β in the Fourier domain.
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Motivation

Assume we observe K types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).
We saw in the previous part how to make kernels for each type of
data, and learn with kernels
Kernels are also well suited for data integration!



Setting

For a kernel K (x , x ′) = Φ(x)>Φ(x ′), we know how to learn a
function fβ(x) = β>Φ(x) by solving:

min
β

R(fβ) + λ‖β‖2 .

By the representer theorem, we know that the solution is

f (x) =
n∑

i=1

αiK (x , xi) ,

where α ∈ Rn is the solution of another optimization problem:

min
α

R(Kα) + λα>Kα = min
α

JK (α) .



The sum kernel

Let K1, . . . ,KM be M kernels corresponding to M sources of data
Summing the kernel together defines a new "integrated" kernel

Theorem

Learning with K =
∑M

i=1 Ki is equivalent to work with a feature vector
Φ(x) obtained by concatenation of Φ1(x), . . . ,ΦM(x). It solves the
following problem:

min
fβ1 ,...,fβM

R

(
M∑

i=1

fβi

)
+ λ

M∑

i=1

‖βi‖2

Proof left as exercise.



Example: protein network inference
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ABSTRACT
Motivation:An increasing number of observations support the
hypothesis that most biological functions involve the interac-
tions between many proteins, and that the complexity of living
systems arises as a result of such interactions. In this context,
the problem of inferring a global protein network for a given
organism, using all available genomic data about the organ-
ism, is quickly becoming one of the main challenges in current
computational biology.
Results: This paper presents a new method to infer protein
networks from multiple types of genomic data. Based on a
variant of kernel canonical correlation analysis, its originality
is in the formalization of the protein network inference problem
as a supervised learning problem, and in the integration of het-
erogeneous genomic data within this framework. We present
promising results on the prediction of the protein network for
the yeast Saccharomyces cerevisiae from four types of widely
available data: gene expressions, protein interactions meas-
ured by yeast two-hybrid systems, protein localizations in the
cell and protein phylogenetic profiles. The method is shown
to outperform other unsupervised protein network inference
methods. We finally conduct a comprehensive prediction of
the protein network for all proteins of the yeast, which enables
us to propose protein candidates for missing enzymes in a
biosynthesis pathway.
Availability: Softwares are available upon request.
Contact yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
An increasing number of observations support the hypothesis
thatmost biological functions involve the interactions between
manyproteins, and that the complexity of living systems arises
as a result of such interactions. In this context, the problem
of inferring a global protein network for a given organism,
using all available genomic data about the organism, is quickly
becoming one of the main challenges addressed in current

∗To whom correspondence should be addressed.

computational biology. By protein network we mean, in this
paper, a graph with proteins as vertices and edges that corres-
pond to various binary relationships between proteins. More
precisely, we consider below the protein network with edges
between two proteins if (i) the proteins interact physically,
or (ii) the proteins are enzymes that catalyze two successive
chemical reactions in a pathway or (iii) one of the proteins
regulates the expression of the other. This definition of pro-
tein network involves various forms of interactions between
proteins, which should be taken into account for the study of
the behavior of biological systems.
Unfortunately, the experimental determination of this pro-

tein network remains very challenging nowadays, even for
the most basic organisms. The lack of reliable informa-
tion contrasts with the wealth of genomic data generated by
high-throughput technologies such as gene expression data
(Eisen et al., 1998), physical protein interactions (Ito et al.,
2001), protein localization (Huh et al., 2003), phylogen-
etic profiles (Pellegrini et al., 1999) or pathway knowledge
(Kanehisa et al., 2004). There is therefore an incentive
to develop methods to predict the protein network from
such data.
A variety of computational methods for this problem have

been investigated so far. Some methods perform the protein
network inference from a single type of genomic data, such
as Bayesian networks (Friedman et al., 2000) and Boolean
networks (Akutsu et al., 2000), which aim at inferring gene
regulation networks from gene expression data, or the mirror
tree method (Pazos et al., 2001), which predicts protein inter-
actions from evolutionary similarities. Other methods com-
bine different sources of data to infer the network: this is for
example, the case in the joint graph method (Marcotte et al.,
1999), where graphs representing similarities with respect to
various types of genomic information are overlapped in order
to detect strong associations between proteins.
These methods share the particularity of being unsuper-

vised, in the sense that the whole protein network is inferred
from the data. Inference typically relies on the assumption
that proteins sharing similarity according to a dataset (e.g.
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Equation (2) with decreasing eigenvalue ρ. This problem is
usually called kernel canonical correlation analysis (CCA)
(Akaho, 2001). If one now focuses on the first L solutions
α

(1)
1 , . . . ,α

(L)
1 of Equation (2) (sorted by decreasing value of

ρ), then they define L features of interest by f (l) = K1α
(l)
1 ,

for l = 1, . . . ,L. These features are built from the genomic
dataset kernel K1 only, and are expected to fit the ideal fea-
tures on the gold standard set of proteins. These features
can now be generalized to any protein x by the following
equation:

f (l) (x) =
n∑

k=1
α

(l)
1 (xk) K (xk , x) . (3)

This is the set of features we propose to map the proteins to
before inferring protein interactions.
In both the spectral method and this supervised

method, each protein x is mapped to a feature space
as an L-dimensional vector u = (u1, . . . , uL)! =
[f (1)(x), . . . , f (L)(x)]!. To assess the similarity of protein x
and protein y in this feature space, we simply follow the spirit
of the direct approach and quantify the similarity between
points u = (u1, . . . , uL)! and v = (v1, . . . , vL)! by their
correlation:

ĉorr (u, v) = ĉov(u, v)
√
v̂ar(u)

√
v̂ar(v)

= (1/L)
∑L

l=1 (ul − ū) (vl − v̄)
√

(1/L)
∑L

l=1(ul − ū)2
√

(1/L)
∑L

l=1(vl − v̄)2
,

(4)

where ū and v̄ are the averages of u and v.

RESULTS
All genomic datasets are transformed into kernels as fol-
lows. The gold standard protein network and the noisy protein
interaction datasets are represented by a diffusion kernel
with parameter β = 1, and respectively denoted Kgold and
Kppi. For the gene expression data, we used the Gaussian
RBF kernel with σ = 5, and denote the resulting kernel
Kexp. For both localization data and the phylogenetic pro-
files, a simple linear kernel, is denoted respectively Kloc
and Kphy. All kernels are then normalized to 1 on the diag-
onal and centered in the feature space (Schölkopf and Smola,
2002).
We tested the direct and spectral approaches either on single

types of genomic datasets, or on the integrated kernel repres-
enting all datasets. For the spectral approach, we arbitrarily
kept the first L = 50 principal components to define the fea-
ture space. The accuracy of both methods is assessed on the
gold standard dataset, by their capacity to recover the pro-
tein network. Starting from isolated nodes, each method can

Table 1. List of experiments of direct approach, spectral approach based on
kernel PCA, and supervised approach based on kernel CCA

Approach Kernel (Predictor) Kernel (Target)

Direct Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Spectral Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Supervised Kexp (Expression) Kgold (Protein network)
Kppi (Protein interaction) Kgold (Protein network)
Kloc (Localization) Kgold (Protein network)
Kphy (Phylogenetic profile) Kgold (Protein network)
Kexp + Kppi + Kloc + Kphy Kgold (Protein network)
(Integration)

be used to build progressively a network by adding edges
between pairs of proteins sorted by decreasing similarity. At
each addition, we recorded the number of true positives (pre-
dicted edges that indeed are present in the gold standard) and
false positives (predicted edges that are absent from the gold
standard). Figures 3 and 4 show the ROC curves representing
the numbers of true positives as a function of the number of
false positives for the two methods. In both cases, the over-
all accuracy of the inference method is very limited. Little
information seems to be caught by the direct approach, while
the spectral approach gives slightly better results, in particular,
when used in combination with the kernel that integrates all
genomic datasets, but remains useless in practice due to the
large rate of false positives at any rate of true positives. These
negative results, in particular for the direct approach, confirm
that the problem of protein network reconstruction is far from
trivial.
We then tested the supervised approach. The parameters λ1

and λ2 were set to 0.1, and again we kept L = 50 features
to define the feature space. We tested various combinations
of dataset kernels to be fitted to the gold standard kernel, as
described in Table 1. In order to assess the accuracy of the
method, we carried out a 10-fold cross-validation experiment
as follows. In each out of 10 iterations, the set of 769 proteins
in the gold standard is split into a training set and a test set in
the proportion 9/1. The feature space is trained on the train-
ing set, and the inference of interaction is performed on the
possible interactions involving the proteins in the test set (the
gray part in Fig. 1). Once again a graph is built progressively
and we record the number of true positive interactions as a
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Fig. 5. ROC curves: supervised approach.

enables us to make new biological inferences for unknown
protein–protein interactions.
This method is a supervised approach, while most meth-

ods which have been proposed so far are unsupervised. The
motivation to use a supervised approach is to explicitly learn
the correlation between known networks and genomic data in
the algorithm. It should be pointed out that in this supervised
framework, different networks can be inferred from the same
data, by changing the partial network used in the learning step.
Another strength of this method is the possibility to naturally
integrate heterogeneous data. Experimental results confirmed
that this integration is beneficial for the prediction accuracy
of the method. Moreover, other sorts of genomic data can
be integrated, as long as kernels can be derived from them.
As the list of kernels for genomic data keeps increasing fast
(Schölkopf et al., 2004), new opportunities might be worth
investigating.
A drawback of our method is that in its current form, it is

limited to the prediction of undirected interactions between
proteins, which might be insufficient for example in the case
of gene regulatory networks. The incorporation of directional
information is a topic we are currently investigating, through
which we expect to bring about more biologically interesting
findings.
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Multiple kernel learning (Lanckriet et al., 2004)

Perhaps a more clever approach is to learn a weighted linear
combination of kernels:

Kη =
M∑

i=1

ηiKi with ηi ≥ 0 .

MKL learns the weights with the predictor by solving:

min
η,α

JKη(α) such that Trace(Kη) = 1 .

The problem is jointly convex in (η,α) and can be solved efficiently
The output is both a set of weights η, and a predictor
corresponding to the kernel method trained with kernel Kη.



Example: protein annotation
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ABSTRACT
Motivation: During the past decade, the new focus on
genomics has highlighted a particular challenge: to integrate
the different views of the genome that are provided by various
types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection of
genome-wide measurements. Each dataset is represented via
a kernel function, which defines generalized similarity relation-
ships between pairs of entities, such as genes or proteins.The
kernel representation is both flexible and efficient, and can be
applied to many different types of data. Furthermore, kernel
functions derived from different types of data can be combined
in a straightforward fashion. Recent advances in the theory
of kernel methods have provided efficient algorithms to per-
form such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite program-
ming techniques to reduce the problem of finding optimiz-
ing kernel combinations to a convex optimization problem.
Computational experiments performed using yeast genome-
wide datasets, including amino acid sequences, hydropathy
profiles, gene expression data and known protein–protein
interactions, demonstrate the utility of this approach. A stat-
istical learning algorithm trained from all of these data to
recognize particular classes of proteins—membrane proteins
and ribosomal proteins—performs significantly better than the
same algorithm trained on any single type of data.
Availability:Supplementary data at http://noble.gs.washington.
edu/proj/sdp-svm
Contact: noble@gs.washington.edu

INTRODUCTION
The recent availability of multiple types of genome-wide data
provides biologistswith complementary views of a single gen-
omeandhighlights the need for algorithms capable of unifying

∗To whom correspondence should be addressed at: Health Sciences Center,
Box 357730, 1705 NE Pacific Street, Seattle, WA 98195, USA.

these views. In yeast, for example for a given gene we typ-
ically know the protein it encodes, that protein’s similarity to
other proteins, its hydrophobicity profile, the mRNA expres-
sion levels associated with the given gene under hundreds of
experimental conditions, the occurrences of known or inferred
transcription factor binding sites in the upstream region of
that gene and the identities ofmany of the proteins that interact
with the given gene’s protein product. Each of these distinct
data types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.
Different data sources are likely to contain different and

thus partly independent information about the task at hand.
Combining those complementary pieces of information can be
expected to enhance the total information about the problem at
hand. One problem with this approach, however, is that gen-
omic data come in a wide variety of data formats: expression
data are expressed as vectors or time series; protein sequence
data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein–protein
interactions are best expressed as graphs and so on.
This paper presents a computational and statistical frame-

work for integrating heterogeneous descriptions of the same
set of genes. The approach relies on the use of kernel-based
statistical learningmethods that have already proven to be very
useful tools in bioinformatics (Noble, 2004). These methods
represent the data bymeans of a kernel function, which defines
similarities between pairs of genes, proteins and so on. Such
similarities can be quite complex relations, implicitly cap-
turing aspects of the underlying biological machinery. One
reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and
makes them explicit, so that it is easier to detect patterns. Each
kernel function thus extracts a specific type of information
from a given dataset, thereby providing a partial description
or view of the data. Our goal is to find a kernel that best
represents all the information available for a given statistical
learning task. Given many partial descriptions of the data, we
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Table 1. Kernel functions

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman
KB protein sequences BLAST
KPfam protein sequences Pfam HMM
KFFT hydropathy profile FFT
KLI protein interactions linear kernel
KD protein interactions diffusion kernel
KE gene expression radial basis kernel
KRND random numbers linear kernel

The table lists the seven kernels used to compare proteins, the data on which they are
defined, and the method for computing similarities. The final kernel, KRND, is included
as a control. All kernel matrices, along with the data from which they were generated,
are available at noble.gs.washington.edu/proj/sdp-svm.

the membrane, and similarly for the ribosome. Therefore,
we define three kernel matrices based upon standard homo-
logy detection methods. The first two sequence-based kernel
matrices (KSW and KB) are generated using the BLAST
(Altschul et al., 1990) and Smith–Waterman (SW) (Smith and
Waterman, 1981) pairwise sequence comparison algorithms,
as described previously (Liao and Noble, 2002). Both
algorithms use gap opening and extension penalties of 11 and
1, and the BLOSUM 62 matrix. As matrices of BLAST or
Smith–Waterman scores are not necessarily positive semidef-
inite, we represent each protein as a vector of scores against all
other proteins. Defining the similarity between proteins as the
inner product between the score vectors (the so-called empir-
ical kernel map, Tsuda 1999) leads to valid kernel matrices,
one for the BLAST score and one for the SW score. Note that
including in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The third ker-
nel matrix (KPfam) is a generalization of the previous pairwise
comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden
Markov models (HMMs) in the Pfam database (Sonnhammer
et al., 1997).

Fast Fourier Transform (FFT) kernel The fourth sequence-
based kernelmatrix (KFFT) is specific to themembrane protein
recognition task. This kernel directly incorporates information
about hydrophobicity patterns, which are known to be useful
in identifying membrane proteins. Generally, each mem-
brane protein passes through themembrane several times. The
transmembrane regions of the amino acid sequence are typ-
ically hydrophobic, whereas the non-membrane portions are
hydrophilic. This specific hydrophobicity profile of the pro-
tein allows it to anchor itself in the cell membrane. Because
the hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolution
than the specific amino acid sequence. Therefore, classical
methods for determining whether a protein pi (consisting of
|pi | amino acids) spans a membrane (Chen and Rost, 2002),

depend upon its hydropathy profile h(pi ) ∈ R|pi |: a vector
containing the hydrophobicities of the amino acids along the
protein (Engleman et al., 1986; Black andMould, 1991; Hopp
and Woods, 1981). The FFT kernel uses hydropathy profiles
generated from the Kyte–Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the
hydropathy profiles of the two proteins. First, the hydropathy
profiles are pre-filtered with a low-pass filter to reduce noise:

hf (pi ) = f ⊗ h(pi ),

where f = 1
4 (1 2 1) is the impulse response of the filter

and ⊗ denotes convolution with that filter. After pre-filtering
the hydropathy profiles (and if necessary appending zeros to
make them equal in length—a commonly used technique not
altering the frequency content), their frequency contents are
computed with the FFT algorithm:

Hf (pi ) = FFT[hf (pi )].

The FFT kernel between proteinspi andpj is then obtained by
applying a Gaussian kernel function to the frequency contents
of their hydropathy profiles:

KFFT(pi ,pj ) = exp[−‖Hf (pi ) − Hf (pj )‖2/2σ ]

with width σ = 10. This kernel detects periodicities in the
hydropathy profile, a feature that is relevant to the identifica-
tionofmembraneproteins and complementary to the previous,
homology-based kernels.

Protein interactions: linear and diffusion kernels For the
recognition of ribosomal proteins, protein–protein interac-
tions are clearly informative, since all ribosomal proteins
interact with other ribosomal proteins. For membrane pro-
tein recognition, we expect information about protein–protein
interactions to be informative for two reasons. First, hydro-
phobic molecules or regions of molecules are probably more
likely to interact with each other than with hydrophilic
molecules or regions. Second, transmembrane proteins are
often involved in signaling pathways, and therefore, differ-
ent membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these path-
ways (e.g. hormones upstream or kinases downstream). The
two protein interaction kernels are generated using medium-
and high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions can
be represented as an interaction matrix, in which rows and
columns correspond to proteins, and binary entries indicate
whether the two proteins interact.
The first interaction kernel matrix (KLI) is comprised of

linear interactions, i.e. inner products of rows and columns
from the centered, binary interactionmatrix. Themore similar
the interaction pattern (corresponding to a rowor column from
the interaction matrix) for a pair of proteins, the larger the
inner product will be.
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Fig. 1. Combining datasets yields better classification performance. The height of the bars in the upper two plots are proportional to the ROC
score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given kernel. Error
bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the relative weights
of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy measurements,
are given in the online supplement.

hydrophobicity, normalized by the length of the protein. We
will compare the classification performance of our statistical
learning algorithm with this metric.

However, clearly, f1 is too simplistic. For example, protein
regions that are not transmembrane only induce noise in f1.
Therefore, an alternative metric filters the hydrophobicity plot
with a low-pass filter and then computes the number, the height
and the width of those peaks above a certain threshold (Chen
and Rost, 2002). The filter is intended to smooth out periodic
effects. We implement two such filters, choosing values for the
filter order and the threshold based on Chen and Rost (2002).
In particular, we define f2 as the area under the 7th-order
low-pass filtered Kyte–Doolittle plot and above a threshold
value 2, normalized by the length of the protein. Similarly,
f3 is the corresponding area using a 20th-order filter and a
threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) Web server
(www.cbs.dtu.dk/services/TMHMM) is used to make predic-
tions for each protein. In Krogh et al. (2001), transmembrane
proteins are identified by TMHMM using three different met-
rics: the expected number of amino acids in transmembrane
helices, the number of transmembrane helices predicted by
the N -best algorithm, and the expected number of transmem-
brane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists
of proteins, ranked by the number of predicted transmem-
brane helices (TPH) and by the expected number of residues
in transmembrane helices (TENR).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating

characteristic (ROC) score, which is the area under a curve that
plots true positive rate as a function of false positive rate for
differing classification thresholds (Hanley and McNeil, 1982;
Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather
than the quality of a single point in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC
score of 1.0 implies that the algorithm succeeded in putting
all of the positive examples before all of the negatives. In
addition, we select the point on the ROC curve that yields a
1% false positive rate, and we report the rate of true positives
at this point (TP1FP). Each experiment is repeated 30 times
with different random splits in order to estimate the variance
of the performance values.

RESULTS
We performed computational experiments that study the per-
formance of the SDP/SVM approach as a function of the
number of data sources, compare the approach to a simpler
approach using an unweighted combination of kernels, study
the robustness of the method to the presence of noise, and for
membrane protein classification, compare the performance of
the method to classical biological methods and state-of-the-art
techniques for membrane protein classification.

Ribosomal protein classification
Figure 1A shows the results of training an SVM to recognize
the cytoplasmic ribosomal proteins, using various kernel func-
tions. Very good recognition performance can be achieved
using several types of data individually: the Smith–Waterman
kernel yields an ROC of 0.9903 and a TP1FP of 86.23%,
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MKL revisited

Theorem (Bach et al., 2004)
MKL solves the following problem:

min
fβ1 ,...,fβM

R

(
M∑

i=1

fβi

)
+ λ

M∑

i=1

‖βi‖

This is an instance of (kernelized) group lasso (more later...)
This promotes sparsity at the kernel level
MKL is mostly useful if only a few kernels are relevant; otherwise
the sum kernel may be a better option.
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Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed



A cell



Chromosomes



Chromosomes and DNA



Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)



The double helix



Central dogma



Proteins



Genetic code



Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome
Consortium with 20 labs, 6 countries
Cost : about 3,000,000,000 USD



2003: we study "the" human genome

Findings
About 25,000 genes only (representing 1.2% of the genome)
Automatic gene finding with graphical models
97% of the genome is considered “junk DNA”
Superposition of a variety of signals (many to be discovered)



2003-2014: towards personalized genomics



Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine



Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...



Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.



Supervised classification with vector embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...



Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)



Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑

i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)



Example: spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x,x′

)
:=

∑

u∈Ak

Φu (x) Φu
(
x′
)
.



Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑

i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.



Example 2: Substring kernel (1/11)

Definition
For 1 ≤ k ≤ n ∈ N, we denote by I(k ,n) the set of sequences of
indices i = (i1, . . . , ik ), with 1 ≤ i1 < i2 < . . . < ik ≤ n.
For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k ,n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.



Example 2: Substring kernel (2/11)

Example

ABRACADABRA

i = (3,4,7,8,10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8



Example 2: Substring kernel (3/11)

The kernel
Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k ,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x,x′

)
∈ X 2, Kk ,λ

(
x,x′

)
=
∑

u∈Ak

Φu (x) Φu
(
x′
)
.



Example 2: Substring kernel (4/11)

Example

u ca ct at ba bt cr ar br
Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3





K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0



Example 2: Substring kernel (5/11)

Kernel computation
We need to compute, for any pair x,x′ ∈ X , the kernel:

Kn,λ
(
x,x′

)
=
∑

u∈Ak

Φu (x) Φu
(
x′
)

=
∑

u∈Ak

∑

i:x(i)=u

∑

i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order |x |k ).



Example 2: Substring kernel (6/11)

Kernel computation (cont.)

For u ∈ Ak remember that:

Φu (x) =
∑

i:x(i)=u

λin−i1+1 .

Let now:
Ψu (x) =

∑

i:x(i)=u

λ| x |−i1+1 .



Example 2: Substring kernel (7/11)

Kernel computation (cont.)
Let us note x (1, j) = x1 . . . xj . A simple rewriting shows that, if we note
a ∈ A the last letter of u (u = va):

Φva (x) =
∑

j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ ,

and
Ψva (x) =

∑

j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ| x |−j+1 .



Example 2: Substring kernel (8/11)

Kernel computation (cont.)
Moreover we observe that if the string is of the form xa (i.e., the last
letter is a ∈ A), then:

If the last letter of u is not a:
{

Φu (xa) = Φu (x) ,

Ψu (xa) = λΨu (x) .

If the last letter of u is a (i.e., u = va with v ∈ An−1):
{

Φva (xa) = Φva (x) + λΨv (x) ,

Ψva (xa) = λΨva (x) + λΨv (x) .



Example 2: Substring kernel (9/11)

Kernel computation (cont.)
Let us now show how the function:

Bn
(
x,x′

)
:=
∑

u∈An

Ψu (x) Ψu
(
x′
)

and the kernel:
Kn
(
x,x′

)
:=
∑

u∈An

Φu (x) Φu
(
x′
)

can be computed recursively. We note that:
{

B0 (x,x′) = K0 (x,x′) = 0 for all x,x′

Bk (x,x′) = Kk (x,x′) = 0 if min (|x | , |x′ |) < k



Example 2: Substring kernel (10/11)

Recursive computation of Bn

Bn
(
xa,x′

)

=
∑

u∈An

Ψu (xa) Ψu
(
x′
)

= λ
∑

u∈An

Ψu (x) Ψu
(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Ψva
(
x′
)

= λBn
(
x,x′

)
+

λ
∑

v∈An−1

Ψv (x)




∑

j∈[1,| x′ |]:x ′j =a

Ψv
(
x′ (1, j − 1)

)
λ| x
′ |−j+1




= λBn
(
x,x′

)
+

∑

j∈[1,| x′ |]:x ′j =a

Bn−1
(
x,x′ (1, j − 1)

)
λ| x
′ |−j+2



Example 2: Substring kernel (10/11)

Recursive computation of Kn

Kn
(
xa,x′

)

=
∑

u∈An

Φu (xa) Φu
(
x′
)

=
∑

u∈An

Φu (x) Φu
(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Φva
(
x′
)

= Kn
(
x,x′

)
+

λ
∑

v∈An−1

Ψv (x)




∑

j∈[1,| x′ |]:x ′j =a

Ψv
(
x′ (1, j − 1)

)
λ




= λKn
(
x,x′

)
+ λ2

∑

j∈[1,| x′ |]:x ′j =a

Bn−1
(
x,x′ (1, j − 1)

)



Summary: Substring indexation

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)
Implementation in O(|x| × |x′|) in memory and time for the
substring kernels
The feature space has high dimension (|A|k ), so learning requires
regularized methods (such as SVM)



Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1,x2, . . . ,xn)

Chose a measure of similarity s (x,x′)
Define the mapping ΦD (x) = (s (x,xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )



Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x,x′

)
= Φθ0(x)>I(θ0)−1Φθ0(x′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.



Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).
A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).



Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed



Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x,x′

)
=

∫

θ∈Θ
Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x,x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .



Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0,1].
Let dθ be the Lebesgue measure on [0,1]

The mutual information kernel between x = 001 and x′ = 1010 is:
{

Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x,x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.



Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)



Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .



The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x,x′

)
=
∑

D

∫

θ∈ΣD
PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.



Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x,y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Kin et al., 2002):

KX
(
x,x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)

=

∫ ∫
KZ
(
(x,y) ,

(
x′,y′

))
Px (dy) Px′

(
dy′
)
.



Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x,x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)

= EPx(dy)×Px′ (dy′)
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) ,EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �



Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:
{
π(0|N) = 1− π(1|N) = 0.5,
π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011



1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

KZ
(
z, z′

)
=

∑

(a,s)∈A×S
na,s (z) na,s (z) ,

where na,s (x,y) for a = 0,1 and s = N,B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0
(
z′
)

+ n1 (z) n1
(
z′
)

+ n1 (z) n1
(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.



1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x,x′

)
=

∑

y,y′∈S∗
KZ ((x,y) , (x,y)) P (y|x) P

(
y′|x′

)

=
∑

(a,s)∈A×S
Φa,s (x) Φa,s

(
x′
)
,

with
Φa,s (x) =

∑

y∈S∗
P (y|x) na,s (x,y)



Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑

y∈S∗
P (y|x) na,s (x,y)

=
∑

y∈S∗
P (y|x)

{
n∑

i=1

δ (xi ,a) δ (yi , s)

}

=
n∑

i=1

δ (xi ,a)




∑

y∈S∗
P (y|x) δ (yi , s)





=
n∑

i=1

δ (xi ,a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!



HMM example (DNA)



HMM example (protein)



SCFG for RNA sequences

SFCG rules
S → SS
S → aSa
S → aS
S → a

Marginalized kernel (Kin et al., 2002)
Feature: number of occurrences of each (base,state) combination
Marginalization using classical inside/outside algorithm



Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)



Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV



Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N→ R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G,G) + S(V ,V )− g(3)− g(4)



Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x,y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x,y) =

∑

π∈Π(x,y)

exp
(
βsS,g (x,y, π)

)
,

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma
If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and
cK1, for c ≥ 0,

are also p.d. kernels
If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= lim

n→∞
Ki
(
x,x′

)
,

then K is also a p.d. kernel.



LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n× n positive semidefinite matrices. By diagonalization
of A:

Ai,j =
n∑

p=1

fp(i)fp(j)

for some vectors f1, . . . , fn. Then, for any α ∈ Rn:

n∑

i,j=1

αiαjAi,jBi,j =
n∑

p=1

n∑

i,j=1

αi fp(i)αj fp(j)Bi,j ≥ 0.

The matrix Ci,j = Ai,jBi,j is therefore p.d. Other properties are obvious
from definition. �



LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)
Let X = X1 ×X2. Let K1 be a p.d. kernel on X1, and K2 be a p.d.
kernel on X2. Then the following functions are p.d. kernels on X :

the direct sum,

K ((x1,x2) , (y1,y2)) = K1 (x1,y1) + K2 (x2,y2) ,

The direct product:

K ((x1,x2) , (y1,y2)) = K1 (x1,y1) K2 (x2,y2) .



LA kernel is p.d.: proof (4/11)

Proof of lemma
If K1 is a p.d. kernel, let Φ1 : X1 7→ H be such that:

K1 (x1,y1) = 〈Φ1 (x1) ,Φ1 (y1)〉H .

Let Φ : X1 ×X2 → H be defined by:

Φ ((x1,x2)) = Φ1 (x1) .

Then for x = (x1,x2) and y = (y1,y2) ∈ X , we get

〈Φ ((x1,x2)) ,Φ ((y1,y2))〉H = K1 (x1,x2) ,

which shows that K (x,y) := K1 (x1,y1) is p.d. on X1 ×X2. The lemma
follows from the properties of sums and products of p.d. kernels. �



LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets
Let K be a p.d. kernel on X , and let P (X ) be the set of finite subsets
of X . Then the function KP on P (X )× P (X ) defined by:

∀A,B ∈ P (X ) , KP (A,B) :=
∑

x∈A

∑

y∈B

K (x,y)

is a p.d. kernel on P (X ).



LA kernel is p.d.: proof (6/11)

Proof of lemma
Let Φ : X 7→ H be such that

K (x,y) = 〈Φ (x) ,Φ (y)〉H .

Then, for A,B ∈ P (X ), we get:

KP (A,B) =
∑

x∈A

∑

y∈B

〈Φ (x) ,Φ (y)〉H

=

〈∑

x∈A

Φ (x) ,
∑

y∈B

Φ (y)

〉

H
= 〈ΦP(A),ΦP(B)〉H ,

with ΦP(A) :=
∑

x∈A Φ (x). �



LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)
Let K1 and K2 be two p.d. kernels for strings. The convolution of K1
and K2, denoted K1 ? K2, is defined for any x,x′ ∈ X by:

K1 ? K2(x,y) :=
∑

x1x2=x,y1y2=y

K1(x1,y1)K2(x2,y2).

Lemma
If K1 and K2 are p.d. then K1 ? K2 is p.d..



LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x ∈ X , let

R (x) = {(x1,x2) ∈ X × X : x = x1x2} ⊂ X × X .

We can then write

K1 ? K2(x,y) =
∑

(x1,x2)∈R(x)

∑

(y1,y2)∈R(y)

K1(x1,y1)K2(x2,y2)

which is a p.d. kernel by the previous lemmas. �



LA kernel is p.d.: proof (9/11)

3 basic string kernels
The constant kernel:

K0 (x,y) := 1 .

A kernel for letters:

K (β)
a (x,y) :=

{
0 if |x | 6= 1 where |y | 6= 1 ,
exp (βS(x,y)) otherwise .

A kernel for gaps:

K (β)
g (x,y) = exp [β (g (|x |) + g (|x |))] .



LA kernel is p.d.: proof (10/11)

Remark
S : A2 → R is the similarity function between letters used in the
alignment score. K (β)

a is only p.d. when the matrix:

(exp (βs(a,b)))(a,b)∈A2

is positive semidefinite (this is true for all β when s is conditionally
p.d..
g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K (β)
g (x,y) = exp (βg (|x |))× exp (βg (|y |)) .



LA kernel is p.d.: proof (11/11)

Lemma
The local alignment kernel is a (limit) of convolution kernel:

K (β)
LA =

∞∑

n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

As such it is p.d..

Proof (sketch)
By induction on n (simple but long to write).
See details in Vert et al. (2004).



LA kernel computation

We assume an affine gap penalty:
{

g(0) = 0,
g(n) = d + e(n − 1) si n ≥ 1,

The LA kernel can then be computed by dynamic programming
by:

K (β)
LA (x,y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) + M(|x|, |y|),

where M(i , j),X (i , j),Y (i , j),X2(i , j), and Y2(i , j) for 0 ≤ i ≤ |x|,
and 0 ≤ j ≤ |y| are defined recursively.



LA kernel is p.d.: proof (/)

Initialization




M(i ,0) = M(0, j) = 0,
X (i ,0) = X (0, j) = 0,
Y (i ,0) = Y (0, j) = 0,
X2(i ,0) = X2(0, j) = 0,
Y2(i ,0) = Y2(0, j) = 0,



LA kernel is p.d.: proof (/)

Recursion
For i = 1, . . . , |x| and j = 1, . . . , |y|:





M(i , j) = exp(βS(xi , yj))
[
1 + X (i − 1, j − 1)

+Y (i − 1, j − 1) + M(i − 1, j − 1)
]
,

X (i , j) = exp(βd)M(i − 1, j) + exp(βe)X (i − 1, j),
Y (i , j) = exp(βd) [M(i , j − 1) + X (i , j − 1)]

+ exp(βe)Y (i , j − 1),

X2(i , j) = M(i − 1, j) + X2(i − 1, j),
Y2(i , j) = M(i , j − 1) + X2(i , j − 1) + Y2(i , j − 1).



LA kernel in practice

Implementation by a finite-state transducer in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h

om
olo

gs

Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison



SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold



A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.



Difference in performance
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Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).



String kernels: Summary

A variety of principles for string kernel design have been
proposed.
Good kernel design is important for each data and each task.
Performance is not the only criterion.
Still an art, although principled ways have started to emerge.
Fast implementation with string algorithms is often possible.
Their application goes well beyond computational biology.
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Part 3

Kernels for graphs



Outline

1 Introduction

2 Learning with kernels

3 Kernels for biological sequences

4 Kernels for graphs
Motivation
Explicit computation of features
Graph kernels: the challenges
Walk-based kernels
Applications

5 Learning with sparsity

6 Reconstruction of regulatory networks

7 Supervised graph inference



Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).



Image retrieval and classification

From Harchaoui and Bach (2007).



Our approach

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

X
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The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

X
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The approach

1 Represent explicitly each graph x by a vector of fixed dimension
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Example

2D structural keys in chemoinformatics
Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...



Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as
possible from the graph
Computation : they should be fast to compute
Large dimension of the vector representation: memory storage,
speed, statistical issues



Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence substructures are important
predictive patterns
Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures
However, detecting the presence of particular substructures may
be computationally challenging...



Subgraphs

Definition
A subgraph of a graph (V ,E) is a connected graph (V ′,E ′) with
V ′ ⊂ V and E ′ ⊂ E .



Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.



Paths

Definition
A path of a graph (V ,E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj ) such that (vi , vi+1) ∈ E for
i = 1, . . . ,n − 1.
Equivalently the paths are the linear subgraphs.



Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem
Computing all path occurrences is NP-hard.

Proof.
Same as for subgraphs.
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Indexing by all paths?

B
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Theorem
Computing all path occurrences is NP-hard.

Proof.
Same as for subgraphs.



Indexing by what?

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)



Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.



Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.



Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)
Several ideas to reduce the set of substructures considered
In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.
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The idea

1 Represent implicitly each graph x by a vector Φ(x) ∈ H through
the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a kernel method for classification in H.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �
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Subgraph kernel

Definition
Let (λG)G∈X a set or nonnegative real-valued weights
For any graph G ∈ X , let

∀H ∈ X , ΦH(G) =
∣∣ {G′ is a subgraph of G : G′ ' H

} ∣∣ .

The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑

H∈X
λHΦH(G1)ΦH(G2) .



Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n vertices.
Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
a n × n triangular system).
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

Φ(G)>
(

n∑

i=1

αiΦ(Pi)

)
=

n∑

i=1

αiKsubgraph(G,Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �



Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑

H∈P
λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.
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λHΦH(G1)ΦH(G2) ,
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Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.



Summary

Expressiveness vs Complexity trade-off
It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.
Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.
One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...



Walks 6= paths



Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑

s∈S
Φs(G1)Φs(G2) .
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Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.



Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b



Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑

s∈S
Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑

i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .



Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑

w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt )
−1 1

Computation in O(|G1|3|G2|3)



Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices
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3
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4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).



Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).



Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).



Extension 3: Subtree kernels



Example: Tree-like fragments of molecules
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Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v ,n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v ,n + 1) =
∑

R⊂N (v)

∏

v ′∈R

λt (v , v ′)T (v ′,n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%



2D Subtree vs walk kernels
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).
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Performance comparison on Corel14



Summary: graph kernels

What we saw
Kernels do not allow to overcome the NP-hardness of subgraph
patterns
They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick
However: using kernels makes it difficult to come back to patterns
after the learning stage
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Motivation

In feature selection, we look for a linear function f (x) = x>β,
where only a limited number of coefficients in β are non-zero.
Motivations

Accuracy: by imposing a constraint on β, we increase the bias but
decrease the variance. This should be helpful in particular in high
dimension.
Interpretation: simpler to understand and communicate a sparse
model.
Implementation: a device based on a few markers can be cheaper
and faster.

Of course, this is particularly relevant if we believe that there exist good
predictors which are sparse (prior knowledge).



Best subset selection

Ω(β) = ‖β‖0 = number of non-zero coefficients

In best subset selection, we must solve the problem:

min R(fβ) s.t. ‖β ‖0 ≤ k

for k = 1, . . . ,p.
The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).
This is usually a NP-hard problem, feasible for p as large as 30 or
40



Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.
Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop
Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).



Filter methods

Associate a score S(i) to each feature i , then rank the features by
decreasing score.
Many scores / criteria can be used

Loss of the ERM trained on a single feature
Statistical tests (Fisher, T-test)
Other performance criteria of the ERM restricted to a single feature
(AUC, ...)
Information theoretical criteria (mutual information...)

Pros
Simple, scalable, good empirical success

Cons
Selection of redundant features
Some variables useless alone can become useful together
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Measuring dependency: correlation coefficients

Assume X and Y take continuous values
(X1,Y1), . . . , (Xn,Yn) the n expression values of both genes
Pearson correlation:

ρ =
cov(X ,Y )

σXσY
=

∑
i(Xi − X̄ )(Yi − Ȳ )√∑

i(Xi − X̄ )2
√∑

i(Yi − Ȳ )2

Spearman correlation: similar but replace Xi by its rank.



Illustration



Limit of correlations



Mutual information

I(X ; Y ) =

∫

Y

∫

X
p(x , y) log

(
p(x , y)

p(x)p(y)

)
dxdy

I(X ; Y ) ≥ 0
I(X ; Y ) = 0 if and only if X and Y are independent



Wrapper methods

The idea
A greedy approach to

min R(fβ) s.t. ‖β ‖0 ≤ k

For a given set of seleted features, we know how to minimize R(f )

We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)



Two flavors of wrapper methods

Forward stepwise selection
Start from no features
Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
Start from all features
Sequentially removes from the model the feature that least
degrades the fit

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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The idea

The following problem is NP-hard:

min R(fβ) s.t. ‖β ‖0 ≤ k

As a proxy we can consider the more general problem:

min R(fβ) s.t. Ω(β) ≤ γ

where Ω(β) is a penalty function that leads to sparse solutions
and to computationally efficient algorithms.



LASSO regression (Tibshirani, 1996)
Basis Pursuit (Chen et al., 1998)

Ω(β) = ‖β ‖1 =

p∑

i=1

|βi |

LASSO or BP:

min
β

R(fβ) =
n∑

i=1

(fβ (xi)− yi)
2 + λ

p∑

i=1

|βi | (3)

No explicit solution, but this is just a quadratic program.
LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all λ’s simultaneously (regularization path)



LASSO regression example



Why LASSO leads to sparse solutions



Generalization: Atomic Norm (Chandrasekaran et al.,
2012)

Definition
Given a set of atoms A, the associated atomic norm is

‖x‖A = inf{t > 0 | x ∈ t conv(A)}.

NB: This is really a norm if A is centrally symmetric and spans Rp

Primal and dual form of the norm

‖x‖A = inf

{∑

a∈A
ca | x =

∑

a∈A
ca a, ca > 0, ∀a ∈ A

}

‖x‖∗A = sup
a∈A
〈a, x〉



Examples

Vector `1-norm: x ∈ Rp 7→ ‖x‖1

A =
{
± ek | 1 ≤ k ≤ p

}

Matrix trace norm: Z ∈ Rm1×m2 7→ ‖Z‖∗ (sum of singular value)

A =
{

ab> : a ∈ Rm1 ,b ∈ Rm2 , ‖a ‖2 = ‖b ‖2 = 1
}



Group lasso (Yuan and Lin, 2006)

For x ∈ Rp and G = {g1, . . . ,gG} a partition of [1,p]:

‖ x ‖1,2 =
∑

g∈G
‖ xg ‖2

is the atomic norm associated to the set of atoms

AG =
⋃

g∈G
{u ∈ Rp : supp(u) = g, ‖u ‖2 = 1}

G = {{1,2} , {3}}
‖ x ‖1,2 = ‖(x1, x2)>‖2 + ‖x3‖2

=
√

x2
1 + x2

2 +
√

x2
3



Group lasso with overlaps

How to generalize the group lasso when the groups overlap?
Set features to zero by groups (Jenatton et al., 2011)

‖ x ‖1,2 =
∑

g∈G
‖ xg ‖2

Select support as a union of groups (Jacob et al., 2009)

‖ x ‖AG ,
see also MKL (Bach et al., 2004)

G = {{1,2} , {2,3}}



Extension to other loss functions

Of course we can learn sparse or group-sparse linear models with any
different (smoothly convex) loss function:

min
β

1
n

n∑

i=1

` (fβ (xi) ,yi) + λ‖β‖1 or ‖β‖1,2
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6 Reconstruction of regulatory networks

7 Supervised graph inference



Chromosomic aberrations in cancer



Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research to observe
systematically variants in DNA content
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Optimal breakpoint detection
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Let Y ∈ Rp the signal. We search a smooth profile β ∈ Rp with at
most k change-points by solving

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

1 (βi+1 6= βi) ≤ k

This is an optimization problem over the
(p

k

)
partitions...

Dynamic programming finds the solution in O(p2k) in time and
O(p2) in memory
But: does not scale to p = 106 ∼ 109...
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Promoting piecewise constant profiles

Ω(β) = ‖β‖TV =

p−1∑

i=1

|βi+1 − βi |

The total variation / variable fusion penalty
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p−1∑

i=1

|βi+1 − βi |

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
Change of variable ui = βi+1 − βi , u0 = β1
We obtain a Lasso problem in u ∈ Rp−1

u sparse means β piecewise constant



TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

|βi+1 − βi | ≤ µ

Adding additional constraints does not change the change-points:∑p
i=1 |βi | ≤ ν (Tibshirani et al., 2005; Tibshirani and Wang, 2008)∑p
i=1 β

2
i ≤ ν (Mairal et al. 2010)



Solving TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

|βi+1 − βi | ≤ µ

QP with sparse linear constraints in O(p2) -> 135 min for p = 105

(Tibshirani and Wang, 2008)
Coordinate descent-like method O(p)? -> 3s s for p = 105

(Friedman et al., 2007)
For all µ with the LARS in O(pK ) (Harchaoui and Levy-Leduc,
2008)
For all µ in O(p ln p) (Hoefling, 2009)
For the first K change-points in O(p ln K ) (Bleakley and V., 2010)



TV signal approximator as dichotomic segmentation

2 Problem formulation

Let Y = (Y1, . . . , Yn) 2 Rn a signal that we wish to approximate by a piecewise-constant signal
µ = (µ1, . . . , µn). We consider the following formulation [2]:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | . (1)

As shown by [1, 4], from the solution of (1) we can easily deduce the solution of the FLSA:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | , (2)

as well as the solution of the FLSA with quadratic penalty:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | + �3

nX

i=1

µ2
i . (3)

In the sequel we therefore focus only on the problem (1). [1] proposed to solve it for each value of �
using a coordinate descent method. [2, 4] proposed a faster homotopy method to compute the solutions
of (1) for all values of � leading to up to k change points in O(nk), by reformulating it as a LASSO
problem and using the LARS algorithm. Below we show that we can get the same result much faster,
on average in O(n log k), by showing that (1) can in fact be formulated as an iterative dichotomic
segmentation method.

3 Dichotomic segmentation

A general dichotomic segmentation strategy requires:

• A representation of any intervals I of [1, n].

• A function to split any interval I = [u, v] of length > 1 into two intervals IL(I) = [u, k] and
IR(I) = [k + 1, v], and a function �(I) 2 R+ which represents the gain resulting from splitting I
into IL(I� and IR(I).

We will investigate different function IL(I), IR(I) and �(I). The dichotomic segmentation method,
presented in Algorithm 1, then proceeds as follows: starting from the full interval [i, n] as a trivial
partition of [1, n] into intervals, and then iteratively refine any partition P of [1, n] into p intervals
P = {I1, . . . , Ip} by splitting the interval I⇤ 2 P with maximal �(I⇤) into the two intervals IL(I⇤) and
IR(I⇤).

Algorithm 1 Greedy dichotomic segmentation
Require: k number of intervals, �(I) gain function to split an interval I into IL(I), IR(I)

1: I0 represents the interval [1, n]
2: P = {I0}
3: for i = 1 to k do
4: I⇤  arg max

I2P
� (I⇤)

5: P  P\ {I⇤}
6: P  P [ {IL (I⇤) , IR (I⇤)}
7: end for
8: return P

2Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)
TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!



TV signal approximator as dichotomic segmentation

2 Problem formulation

Let Y = (Y1, . . . , Yn) 2 Rn a signal that we wish to approximate by a piecewise-constant signal
µ = (µ1, . . . , µn). We consider the following formulation [2]:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | . (1)

As shown by [1, 4], from the solution of (1) we can easily deduce the solution of the FLSA:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | , (2)

as well as the solution of the FLSA with quadratic penalty:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | + �3

nX

i=1

µ2
i . (3)

In the sequel we therefore focus only on the problem (1). [1] proposed to solve it for each value of �
using a coordinate descent method. [2, 4] proposed a faster homotopy method to compute the solutions
of (1) for all values of � leading to up to k change points in O(nk), by reformulating it as a LASSO
problem and using the LARS algorithm. Below we show that we can get the same result much faster,
on average in O(n log k), by showing that (1) can in fact be formulated as an iterative dichotomic
segmentation method.

3 Dichotomic segmentation

A general dichotomic segmentation strategy requires:

• A representation of any intervals I of [1, n].

• A function to split any interval I = [u, v] of length > 1 into two intervals IL(I) = [u, k] and
IR(I) = [k + 1, v], and a function �(I) 2 R+ which represents the gain resulting from splitting I
into IL(I� and IR(I).

We will investigate different function IL(I), IR(I) and �(I). The dichotomic segmentation method,
presented in Algorithm 1, then proceeds as follows: starting from the full interval [i, n] as a trivial
partition of [1, n] into intervals, and then iteratively refine any partition P of [1, n] into p intervals
P = {I1, . . . , Ip} by splitting the interval I⇤ 2 P with maximal �(I⇤) into the two intervals IL(I⇤) and
IR(I⇤).

Algorithm 1 Greedy dichotomic segmentation
Require: k number of intervals, �(I) gain function to split an interval I into IL(I), IR(I)

1: I0 represents the interval [1, n]
2: P = {I0}
3: for i = 1 to k do
4: I⇤  arg max

I2P
� (I⇤)

5: P  P\ {I⇤}
6: P  P [ {IL (I⇤) , IR (I⇤)}
7: end for
8: return P

2Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)
TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!



Speed trial : 2 s. for K = 100, p = 107
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ABSTRACT
Summary: We present a tool for control-free copy number alteration
(CNA) detection using deep-sequencing data, particularly useful for
cancer studies. The tool deals with two frequent problems in the
analysis of cancer deep-sequencing data: absence of control sample
and possible polyploidy of cancer cells. FREEC (control-FREE Copy
number caller) automatically normalizes and segments copy number
profiles (CNPs) and calls CNAs. If ploidy is known, FREEC assigns
absolute copy number to each predicted CNA. To normalize raw
CNPs, the user can provide a control dataset if available; otherwise
GC content is used. We demonstrate that for Illumina single-end,
mate-pair or paired-end sequencing, GC-contentr normalization
provides smooth profiles that can be further segmented and analyzed
in order to predict CNAs.
Availability: Source code and sample data are available at
http://bioinfo-out.curie.fr/projects/freec/.
Contact: freec@curie.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on June 8, 2010; revised on October 28, 2010; accepted
on November 9, 2010

1 INTRODUCTION
In many studies that apply deep sequencing to cancer genomes, one
has to calculate copy number profiles (CNPs) and predict regions
of gain and loss. There exist two frequent obstacles in the analysis
of cancer genomes: absence of an appropriate control sample for
normal tissue and possible polyploidy. Most current tools do not
take these points into account (Supplementary Table 1). For various
reasons, sequencing of an appropriate control sample is not always
possible. There is therefore a need for a bioinformatics tool able to
automatically detect copy number alterations (CNAs) without use of
a control dataset. Several programs have been published that allow
automatic calculation and analysis of CNPs (Chiang et al., 2009; Xie
and Tammi, 2009). However, both CNV-seq (Xie and Tammi, 2009)
and SegSeq (Chiang et al., 2009) need datasets for the given tumor
and its paired normal DNA. Moreover, both programs predict CNAs
without providing information about how many copies were lost or
gained. An interesting approach for predicting copy number variants
was suggested by Yoon et al. (2009), where GC content is used to
normalize data. However, to estimate the ‘normal’ copy number,

∗To whom correspondence should be addressed.

they rely on the assumption that there are similar percentages of
amplified and deleted regions, which is not true in general for cancer
cells. Moreover, their tool was designed to analyze normal human
genomes and is unable to take into account possible polyploidy.

Here, we propose an algorithm to call CNAs with or without a
control sample. The algorithm is implemented in the C++ program
FREEC (control-FREE Copy number caller). FREEC uses a sliding
window approach to calculate read count (RC) in non-overlapping
windows (raw CNP). Then, if a control sample is available, the
program normalizes raw CNP using the control profile. Otherwise,
the program calculates GC content in the same set of windows and
performs normalization by GC content. Since this removes a major
source of variability in raw CNPs (Chiang et al., 2009; Yoon et al.,
2009), the resulting normalized profile becomes sufficiently smooth
to apply segmentation. This is followed by the analysis of predicted
regions of gains and losses in order to assign copy numbers to these
regions.

2 METHODS
The algorithm includes several steps. First, it calculates the raw CNP
by counting reads in non-overlapping windows. If not provided by the
user, window size can be automatically selected using depth of coverage
information to optimize accuracy of CNA prediction. The second step is
profile normalization. If a control is not provided by the user, we compute
the GC-content profile. The normalization procedure of RC by GC content
(or by control RC) is described below. The third step is segmentation of
the normalized CNP. To do this, we implemented a LASSO-based algorithm
suggested by Harchaoui and Lévy-Leduc (2008). Segmentation provided
by this algorithm is robust against outliers, which makes it suitable for
segmentation of deep-sequencing CNPs. The last step involves analysis of
segmented profiles. This includes identification of regions of genomic gains
and losses and prediction of copy number changes in these regions.

To normalize a raw CNP, we fit the observed RC by the GC content
(or the control RC if it is available). We base our fitted model on several
assumptions: (i) the sample main ploidy P is provided, (ii) the observed RC
in P-copy regions (i.e. regions with copy number equal to P) can be modeled
as a polynomial of GC content (or of control RC), (iii) the observed RC in
a region with altered copy number is linearly proportional to the RC in
P-copy regions and (iv) the interval of measured GC contents (respectively
control RCs when a control dataset is available) in the main ploidy regions
must include the interval of all measured GC contents (respectively control
RC). The polynomial’s degree is a user-defined parameter with a default
value of three. We provide an initial estimate of the polynomial’s parameters
and then optimize these parameters by iteratively selecting data points
related to P-copy regions and making a least-square fit on these points only
(See Supplementary Methods for more details). The resulting polynomial

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Fig. 1. Normalization of CNPs using only information about average GC content in a window. (A–D) GC content versus RC in 50 kb windows for COLO-
829BL (normal diploid genome), COLO-829, NCI-H2171 and HCC1143, respectively. The result of the least-square fit for P-copy regions is shown in black.
Curves corresponding to other frequent copy numbers are shown in gray. Values of copy numbers are given at the right of each panel. Chromosomes X
and Y were not included. (E–H) GC-content normalized CNPs for chromosome 1 for COLO-829BL, COLO-829, NCI-H2171 and HCC1143, respectively.
Automatically predicted copy numbers are shown in black.

is then used to normalize the CNP (Fig. 1). The user has an option to
include mappability information into the normalization procedure (See
Supplementary Methods).

3 RESULTS
We applied the method to predict CNAs in mate-pair datasets for the
melanoma cell line COLO-829 and matched normal cell line COLO-
829BL (Pleasance et al., 2010), a paired-end dataset for the small-
cell lung cancer cell line NCI-H2171 (Campbell et al., 2008) and a
single-end dataset for the breast cancer cell line HCC1143 (Chiang
et al., 2009). All four samples were sequenced using the Illumina
Genome Analyzer platform. The number of reads in samples varied
from 14 to 20 million (Supplementary Table 2).

The polynomial fit by GC content explained well the observed
RC (Fig. 1A–D). Using CNPs normalized by GC content, we
identified regions of gain and loss in the four samples (Fig. 1E–H,
Supplementary Fig. 1–4). We also assessed true positive and false
positive rate for a normal diploid sample NA18507 (Alkan et al.,
2009; Bentley et al., 2008; Supplemenary Table 3).

We compared FREEC with three other existing tools: CNV-seq,
SegSeq and RDXplorer (Supplementary Tables 1 and 4). As well
as providing other additional functionalities, FREEC understands
more input formats than any other tool. It can be used to analyze
data produced for any organism and for polyploid genomes. Being
implemented in C++, FREEC shows excellent performance and
operating system portability.

4 CONCLUSION
We have presented a tool for automatic detection of CNAs and
calculation of CNAfrequency. FREEC provides more functionalities

than existing tools; in particular, it can deal with the situation
when no control experiment is available and when the genome
is polyploid, frequent problems in cancer studies. The main steps
are (i) normalization of the CNP using GC content (or control
CNP if available), (ii) segmentation of normalized profiles and
(iii) assignment of copy number changes to losses and gains. The
program is fast, accurate and freely available.

Funding: The Ligue Nationale contre le Cancer (V.B., A.Z., E.B.,
I.J.-L. and O.D. are members of a labeled team).

Conflict of Interest: none declared.
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Extension 1: finding multiple change points shared by
several profiles
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"Optimal" segmentation by dynamic programming
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Define the "optimal" piecewise constant approximation Û ∈ Rp×n

of Y as the solution of

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

DP finds the solution in O(p2kn) in time and O(p2) in memory
But: does not scale to p = 106 ∼ 109...



Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2 + ‖w3‖2
=
√

w2
1 + w2

2 +
√

w2
3



GFLseg (Bleakley and V., 2011)

Replace

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

by

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

GFLseg = Group Fused Lasso segmentation

Questions
Practice: can we solve it efficiently?
Theory: does it recover the correct segmentation?
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TV approximator implementation

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Theorem
The TV approximator can be solved efficiently:

approximately with the group LARS in O(npk) in time and O(np)
in memory
exactly with a block coordinate descent + active set method in
O(np) in memory



Speed trial

so the slope gives the exponent of the complexity (resp. n, p and k). For the weighted group fused LARS,
linearity is clearest for k, whereas for n and p, the curves are initially sub-linear, then slightly super-linear for
extremely large values of n and p. As these time trials reach out to the practical limits of current technology,
we see that this is not critical - on average, even the longest trials here took less than 200 seconds. The
weighted fused group Lasso results are perhaps more interesting, as it is harder to predict in advance the
practical time performance of the algorithm. Surprisingly, when increasing n (p and k fixed) or increasing
p (n and k fixed), the group fused Lasso eventually becomes as fast the iterative, deterministic group fused
LARS. This suggests that at the limits of current technology, if k is small (say, less than 10), the potentially
superior performance of the Lasso version (see later) may not even be punished by a slower run-time with
respect to the LARS version. We suggest that this may be due to the Lasso optimization problem becoming
relatively “easier” to solve when n or p increases, as we observed that the Lasso algorithm converged quickly
to its final set of change-points. The main difference between the Lasso and LARS performance appears
when the number of change-points increases: with respective empirical complexities cubic and linear in k,
as predicted by the theoretical analysis, Lasso is already 1,000 times slower than LARS when we seek 100
change-points.
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fused Lasso for detecting a single change-point. We
first generated multidimensional profiles of dimension p, with a single jump of height 1 at a position u, for
different values of p and u. We added to the signals an i.i.d. Gaussian noise with variance σ̃2

α = 10.78,
the critical value corresponding to α = 0.8 in Theorem 2. We ran 1000 trials for each value of u and p,
and recorded how often the group fused Lasso with or without weights correctly identified the change-point.
According to Theorem 2, we expect that, for the unweighted group fused Lasso, for 50 ≤ u < 80 there is
convergence in accuracy to 1 when p increases, and for u > 80, convergence in accuracy to zero. This is
indeed what is seen in Figure 3 (left panel), with u = 80 the limit case between the two different modes of
convergence. The center panel of Figure 3 shows that when the default weights (5) are added, convergence
in accuracy to 1 occurs across all u, as predicted by Theorem 3. In addition, the right-hand-side panel
of Figure 3 shows results for the same trials except that change-point locations can vary uniformly in the
interval u ± 2. We see that, as predicted by Theorem 4, the accuracy of the weighted group fused Lasso
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Consistency

Suppose a single change-point:
at position u = αp
with increments (βi)i=1,...,n s.t. β̄2 = limk→∞

1
n
∑n

i=1 β
2
i

corrupted by i.i.d. Gaussian noise of variance σ2
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Does the TV approximator correctly estimate the first change-point as
p increases?



Consistency of the weighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Theorem

The weighted TV approximator with weights

∀i ∈ [1,p − 1] , wi =

√
i(p − i)

p

correctly finds the first change-point with probability tending to 1 as
n→ +∞.

we see the benefit of increasing n
we see the benefit of adding weights to the TV penalty



Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions u = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: u = 50±2 to u = 90±2 (right plot, weighted
with varying change-point location), for a signal of length 100.

remains robust against fluctuations in the exact change-point location.

6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results to the case of many shared change-points, we further
simulated profiles of length n = 100 with a change-point at all of positions 10, 20, . . . , 90. We consider
dimensions p between 1 and 500. Jumps at each change-point of each profile were drawn from a Gaussian
with mean 0 and variance 1; we then added centered Gaussian noise with σ2 ∈ {0.05, 0.2, 1} to each
position in each profile. For each value of p and σ2, we ran one hundred trials of both implementations, with
or without weights, and recorded the accuracy of each method, defined as the percentage of trials where the
first 9 change-points detected by the method are exactly the 9 true change-points. Results are presented in
Figure 4 (from left to right, resp. σ2 = 0.05, 0.2, 1). Clearly, the group fused Lasso outperforms the group
fused LARS, and the weighted version of each algorithm outperforms the unweighted version. Although
the group LARS is usually considered a reliable alternative to the exact group Lasso [21], this experiment
shows that the exact optimization by block coordinate descent may be worth the computational burden if
one is interested in accurate group selection. It also demonstrates that, as we conjectured in Section 5.3, the
group fused Lasso can consistently estimate multiple change-points as the number of profiles increases.

6.4 Application to gain and loss detection

We now consider a possible application of our method for the detection of regions with frequent gains
(positive values) and losses (negative values) among a set of DNA copy number profiles, measured by
array comparative genomic hybridization (aCGH) technology [27]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentation of the signals; then, check the presence of gain or
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Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, . . . , 90} and the variance σ2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

loss on each interval of the segmentation by summarizing each profile by its average value on the interval.
Note that we do not assume that all profiles share exactly the same change-points, but merely see the joint
segmentation as an adaptive way to reduce the dimension and remove noise from data.

In practice, we used group fused LARS on each chromosome to identify a set of 100 candidate change-
points, and selected a subset of them by post-processing as described in Section 5.4. Then, in each piecewise-
constant interval between successive shared change-points, we calculate the mean of the positive segments
(shown in green in Figures 5(a) and 6(c)) and the mean of the negative segments (shown in red). The larger
the mean of the positive segments, the more likely we are to believe that a region harbors an important
common gain; the reasoning is analogous for important common losses and the mean of the negative seg-
ments. Obviously, many other statistical tests could be carried out to detect frequent gains and losses on
each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain and loss with the state-of-the-art H-HMMmethod
[27], which has been shown to outperform several other methods in this setting. As [27] have provided their
algorithm online with several of their data sets tested in their article, we implemented our method and theirs
(H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regions – one amplified, one deleted, that are shared
in 8 short profiles, though only 6 of the profiles exhibit each of the amplified or deleted regions. Performance
is measured by area under ROC curve (AUC), following [27]. Running H-HMMwith the default parameters,
we obtained an AUC (averaged over 10 trials) of 0.96± .01, taking on average 60.20 seconds. The weighted
group fused LARS, asked to select 100 breakpoints and followed by dynamic programming, took 0.06
seconds and had an AUC of 0.97. Thus, the performance of both methods was similar, though weighted
group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell lines originally published in [28, 29]. As in [27], we
concentrated on the 18 NSCLC adenocarcinoma (NA) cell lines. Figure 5 shows the score statistics obtained
on Chromosome 8 when using either weighted group fused LARS or H-HMM.Weighted group fused LARS
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Application: detection of frequent abnormalities
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Extension 2: Supervised classification of genomic
profiles
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x1, . . . , xn ∈ Rp the n profiles of length p
y1, . . . , yn ∈ [−1,1] the labels
We want to learn a function f : Rp → [−1,1]



Prior knowledge

We expect β to be
sparse : not all positions should be discriminative, and we want to
identify the predictive region (presence of oncogenes or tumor
suppressor genes?)
piecewise constant : within a selected region, all probes should
contribute equally
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Fused lasso for supervised classification (Rapaport et
al., 2008)

min
β∈Rp

n∑

i=1

`
(

yi , β
>xi

)
+ λ1

p∑

i=1

|βi |+ λ2

p−1∑

i=1

|βi+1 − βi | .

where ` is, e.g., the hinge loss `(y , t) = max(1− yt ,0).

Implementation
When ` is the hinge loss (fused SVM), this is a linear program ->
up to p = 103 ∼ 104

When ` is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ∼ 109
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Example: predicting metastasis in melanoma
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge



Graph-based penalty

min
β

R(β) + λΩG(β)

Hypothesis
We would like to design penalties ΩG(β) to promote one of the
following hypothesis:

Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph
Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.



Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Network kernel (Rapaport et al., 2007)

Ωspectral(β) =
∑

i∼j

(βi − βj)
2 ,

min
β∈Rp

R(β) + λ
∑

i∼j

(βi − βj)
2 .



Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Network kernel (Rapaport et al., 2007)

Ωspectral(β) =
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Other penalties without kernels

Gene selection + Piecewise constant on the graph

Ω(β) =
∑

i∼j

∣∣βi − βj
∣∣+

p∑

i=1

|βi |

Gene selection + smooth on the graph

Ω(β) =
∑

i∼j

(
βi − βj

)2
+

p∑

i=1

|βi |



How to select jointly genes belonging to predefined
pathways?



Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2+‖w3‖2



What if a gene belongs to several groups?

Issue of using the group-lasso
Ωgroup(w) =

∑
g ‖wg‖2 sets groups to 0.

One variable is selected⇔ all the groups to which it belongs are
selected.

IGF selection⇒ selection of
unwanted groups

⇒
‖wg1‖2=‖wg3‖2=0

Removal of any group
containing a gene⇒ the
weight of the gene is 0.



Latent group lasso (Jacob et al., 2009)

An idea
Introduce latent variables vg :





min
w ,v

L(w) + λ
∑

g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

Properties
Resulting support is a union of groups in G.
Possible to select one variable without selecting all the groups
containing it.
Equivalent to group lasso when there is no overlap



A new norm

Overlap norm




min
w ,v

L(w) + λ
∑

g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

= min
w

L(w) + λΩoverlap(w)

with

Ωoverlap(w)
∆
=





min
v

∑

g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

(∗)

Property
Ωoverlap(w) is a norm of w .
Ωoverlap(.) associates to w a specific (not necessarily unique)
decomposition (vg)g∈G which is the argmin of (∗).



Overlap and group unity balls

Balls for ΩGgroup (·) (middle) and ΩGoverlap (·) (right) for the groups
G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.



Theoretical results

Consistency in group support (Jacob et al., 2009)
Let w̄ be the true parameter vector.
Assume that there exists a unique decomposition v̄g such that
w̄ =

∑
g v̄g and ΩGoverlap (w̄) =

∑ ‖v̄g‖2.
Consider the regularized empirical risk minimization problem
L(w) + λΩGoverlap (w).

Then
under appropriate mutual incoherence conditions on X ,
as n→∞,
with very high probability,

the optimal solution ŵ admits a unique decomposition (v̂g)g∈G such
that {

g ∈ G|v̂g 6= 0
}

=
{

g ∈ G|v̄g 6= 0
}
.
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Experiments

Synthetic data: overlapping groups
10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}.
Support: union of 4th and 5th groups.
Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and ΩGoverlap (.)

(middle), comparison of the RMSE of both methods (right).



Graph lasso

Two solutions

Ωintersection(β) =
∑

i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .



Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑

i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑

i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity



Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩGOVERLAP (.)
ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30



Lasso signature



Graph Lasso signature



Outline

1 Introduction

2 Learning with kernels

3 Kernels for biological sequences

4 Kernels for graphs

5 Learning with sparsity

6 Reconstruction of regulatory networks
Introduction
De novo reconstruction based on mutual information
De novo reconstruction based on sparse regression
Supervised reconstruction with one-class methods
Supervised inference with PU learning

7 Supervised graph inference



Outline

1 Introduction

2 Learning with kernels

3 Kernels for biological sequences

4 Kernels for graphs

5 Learning with sparsity

6 Reconstruction of regulatory networks
Introduction
De novo reconstruction based on mutual information
De novo reconstruction based on sparse regression
Supervised reconstruction with one-class methods
Supervised inference with PU learning

7 Supervised graph inference



Gene expression



Gene expression regulation



Gene regulatory network



Gene regulatory network of E. coli



Gene expression data



Reconstruction of gene regulatory network



Two flavours: de novo or supervised

De novo inference
Given a matrix of expression data, infer regulations

Supervised inference
Given a matrix of expression data and a set of knows regulations, infer
other unknown regulations
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The idea

If A regulates B, then we should expect some form of "correlation"
between the expression levels of A and B across different experiments.

We can therefore try to detect these correlations to infer regulation.



Measuring dependency: correlation coefficients

(X1,Y1), . . . , (Xn,Yn) the n expression values of both genes
Pearson correlation:

ρ =
cov(X ,Y )

σXσY
=

∑
i(Xi − X̄ )(Yi − Ȳ )√∑

i(Xi − X̄ )2
√∑

i(Yi − Ȳ )2

Spearman correlation: similar but replace Xi by its rank.



Illustration



Limit of correlations



Mutual information

I(X ; Y ) =

∫

Y

∫

X
p(x , y) log

(
p(x , y)

p(x)p(y)

)
dxdy

I(X ; Y ) ≥ 0
I(X ; Y ) = 0 if and only if X and Y are independent
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The idea

The dynamic equation of the mRNA concentration of a gene is of
the form:

dX
dt

= f (X ,R)

where R represent the set of concentrations of transcription
factors that regulate X .
At steady state, dX/dt = 0 = f (X ,R)

If we linearize f (X ,R) = 0 we get linear relation of the form

X =
∑

i∈R

βiXi

This suggests to look for sets of transcription factors whose
concentration is sufficient to explain the level of X across different
experiments.



Predicting regulation by sparse regression

Let Y the expression of a gene, and X1, . . . ,Xp the expression of all
TFs. We look for a model

Y =

p∑

i=1

βiXi + noise

where β is sparse, i.e., only a few βi are non-zero.
We can estimate the sparse regression model from a matrix of
expression data.
Non-zero βi ’s correspond to predicted regulators.



Example: sparse regression with the Lasso

min
β∈Rp

n∑

i=1


Yi −

p∑

j=1

Xi , jβj




2

such that
p∑

i=1

|βi | ≤ t

No explicit solution, but this is just a quadratic program.
LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all t ’s simultaneously (regularization path)
When t is not too large, the solution will usually be sparse



LASSO regression example



Why LASSO leads to sparse solutions



Improved feature selection with stability selection

For t = 1 to T do
Bootstrap a random sample St from the training set
Randomly reweight each feature
Select M features, e.g., with the Lassp

The score of a feature is the number of times it was selected
among the T repeats
Rank features by decreasing score.
See Meinshausen and Bühlmann (2009).



Examples of de novo methods
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Motivations

In many cases, we already know quite a few regulations.
Can we use them, in addition to expression data, to predict
unknown regulations?



Using expression data for supervised inference

If a gene has an expression profile similar to other genes known to
be regulated by a TF, then it is likely to be regulated by the TF itself
Underlying hypothesis: genes regulated by the same TF have
similar expression variations
Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF
This is only possible if we already have a list of known regulations.



The idea

For a given TF, let P ⊂ [1,n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i∈P , estimate a score s(X ) to
assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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Estimating the scoring function: examples
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)

One-class SVM

s(X ) =
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i∈P

αi exp
(
−γ‖X − Xi ‖2

)
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The idea

Since we know in advance all genes, can we use them instead of
relying only on genes in P to estimate the scoring function?
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From one-class to PU learning
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One class: given genes in P, estimate the function s(X )

PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(Xj) for j ∈ U
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PU learning in practice (Mordelet and V., 2014)
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1 Train a classifier to discriminate P from U (eg, SVM or random
forest)

2 Rank genes in U by decreasing training score



Example: E. coli regulatory network
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)



Application: predicted regulatory network (E. coli)
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Proteins



Network 1: protein-protein interaction



Network 2: metabolic network



Network 3: gene regulatory network



Data available

Biologists have collected a lot of data about proteins. e.g.,

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes.



Our goal

Data
Gene expression,
Gene sequence,
Protein localization, ...

Graph
Protein-protein interactions,
Metabolic pathways,
Signaling pathways, ...



More precisely

Formalization
V = {1, . . . ,N} vertices (e.g., genes, proteins)
D = (x1, . . . , xN) ∈ HN data about the vertices (H Hilbert space)
Goal: predict edges E ⊂ V × V. We focus on undirected graphs.

“De novo” inference
Given data about individual genes and proteins D, ...
... Infer the edges between genes and proteins E

“Supervised” inference
Given data about individual genes and proteins D, ...
... and given some known interactions Etrain ⊂ E , ...
... infer unknown interactions Etest = E\Etrain
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De novo methods

Typical strategies
Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)
Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros
Excellent approach if the
model is correct and
enough data are available
Interpretability of the model
Inclusion of prior
knowledge

Cons
Specific to particular data
and networks
Needs a correct model!
Difficult integration of
heterogeneous data
Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

The known metabolic network of the yeast involves 769 proteins.
Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).



Supervised methods

Motivation
In actual applications,

we know in advance parts of the network to be inferred
the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method
Given genomic data and
the currently known
network...
Infer missing edges
between current nodes and
additional nodes.



Pattern recognition

Given a training set of patterns in two classes, learn to
discriminate them
Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X1,X2)

Two solutions
Consider each pair (X1,X2) as a single data -> learning over pairs
Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs: basic issue

A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Representing a pair as a vector

Each individual protein is represented by a vector v ∈ Rp

Depending on the network, we are interested in ordered or
unordered pairs of proteins.
We must represent a pair of proteins (u, v) by a vector
ψ(u, v) ∈ Rq in order to estimate a linear classifier
Question: how build ψ(u, v) from u and v , in the ordered and
unordered cases?



Direct sum for ordered pairs?

A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

ψ(u, v) = u ⊕ v =

(
u
v

)
.

Problem: a linear function then becomes additive...

f (u, v) = w>ψ(u, v) = w>1 u + w>v .
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Direct product for ordered pairs

Alternatively, make the direct product, i.e., the p2-dimensional
vector whose entries are all products of entries of u by entries of
v :

ψ(u, v) = u ⊗ v

Problem: can get really large-dimensional...
Good news: inner product factorizes:

(u1 ⊗ v1)> (u2 ⊗ v2) =
(

u>1 u2

)
×
(

v>1 v2

)
,

which is good for algorithms that use only inner products (SVM...):

KP ((u1, v1), (u2, v2)) = ψ(u1, v1)>ψ(u2, v2) = K (u1,u2)K (v1, v2)
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Representing an unordered pair

Often we want to work with unordered pairs, e.g., PPI network:

{u, v} = {(u, v), (v ,u)}

This suggest to symmetrize the representation of ordered pairs:

ψU({u, v}) = ψ(u, v) + ψ(v ,u)

When ψ(u, v) = u ⊗ v , this leads to the symmetric tensor product
pairwise kernel (TPPK) (Ben-Hur and Noble, 2005):

KTPPK ({u1, v1} , {u2, v2}) = K (u1,u2)K (v1, v2)+K (u1, v2)K (v1,u2)
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Another idea: metric learning

For two vectors u, v ∈ H let the metric:

dM(u, v) = (u − v)>M(u − v) .

Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?
We consider the problem:

min
M≥0

∑

i

l(ui , vi , yi) + λ||M||2Frobenius ,

where l is a hinge loss to enforce:

dM(ui , vi)

{
≤ 1− γ if(ui , vi)is connected ,
≥ 1 + γ otherwise.
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Link with metric learning

Theorem (V. et al., 2007)
A SVM with the representation

ψ({u, v}) = (u − v)⊗2

trained to discriminate connected from non-connected pairs,
solves this metric learning problem without the constraint M ≥ 0 .
Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

KMLPK ({u1, v1} , {u2, v2}) = ψ({u1, v1})>ψ({u2, v2})
= [K (u1,u2)− K (u1, v2)− K (v1,u2) + K (u2, v2)]2 .
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The idea (Bleakley et al., 2007)

Motivation: define specific models for each target node to
discriminate between its neighbors and the others
Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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A few remarks

In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A→ B
and B → A to predict the interaction {A,B}
Weak hypothesis:

if A is connected to B,
if C is similar to B,
then A is likely to be connected to C.

Computationally: much faster to train N local models with N
training points each, than to train 1 model with N2 training points.
Caveats:

each local model may have very few training points
no sharing of information between different local models
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Motivation

In the case of unordered pairs {A,B}, pairwise kernels such as the
TPPK and local models look very different:

Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori
Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?



Notations

A the set of individual proteins, endowed with a kernel KA
X = A2 the set of ordered pairs of the form x = (a,b) endowed
with a kernel KX (usually deduced from KA)
P the set of unordered pairs of the form p = {(a,b), (b,a)}
We want to learn over P from a set of labeled training pairs
(p1, y1), . . . , (pn, yn) ∈ P × {−1,1}



Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel
1 Define a kernel KP over P by convolution of KX :

KP(p,p′) =
1

|p| · |p′|
∑

x∈p,x ′∈p′
KX (x , x ′) .

2 Train a classifier over P e.g., a SVM, using the kernel KP

Strategy 2: Inference over X with a pair duplication
1 Duplicate each training pair p = {a,b} into 2 ordered paired
2 Train a classifier over X , e.g., a SVM, using the kernel KX
3 The classifier over P is then the a posteriori average:

fP (p) =
1
|p|
∑

x∈p

fX (x)
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The TPPK kernel

KTPPK ({a,b} , {c,d}) = KA(a, c)KA(b,d) + KA(a,d)KA(b, c) .

Theorem
Let X = A2 be endowed with the p.d. kernel:

KX ((a,b), (c,d)) = 2KA(a, c)KA(b,d) . (4)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).



The local models
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Theorem
Let X = A2 be endowed with the p.d. kernel:

KX ((a,b), (c,d)) = δ(a, c)KA(b,d) ,

where δ is the Kronecker kernel (δ(a, c) = 1 if a = c, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..



Interpolation between local model and TPPK

Strategy 1: pair kernel Strategy 2: duplication
KX = KA ⊗ KA TPPK TPPK
KX = δ ⊗ KA new Local model

Interpolation:
KX = ((1− λ)KA + λδ)⊗ KA

for λ ∈ [0,1]
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Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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Interpolation kernel

Table : Strategy and kernel realizing the maximum mean AUC for nine
metabolic and protein-protein interaction networks experiments, with the
kernel Kλ for λ ∈ [0,1].

benchmark best kernel
interaction, exp Duplicate, λ = 0.7
interaction, loc Pair kernel, λ = 0.6
interaction, phy Duplicate, λ = 0.8
interaction, y2h Duplicate / Pair kernel, λ = 0

interaction, integrated Duplicate / Pair kernel, λ = 0
metabolic, exp Pair kernel, λ = 0.6
metabolic, loc Pair kernel, λ = 1
metabolic, phy Pair kernel, λ = 0.6

metabolic, integrated Duplicate / Pair kernel, λ = 0



Interpolation kernel

Metabolic networks with localization data (left); PPI network with
expression data (right)



Applications: missing enzyme prediction
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Applications: function annotation



Conclusion

When the network is known in part, supervised methods are more
adapted than unsupervised ones.
A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

work for any network
work with any data
can integrate heterogeneous data, which strongly improves
performance

Promising topic: infer edges simultaneously with global
constraints on the graph?
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