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Cells, chromosomes, DNA
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio
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Cancer prognosis: can we predict the future evolution?
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Problem 1

From a CGH profile, can we predict whether a melanoma will relapse

(left) or not (right)?




DNA — RNA — protein
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Use in diagnosis
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Problem 2

Given the expression profile of a leukemia, is it an acute lymphocytic or
myeloid leukemia (ALL or AML)?




Use in prognosis
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Problem 3

Given the expression profile of a breast cancer, is the risk of relapse

within 5 years high?




Proteins
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Protein annotation

Data available

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQONQCQLQONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Problem 4

Given a newly sequenced protein, is it secreted or not?




Drug discovery
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Problem 5
Given a new candidate molecule, is it likely to be active?

o
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Gene network inference
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Problem 6
Given known interactions, can we infer new ones?




A common topic...
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Pattern recognition, aka supervised classification

Challenges

@ High dimension
Few samples

@ Structured data

@ Heterogeneous data
@ Prior knowledge
°

Fast and scalable
implementations

Interpretable models
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More formally

@ X the space of patterns or data (typically, X = RP)
@ ) the space of response or labels
o Classification or pattern recognition : Y = {—1,1}
e Regression: Y =R

@ S={(x1,¥1),-..,(Xn, yn)} atraining setin (X x Y)"

@ A function f: X — ) to predict the output associated to any new
pattern x € X by f(x)




Simple example 1 : ordinary least squares (OLS)

(Hastie et al. The elements of statistical learning. Springer, 2001.)



Simple example 1 : 1-nearest neighbor (1-NN)




What’s wrong?

@ OLS: the linear separation is not appropriate = "large bias"
@ 1-NN: the classifier seems too unstable = "large variance"



The fundamental "bias-variance" trade-off

@ Assume Y = f(X) + ¢, where ¢ is some noise
@ From the training set S we estimate the predictor f

@ On a new point xo, we predict 7(xp) but the "true" observation will
be Yo = f(xo) + ¢
@ On average, we make an error of:

E.s (Yo - ?(XO))2
. 2
=E.s (f(xo) +e— f(XO))
= Eé® + Es (f(XO) - ?(XO))Z

= £ 1 (1(0) ~ Estx0))” + Es (1(00) — Esfxo))°

= noise + bias? + variance



Back to OLS

@ Parametric model for 8 € RP*1:
p
f3(X)=Bo+ > _BiXi=X'p
i=1
@ Estimate /3 from training data to minimize

n

RSS(B) =Y (vi — f3(x))* = (Y = XB) (Y — XB)

i=1

@ Solution if X X is non-singular:

B= (xTx)f1 X7y



Optimality of OLS

Gauss-Markov theorem

@ Assume Y = X3 + ¢, where Ee = 0 and Eee | = 5°1.

@ Then the least squares estimator j is BLUE (best linear unbiased
estimator), i.e., for any other estimator 5 = CY with Ej5 = g,

Var(5) < Var(p)




Optimality of OLS

Gauss-Markov theorem
@ Assume Y = X3 + ¢, where Ee = 0 and Eee | = 5°1.

@ Then the least squares estimator j is BLUE (best linear unbiased
estimator), i.e., for any other estimator 5 = CY with Ej5 = g,

Var(5) < Var(p)

v

Nevertheless, if variance may be very large, we may have smaller total
risk by increasing bias to decrease variance



The curse of dimensionality

Small dimension Large dimension

In high dimensions, variance dominates, even for simple linear
estimators. BLUE estimators are useless.



A solution: shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = BT x for x € RP
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = BT x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(8) = S (fs(x) — i)

i=1

© Choose $ that achieves the minimium empirical risk, subject to
some constraint:

mﬂinR(ﬁ) subjectto  Q(B8) < C.




Why skrinkage classifiers?
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Why skrinkage classifiers?

mﬁin R(8) subjectto Q(B)<C.

@ "Increases bias and decreases variance"
@ Equivalent formulation:

mgn R(B) + XQ(B) .



Choice of Q can decrease the bias
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Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est
b




Choice of C or \: structured regression and model

selection

@ Define a family of function classes F, where X controls the
"complexity"
@ For each ), define
fy = argmin EPE(f)
Fa

@ Select f = % to minimize the bias-variance tradeoff.

High Bias Low Bias

Prediction Error
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Cross-validation

A simple and systematic procedure to estimate the risk (and to
optimize the model’s parameters)

@ Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n

@ For each portion, fit the model with different parameters on the
K — 1 other groups and test its performance on the left-out group

© Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.



@ Many problems in computational biology and medicine can be
formulated as high-dimensional classification or regression tasks

@ The total error of a learning system is the sum of a bias and a
variance error

© In high dimension, the variance term often dominates
© Shrinkage methods allow to control the bias/variance trade-off

© The choice of the penalty is where we can put prior knowledge to
decrease bias



Choosing or designing a penalty...

mﬁin R(8) subjectto Q(5) < C.

We will only focus on convex penalties, which lead to efficient
algorithms. We will touch upon two important families of penalties:

@ Smooth convex penalty: ridge regression, SVM, kernels...
© Nonsmooth convex penalty: lasso, group lasso, fused lasso,...
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Ridge regression (Hoerl and Kennard, 1970)

@ Consider the set of linear predictors:

VBERP, f3(x)=p8"x forxcRP.

© Consider the mean square error (MSE) as empirical risk:

R(5) = = S (1s(x) ~ %P

i=1

© Consider the Euclidean norm as a penalty:

p
QB)=15815=>_ 5
i=1



@ Let X = (x4,..., xn) the n x p data matrix, and
Y =(y1,...,¥n) € RP the response vector.
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= (Y- XB)T (Y - X8) 42575,



@ Let X = (x4,..., xn) the n x p data matrix, and
Y =(y1,...,¥n) € RP the response vector.

@ The penalized risk can be written in matrix form:

n

R(5)+ MB) = =3 (£ (x) ~ ) +A26,

i=1

= (Y- XB)T (Y - X8) 42575,

@ Explicit minimizer:

Aridge . =1
B = arg min {R(5) + AQ(8)} = (XTX+)\nI) XTy.



Limit cases

i —1
B9 = (XTX+anl)  XTY

® As \ — 0, 3799 — BOLS (low bias, high variance).

0 As \ — +oo, 41%° — 0 (high bias, low variance).




Ridge regression example
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(From Hastie et al., 2001)



Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated
features:

> library (MASS) # for the 1lm.ridge command
> x1 <— rnorm(20)
> x2 <— rnorm(20,mean=x1,sd=.01)
> y <— rnorm (20, mean=3+x1+x2)
> Im(y~x1+x2) Scoef
(Intercept) x1 X2
3.070699 25.797872 -23.748019
> Im.ridge (y~x1+x2, lambda=1)
x1 X2
3.066027 1.015862 0.956560



Generalization: /»-regularized learning

@ A general />-penalized estimator is of the form
; 2
min {R(3) + M3} - (1)

where

R(B) = 117 > Ufs(x:), i)
i=1

for some general loss functions /.
@ Ridge regression corresponds to the particular loss

Uu,y)=(u—y)>.

@ For general, convex losses, the problem (1) is strictly convex and
has a unique global minimum, which can usually be found by
numerical algorithms for convex optimization.



Loss for regression

@ Square loss : {(u,y) = (u—y)?
@ c-insensitive loss : {(u,y) = (Ju—y|—€),
@ Huber loss : mixed quadratic/linear

4 —square
—e—insensitive
—Huber
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Loss for pattern recognition

Large margin classifiers
@ For pattern recognition ) = {—1,1}
@ Estimate a function f : X' — R.
@ The margin of the function f for a pair (x, y) is: yf (x).
@ The loss function is usually a decreasing function of the margin :

£(f(%),¥) = 6 (¥ (), 1

— 0-1
— logistic
—— hinge
— hinge"2
exp

loss




Example: Ridge logistic regression

(Le Cessie and van Houwelingen, 1992)

Logistic (U, y) = In (1 + e—yu)

minJ(5) = Z In (1+e777) + |53



Probabilistic interpretation

min J(5) = Zm( +eP0) 4 A8

Exercice

Show that ridge logistic regression finds the penalized maximum
likelihood estimator:

1 n
mBaxEZIn Ps(Y = yi| X = x;) — || BII3.
i—

for the following model:

Ps(Y = —1|X =x) =

ef ' x
{Pﬁ(vwx) o

1
148" x




Solving ridge logistic regression

minJ(5) = ZIn( + o) 1 |83

No explicit solution, but convex problem with:

n

1 YiXi
Vad(B) = . Z 1L e x +2)3
i=1

1 n
= _E Zy, [1 — P,B(yi | X,')] Xj + 2)\,3

n x T aViBTx
XiX; e
VEJ(B) =Y =+ 2A]
M5 (1 +enfTx)

1 n
= Ezpﬁﬁ | X;) (1 = Ps(1]x7)) xix;" + 2
i—



Solving ridge logistic regression (cont.)

minJ(5) = ZIn( +e7nTH) 1 \|183

@ The solution can then be found by Newton-Raphson iterations:

gnew . BOId . {V%J (50/0’)]_1 Vsd </Bold> '

@ Each step is equivalent to solving a weighted ridge regression
problem (left as exercise)

@ This method is therefore called iteratively reweighted least
squares (IRLS).
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Linear classifier
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Which one is better?




The margin of a linear classifier
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The margin of a linear classifier




The margin of a linear classifier




Largest margin classifier (hard-margin SVM)




Support vectors




More formally

@ The training set is a finite set of n data/class pairs:

S= {(}1ay1)a cee (Yn7Yn)} )
where X; € RP and y; € {—1,1}.
@ We assume (for the moment) that the data are linearly separable,
i.e., that there exists (w, b) € RP x R such that:
W.Y/+b>o ifyi=1,
{W.)?,‘—l—b<0 ify,':—1.



How to find the largest separating hyperplane?

For a given linear classifier f(x) = w.X + b consider the "tube" defined
by the values —1 and +1 of the decision function:

W.X+b=\0 \A
\




The marginis 2/|| w ||z

Indeed, the points X; and x» satisfy:
{vm +b=0,

By subtracting we get w.(Xo» — X;) = 1, and therefore:

2
w2

v=2|X— X |2 =



All training points should be on the correct side of the

dotted line

For positive examples (y; = 1) this means:
wXi+b>1.
For negative examples (y; = —1) this means:
WX +b< —1.
Both cases are summarized by:

Vi=1,...,n, y,'(VT/.H,'—I—b)Z‘I.



Finding the optimal hyperplane

Find (w, b) which minimize:

under the constraints:

Vi=1,...,n, y,(VT/)?,—l—b)—‘IZO

This is a classical quadratic program on RP*1,



Another view of hard-margin SVM

n

wb i3
for the hard-margin loss function:

0 if yu>1,

E - . L]7 = .
hard margm( y) {+oo otherwise.
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Optimization problems

@ We consider an equality and inequality constrained optimization
problem over a variable x € X':

minimize  f(x)
subjectto hj(x)=0, i=1,....,m,
gi(x)<0, j=1,...,r,

making no assumption of f, g and h.

@ Let us denote by * the optimal value of the decision function
under the constraints, i.e., f* = f(x*) if the minimum is reached at
a global minimum x*.




Lagrangian and dual function

The Lagrangian of this problem is the function L : X x R™ x R" — R
defined by:

L6 A 1) = F(X) + 30 i (0 + 3 1igy(x) -
i=1 j=1

Lagrangian dual function
The Lagrange dual function g : R™ x R" — R is:

q(A, p) = inf L(x, A, )

Xe

- ;Q/fv (f(x) - Z Aihi (x) + Z/‘jgj(x)> :
i=1 j=1

| o
| A

\




Properties of the dual function

@ g is concave in (A, 1), even if the original problem is not convex.

@ The dual function yields lower bounds on the optimal value * of
the original problem when p is nonnegative:

g\ p) <, VAERTVueR u>0.




@ For each x, the function (\, i) — L(x, A, i) is linear, and therefore
both convex and concave in (A, ). The pointwise minimum of
concave functions is concave, therefore g is concave.

@ Let x be any feasible point, i.e., h(x) = 0 and g(x) < 0. Then we
have, for any A and x> 0O:

m r
D oNhi(X) + Y wigi(x) <0,
i= i—

— LX)\ p) = f(X)+ ij Aihi(X) + i pigi(x) < f(x) ,
i=1 i=1

— g =infL(x A < LEA R <A(X), VK. O




Dual problem

For the (primal) problem:

minimize  f(x)
subjectto h(x)=0, g(x)<0,

the Lagrange dual problem is:

maximize q(\, p)
subjectto >0,

where q is the (concave) Lagrange dual function and A\ and p are the

Lagrange multipliers associated to the constraints h(x) = 0 and
g(x) <0.




Weak duality

@ Let d* the optimal value of the Lagrange dual problem. Each
g(A, i) is an lower bound for f* and by definition d* is the best
lower bound that is obtained. The following weak duality inequality
therefore always hold:
ar < f*.

@ This inequality holds when d* or f* are infinite. The difference
d* — f* is called the optimal duality gap of the original problem.




Strong duality

@ We say that strong duality holds if the optimal duality gap is zero,
ie.:
ar=f.

@ If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

@ Strong duality does not hold for general nonlinear problems.
@ |t usually holds for convex problems.

@ Conditions that ensure strong duality for convex problems are
called constraint qualification.




Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize  f(x)
subjectto  g;(x)
Ax =

<0 j=1,...,r,
b,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:




@ Slater’s conditions also ensure that the maximum d* (if > —o0) is
attained, i.e., there exists a point (A*, *) with

@ They can be sharpened. For example, strict feasibility is not
required for affine constraints.

@ There exist many other types of constraint qualifications




Dual optimal pairs

Suppose that strong duality holds, x* is primal optimal, (\*, u*) is dual
optimal. Then we have:

f(x*) =g\ 1Y)
- inf {f(x) DRSS u}-‘gf(X)}
i=1 J=1

m r

S HX) + D AA(X) + ) i gi(x7)
i=1 j=1

< f(x7)

Hence both inequalities are in fact equalities.




Complimentary slackness

The first equality shows that:
L(X* A% p ):xlenﬂinL(X’A )

showing that x* minimizes the Lagrangian at (A\*, ©*). The second
equality shows that:

,ujgj(x*):O, j:1,...,f.

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint is
active at the optimum.
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In order to minimize:

under the constraints:
Vi=1,...,n, yi(wX;+b)—1>0,

we introduce one dual variable «; for each constraint, i.e., for each
training point. The Lagrangian is:

DA L L
L(w,b,d) = §\|W||2—Za/ (vi (WX +b) —1) .

i=1



e L (w,b,q) is convex quadratic in w. It is minimize for:
n n
VWL =w— Z a,-y,-)?,' =0 - W= Z a,-y,-)?,-.
i=1 i=1
oL (vT/, b, &) is affine in b. Its minimum is —oco except if:

n
VbL = Za,-y,- =0.
i=1



Dual function

@ We therefore obtain the Lagrange dual function:

g(@ = _inf L(w,b,ad)
WERP,bER
_ e = 3 X S yivpeiaXi X i 0 iy =0,
—00 otherwise.

@ The dual problem is:
maximize q (&)
subjectto a>0.



Dual problem

Find o* € R" which maximizes

L(a) = Z aj— = Z Z i YiyiXi-X;,
i=1

11/1

under the (simple) constraints «; > 0 (fori=1,...,n), and

n
Zai}/i =0.
i—1

This is a quadratic program on RN, with "box constraints". &* can be
found efficiently using dedicated optimization softwares.



Recovering the optimal hyperplane

Once a* is found, we recover (w*, b*) corresponding to the optimal
hyperplane. w* is given by:

n
W= X,
i=1
and the decision function is therefore:

!
1
+
o
*

Il
(1=
S
X
x|
+
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*
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N



Interpretation: support vectors




Primal (for large n) vs dual (for large p) optimization

@ Find (w, b) € RP*" which minimize:

7 (12
|3

under the constraints:
Vi=1,...,n, y(WX+b)—1>0.
@ Find o* € R" which maximizes
) n {ono o
L(a) = ; ai— 3 ; ; Qo YiyiXi-X;,

under the (simple) constraints «; > 0 (fori=1,...,n), and

n
Z aiyi = 0.
i—1
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9 Learning with kernels

@ Soft-margin SVM

e Kernels for biological sequences

e Kernels for graphs

P



What if data are not linearly separable?



What if data are not linearly separable?




What if data are not linearly separable?




What if data are not linearly separable?




Soft-margin SVM

@ Find a trade-off between large margin and few errors.
@ Mathematically:

. 1
mfln {mavrgin(f) + C x errors(f)}

@ Cis a parameter




Soft-margin SVM formulation

@ The margin of a labeled point (X, y) is
margin(X,y) = y (W.X + b)

@ The erroris

e 0if margin(X,y) > 1,

e 1 — margin(X, y) otherwise.
@ The soft margin SVM solves:

n
va?{'w"2+ CZmax (0,1 —y,-(vT/.)?,-er))}

i=1




Soft-margin SVM and hinge loss

n
T’Vig {Zghinge (W-Xi + b, yi) + Al w Hg} )
= L=t
for A = 1/C and the hinge loss function:

0 if yu>1,
1 —yu otherwise.

\ 1(f(),y)
° \ yf(x)

1

Chinge(U, y) = max (1 — yu,0) = {




Dual formulation of soft-margin SVM (exercice)

Maximize
n

n
L@) =) ai=5 D> g%,

=1 i=1 j=1
under the constraints:
0<q;<C, fori=1,...,n
Sy =0.



Interpretation: bounded and unbounded support
vectors




Summary: ls-regularize linear methods

4 —square
—e~insensitive
—Huber

— 0-1

— hinge
square

— logistic

- N w

o 1 2 3 0 [
y=fx) 3 2 1 0o 1 2 3 4

1
fa(x) =B"x, min > Ufs(xi), i) + M BlI5

i=1

@ Many popular methods for regression and classification are
obtained by changing the loss function: ridge regression, logistic
regression, SVM...

@ Needs to solve numerically a convex optimization problem, well
adapted to large datasets (stochastic gradient...)

@ In practice, very similar performance between the different
variants in general



0 Introduction

9 Learning with kernels

@ Kernel methods

e Kernels for biological sequences

e Kernels for graphs

P



Sometimes linear methods are not interesting
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Solution: non-linear mapping to a feature space

Let &(X) = (x2,x3), w = (1,1) and b = 1. Then the decision function
is:



Kernels

Definition
For a given mapping ¢ from the space of objects X’ to some feature
space, the kernel between two objects x and x’ is the inner product of

their images in the features space:

Vx,x' e X, K(x,x)=o(x) o).

Example: if ®(X) = (x2,x3)', then

K(%,X') = $(X).8(X') = (3)%(x)% + (x2)?(xp)%.



The kernel tricks

@ Many linear algorithms (in particular /»-regularized methods) can
be performed in the feature space of ®(x) without explicitly
computing the images ®(x), but instead by computing kernels
K(x, x").

Q It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K(x, x’)
is often much simpler to compute than ®(x) and ®(x’)




Trick 1 illustration: SVM in the original space

@ Train the SVM by maximizing
L(&) = Za, ZZa,a/y,y/x X;,
i=1 i=1 j=1
under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

n
= Z Oé,')?i—r)? + b*.
i=1



Trick 1 illustration: SVM in the feature space

@ Train the SVM by maximizing
L(d) = Z o — Z Z ajo;y;y® CD ()_(}) ,
i=1 i=1 j=1
under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

n
= o (%) & (X) +b*.
i=1



Trick 1 illustration: SVM in the feature space with a

kernel

@ Train the SVM by maximizing
Za,—*zza/%y/}/j (%, %)
i=1 j=1
under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

Za, +b*



Trick 2 illustration: polynomial kernel

For X = (x1, %) € R?, let &(X) = (x2,V2x1x2, x2) € R®;

K(X,X') = Xx2x{2 + 2x1 Xp X} Xb + X2 X2
( 1X1 + X2X2)

%)

’><7



Trick 2 illustration: polynomial kernel

More generally,
K(X,X) = (%X +1)°

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Combining tricks: learn a polynomial discrimination

rule with SVM

@ Train the SVM by maximizing
L(a) = Z o — Z Za,ajy,y/ (X Xi+ 1) ,
i=1 i=1 j=1
under the constraints:

0<a;<C, fori=1,....n
Slqaiyi=0.

@ Predict with the decision function

n d
F(R) =Y ai (5% +1) +b".

i=1



lllustration: toy nonlinear problem

> plot (x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))

Training data
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[llustration: toy nonlinear problem, linear SVM

> library (kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel="vanilladot’)
> plot (svp,data=x)

SVM classification plot
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lllustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", .
kernel=polydot (degree=2))
> plot (svp,data=x)

SVM classification plot
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More generally: trick 1 for />-regularized estimators

Representer theorem

Let f3(x) = 8T &(x). Then any solution f; of
1 n
il > U(fs(x), i) + A BlI3
i=1
can be expanded as

n
X) =" aiK(x;, X)
pa

where a € R" is a solution of:

— Y4 A K
2o s S (Sremteonn) 1 Stacn

ij=1




Representer theorem: proof

@ For any 8 € RP, decompose 8 = s + 3, where
Bs € span(®(xq),...,P(xn)) and 3, is orthogonal to it.
@ On any point x; of the training set, we have:

f3(x;) = BT (X)) = BL (X)) + B1P(X}) = BEP(X)) = Fz5(X)) -

@ On the other hand, we have || 33 = || 3s 3 + [| 513 > || s |3,
with strict inequality if 5, # 0.

@ Consequently, 8s is always as good as (3 in terms of objective
function, and strictly better if 5, # 0. This implies that at any
minimum, 3, = 0 and therefore 3 = 85 = 27:1 a;®(x;) for some
acRN.

@ We then just replace 3 by this expression in the objective function,
noting that

n
1815 = |l Za/ ()3 = Z ajoy® (x)" d(x) = Z ajoK(Xi, X;) -

ij=1 ij=1



Example: kernel ridge regression

@ Let : X — RRP be a feature mapping from the space of data to a
Euclidean or Hilbert space.

@ Let f3(x) = BT ®(x) and K the corresponding kernel.
@ By the representer theorem, any solution of:

n

n o1
f = argmin _ > (i — 3 () + Al B 13

fs i—1

can be expanded as:

n
/IE = ZO&,‘K(X,‘,X) .
i=1



Example: kernel ridge regression

o LetY ={(y1,... ,y,,)T € R" the vector of response variables.
@ Leta = (vq,...,an)" € R" the unknown coefficients.

@ Let K be the n x n Gram matrix: Kj; = K (x;, X)) .

@ We can then write in matrix form:

(?()(1),...,?()(n))T ~ Ka,

@ Moreover,

n n
18115 =D aiK(x,x) = o' K.

i=1 j=1



Example: kernel ridge regression

@ The problem is therefore equivalent to:

arg min© (Ka—Y) (Ka—Y)+ X a'Ka.
aern N

@ This is a convex and differentiable function of . Its minimum can
therefore be found by setting the gradient in « to zero:

0= %K(Ka— Y)+2\Ka

= K[(K+An)a— Y]



Example: kernel ridge regression

@ K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) L Im(K).

@ In this basis we see that (K + Anl)~" leaves Im(K) and Ker(K)
invariant.

@ The problem is therefore equivalent to:
(K+Anh)a—Y € Ker(K)
sa—(K+An)7'Y e Ker(K)
sa=(K+A)7Y +¢ with Ke=0.



Example: kernel ridge regression

@ However, if o/ = o + € with Ke = 0, then:
1B-B13=(a—a) K(a—a')=0,

therefore g = 3.
@ One solution to the initial problem is therefore:

n
?: ZO&,‘K (X,',X) s
i=1

with
a=(K+ihy.



Comparison with "standard" ridge regression

@ Let X the n x p data matrix, K = XX the kernel Gram matrix.
@ In "standard" ridge regression, we have ?(x) — BT x with

A~ —1
B= (XTX+ n/\l> XTy.
@ In "kernel" ridge regression, we have f(x) = 7, a;x x = 37 x
with .
. 1
F=>ax=XTa=X" (xxT n An/) Y.
i—1

@ Of course 3 = 3! (left as exercise: use the SVD decomposition of
X).

@ Standard RR is better when p < n (big data), kernel RR is better
when n < p (high-dimension).



Generalization

@ We learn the function f(x) = >_7_; ;K (x;, X) by solving in « the
following optimization problem, with adequate loss function /:

— A
g S (St o2 St

@ No explicit solution, but convex optimization problem

@ Note that the dimension of the problem is now n instead of p
(useful when n < p)



The case of SVM

@ Soft-margin SVM with a kernel solves:

orpelﬂlgn {Zehmge (Zaj (Xi, X;), ) + A Z ajoiK X,,Xj)} .

7] 1

@ By Lagrange duality we saw that this is equivalent to
n

maxL a Za, ZOZICVJYI}//K(XHX/)

€Rn
@ /1]1

under the constraints:
0<qa;<C, fori=1,...,n
2?21 a;yi=0.

@ This is not a surprise, both problems are also dual to each other
(exercise).



Kernel example: polynomial kernel

For X = (x1, %) € R?, let &(X) = (x2,V2x1x2, x2) € R®;

K(X,X') = Xx2x{2 + 2x1 Xp X} Xb + X2 X2
( 1X1 + X2X2)

%)

’><7



Kernel example: polynomial kernel

0.0
I
00 OO
x2 ° %
.. oo
oo ©® 0 00 x2?

More generally,
K(X,X) = (%X +1)°

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Which functions K(x, x") are kernels?

Definition

A function K(x, x") defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) # and a mapping

¢ X —H,

such that, for any x, x" in X




@ Aninner product on an R-vector space H is a mapping
(f,9) — (f,g), from H2 to R that is bilinear, symmetric and such
that (f,f) > 0 for all f € H\{0}.

@ A vector space endowed with an inner product is called
pre-Hilbert. It is endowed with a norm defined by the inner product

1
as || |l = (£, )2,

@ A Hilbert space is a pre-Hilbert space complete for the norm
defined by the inner product.



Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set X is a function
K : X x X — R symmetric:
V(x,x) e X%, K (x,x)=K(X,x),

and which satisfies, for all N € N, (x4, Xz, .

., xp) € XN et
(ay,a,...,an) € RN:

Za,a, (x;,%;) > 0.
1 j=1

=




Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.




Proof: kernel — p.d.

® (®(X),(X))ga = (& (X)), d (X)) ,
o SN YN aa (@ (x), 0 (x))ps = | SN, @ (%)) 124 >0 .



Proof: p.d. = kernel (1/5)

@ Assume K: X x X — Ris p.d.
@ Forany x € X, let Ky : X — R defined by:

Kx:t— K(x,t).

@ Let H, be the vector subspace of R spanned by the functions
{Kx}xex: i-€. the functions f : & — R for the form:

m
f= Z a,'le.
i=1

forsome me Nand (ay,...,am) € R™.



Proof: p.d. = kernel (2/5)

@ Forany f,g € Hg, given by:

m n
f= Z aiky, 9= Z biKy, .
i=1 j=1

let:

(F,9)3, = > _ aibjK (Xi,y;) .
ij

o (f, g)H0 does not depend on the expansion of f and g because:

m n
Hy = Z aig (xj) = Z bif (yj) -
i1 =

@ This also shows that (., ), is a symmetric bilinear form.
@ This also shows that forany x € X and f € Hy:

(f, K) gy = £ (X) -



Proof: p.d. = kernel (3/5)

@ K is assumed to be p.d., therefore:
1113, = Z a;aK (x;,%j) > 0.
ij=1
In particular Cauchy-Schwarz is valid with (., )5, .

@ By Cauchy-Schwarz we deduce that Vx € X':

1
FO) | = [ (£, Koy | < 11 oK (%)%

therefore || 7|/, =0 = f=0.

@ H, is therefore a pre-Hilbert space endowed with the inner
product (., .)4, -



Proof: p.d. = kernel (4/5)

@ For any Cauchy sequence (f)>0 in (7—[0, (., .)HO), we note that:

VX m ) € XX N2 | (X) = Fo (X) | < [l fm — i l3g K (X, ) .

Therefore for any x the sequence (f,(x)),~, is Cauchy in R and
has therefore a limit. N

@ If we add to Hq the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space (up to a few technicalities, left as
exercice). O



Proof: p.d. = kernel (5/5)

@ Let now the mapping ¢ : X — H defined by:
Xe X, o(x)=Kx.
@ By the reproducing property we have:

V(X,y) € Xz? <¢(X)./ ¢(y)>?-[ - <KX7 Ky>7.[ - K(xvy) . U




Kernel examples

@ Polynomial (on RY):
K(x,x') = (x.x' +1)¢

@ Gaussian radial basis function (RBF) (on RY)

12
o) = oo (25 X1E)
@ Laplace kernel (on R)

K(x,x") = exp (=[x — X'|)
@ Min kernel (on R)

K(x,x") = min(x, x’)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x, x") = (®(x), d(x))




Example: SVM with a Gaussian kernel

@ Training:

n
. 1% — %1
min, E aj — E Qi yiyj exp ( 552

i=1 111

n
st.0<q;<C, and Za,-y,- =0.
p

@ Prediction

Za,exp< I¥ - x,u>



Example: SVM with a Gaussian kernel

Za,exp( _X’||2>

SVM classification plot
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How to choose or make a kernel?

@ | don’t really know...

@ Design features?

@ Adapt a distance or similarity measure?
@ Design a regularizer on f?



Example: design features (Gartner et al., 2003)

ﬁ\. 1b 2a 1d
Gl (€74 Gl x &

K(Gi, Gz) =17 A% . 6,1

Show that the features are the counts of labeled walks of length nin
the graph.

CmCmCmCanC)

A—®
B (0,...,0,2,0,...,0,1,0,...)
@‘e ® t t
(=B (a—a—>—6)




Example: adapt a similarity measure (Saigo et al.,

2004)

CGGSLIAMM-——-WEGV

R R R
C—-—-LIVMMNRLMWEGV

Ssg(m) = S(C,C)+ S(L, L) + S(I,1) + S(A, V) +25(M, M)
+S(W, W)+ S(F,F)+ S(G,G)+ S(V, V) —-g(3) —g(4)

SWsq(X,Y) := max Ssg(m) is not a kernel

KL(E\) (x,y) = Z exp (8ssg(x,y,m)) is akernel
meN(x,y)



Example: design a regularizer

@ Remember f3(x) = x " ®(x), the regularizer is Q(f3) = ||3||?
@ Regularize in the Fourier domain:

ol

A wz - 2
o - [l Tds Kixy) - e (-0

@ Sobolev norms

]
Q(f) = /o f(uPdu  K(x,y)=min(x,y)



ﬂ Introduction

e Learning with kernels

@ Learning molecular classifiers with network information

@ Kernels for biological sequences

e Kernels for graphs

P



Molecular diagnosis / prognosis / theragnosis
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge




Graph based penalty

fa(x) = B x mﬁin R(f3) + AQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weigths.




Graph based penalty

BO)=8Tx  minA(L)+A0(8)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)
Q(B) =D (8- 8)?,

i~j

min A(fs) +AD_(6i = 5)°.

inf




Graph Laplacian
Definition
The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
0

1 0 -1 0
o 1t -1 0 O

L=D-A=| -1 -1 3 -1 0
o o -1 2 -1
0 0 O

11




Graph-based penalty as a kernel

The function f(x) = BT x where 3 is solution of

1
— g T ’ A _
BeRP, glpn =t n - <B Xj YI> + % (ﬁ/

is equal to g(x) = v ®(x) where ~ is solution of

52%}7325( T(D(X/) YI) +/\'Y Y,

and where
d(x)To(x') = x" Kgx’

for Kg = L*, the pseudo-inverse of the graph Laplacian.




0.88 -0.12 0.08 -0.32 -0.52

-0.12 0.88 0.08 -0.32 -0.52

L= 0.08 0.08 028 -0.12 -0.32
-032 -0.32 -0.12 048 0.28

-052 -052 -032 028 1.08



Classifiers
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Other penalties with kernels

d(x)To(x') = x" Kgx’
with:
@ Kg=(c+ L) 1leads to

P
QB) =cd F#+> (6i-5)° .
=1 i~j
@ The diffusion kernel:

Kg = expy(—2tL) .

penalizes high frequencies of /5 in the Fourier domain.




ﬂ Introduction

e Learning with kernels

@ Data integration with kernels
@ Kernels for biological sequences

e Kernels for graphs

P



@ Assume we observe K types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).

@ We saw in the previous part how to make kernels for each type of
data, and learn with kernels

@ Kernels are also well suited for data integration!



@ For akernel K(x,x') = ®(x) " ®(x"), we know how to learn a
function f5(x) = BT ®(x) by solving:

min A(f5) + A%
@ By the representer theorem, we know that the solution is
n
f(x) =Y aiK(x,x),
i=1

where a € R" is the solution of another optimization problem:

. T . .
min R(Ka) +  a' Ka = min Jk (o).



The sum kernel

@ Let Ki,..., Ky be M kernels corresponding to M sources of data
@ Summing the kernel together defines a new "integrated" kernel

Theorem

Learning with K = "M, K; is equivalent to work with a feature vector
®(x) obtained by concatenation of ®4(x), ..., ®y(x). It solves the
following problem:

M M
min R (Z fﬂ;) +AD 1B
i=1 i=1

-

Proof left as exercise.



Example: protein network inference

Vol. 20 Suppl. 12004, pages i363-i370
DO; 10.1098/bioinformatics/bth910

b Protein network inference from multiple

Y. Yamanishi’*, J.-P. Vert? and M. Kanehisa'

mgﬁ genomic data: a supervised approach
3

"Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan and ?Computational Biology group, Ecole des Mines de

Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Kjoc (Localization)

Kphy (Phylogenetic profile)

Kexp + Kppi + Kioc + Kphy
(Integration)

True positive

0z

Expression

&~ Protein interaction

False positive



Multiple kernel learning (Lanckriet et al., 2004)

@ Perhaps a more clever approach is to learn a weighted linear
combination of kernels:

M
Ky=> niKi with 7;>0,
i=1
@ MKL learns the weights with the predictor by solving:

mgr) Jk, (o) suchthat Trace(K,) = 1.
m,

@ The problem is jointly convex in (n, &) and can be solved efficiently

@ The output is both a set of weights », and a predictor
corresponding to the kernel method trained with kernel K;,.



Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

[ A statistical framework for genomic data fusion

o] Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini®,
1 Michael I. Jordan? and William Stafford Noble® *
|

’Depanment of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
SDepartment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, 4Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA
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MKL revisited

Theorem (Bach et al., 2004)

MKL solves the following problem:

M M
min R (Z fﬁf) + A8l
i=1 i=1

3, seenrlay

@ This is an instance of (kernelized) group lasso (more later...)
@ This promotes sparsity at the kernel level

@ MKL is mostly useful if only a few kernels are relevant; otherwise
the sum kernel may be a better option.
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Kernels for Biological
Sequences
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Short history of genomics

1977 :

1866 :
1909 :
1944 :
1953 :
1966 :
1960-70 : Genetic engineering

1982 :
1990 :
2003 :

Laws of heredity (Mendel)

Morgan and the drosophilists

DNA supports heredity (Avery)
Structure of DNA (Crick and Watson)
Genetic code (Nirenberg)

Method for sequencing (Sanger)
Creation of Genbank

Human genome project launched
Human genome project completed
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Chromosomes

HUMAN CHROMOSOMES

b)

XXX XK XK AR
TEa | ¥ AR LN KK X

10 1

xh % X¥ K’l\ XX AR

17 18

XX XA XX Xx B2
19 20

21 22 x23y

(3}
Telomere



Chromosomes and DNA

Chromosome
Chromatis Chrarestid

Nuceus




Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)




The double helix




Central dogma

LM@E&S@W DNA
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Amino Acid



DNA =4 Jetters (ATCG)

‘:j‘IE: RNA =4 letters (AUCG)

VR
A C  mRNA 3

U C A anticodon
A G U codon

>

2nd base in codon

UlcTATG Protein = 20 letters (amino acids)

e | Ser | Tyr

5 U r:': ::: STOP | STOP g E

° Leu | Ser | STOP | Trp G g

© Leu | Pro | His | Ag | U | %

£ C| L Pro | His | Ag | C 5

] Leu | Pro | Gla | Ag | A a

s teu | Pro | Gla | Ag | G g

3 fle | The AMu- :rr g S . .

S A e || A sl C 1 a d
AR R amino aci
Val ["Aa [Asp [ Gy [ U

G Val | Ala | Asp Gly c

val | Ala | Glu | Gy | A —
val | Ala | 6w |Gy | G —

The Genetic Code .
3 nucleotides




Human genome project

@ Goal : sequence the 3,000,000,000 bases of the human genome
@ Consortium with 20 labs, 6 countries
@ Cost : about 3,000,000,000 USD




we study "the" human genome

THI
HUMAN
GENOMI

@ About 25,000 genes only (representing 1.2% of the genome)
@ Automatic gene finding with graphical models
@ 97% of the genome is considered “junk DNA”
@ Superposition of a variety of signals (many to be discovered)




2003-2014: towards personalized genomics

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

$1K
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013




Protein sequence

Primary protein structure
sequ=nca of & chain of BminG acids

Amino

Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K: Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine




Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
sequencing programs)

@ Need for algorithms to compare, classify, analyze these
sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...




Example: supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQORQQQOQNQCQLQONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.

A\




Supervised classification with vector embedding

The idea
@ Map each string x € X to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)




Kernels for protein sequences

@ Kernel methods have been widely investigated since Jaakkola et
al’s seminal paper (1998).
@ What is a good kernel?
e it should be mathematically valid (symmetric, p.d. or c.p.d.)

e fast to compute
e adapted to the problem (give good performances)




Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
e Pairwise, motif kernels




Kernel engineering for protein sequences
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e Physico-chemical kernels
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e Mutual information kernel
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
e Physico-chemical kernels
e Spectrum, mismatch, substring kernels
e Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
e Mutual information kernel
e Marginalized kernel
@ Derive a kernel from a similarity measure
o Local alignment kernel
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?




Vector embedding for strings

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?

| A,

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence

@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

e Fourier transforms (Wang et al., 2004)
e Autocorrelation functions (Zhang et al., 2003)
1 U

I = i iy hihi+j

i=1




Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

& (x) = (Pu (X)) yeax

where ¢, (x) can be:
@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)




Example: spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of

X = CGGSLIAMMWEGV
is:
(CGG, GGS, GSL, SLI,LIA,IAM,AMM, MMW, MWF, WEG, FGV) .

@ Let ¢, (x) denote the number of occurrences of uin x. The
k-spectrum kernel is:

K(xX) =) o, (x)d,(X) .

uc Ak




Example: spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over | A|¥ terms,
but at most | x| — k + 1 terms are non-zero in ¢ (X) —
Computation in O(| x|+ | x"|) with pre-indexation of the strings.

@ Fast classification of a sequence x in O (| x|):

| x| —k+1

f(X) =w-o (X) = Z Wy Py (X) - Z Wi... Xipk—1-
u i=1

| A\

Remarks
@ Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification.
@ Variants allow matching of k-mers up to m mismatches.

\




Example 2: Substring kernel (1/11)

@ For1 < k < ne N, we denote by Z(k, n) the set of sequences of
indices i = (i1, ...,ik),With1 <y <hb < ... <l <n.

@ For astring x = xy ... x, € X of length n, for a sequence of indices
i € Z(k, n), we define a substring as:

X(i) = Xj Xy - - - Xj -

@ The length of the substring is:

1) = i — iy + 1.




Example 2: Substring kernel (2/11)

ABRACADABRA

@ i=(3,4,7,8,10)
@ X (i) =RADAR
@ /(i)=10-3+1=28




Example 2: Substring kernel (3/11)

The kernel

@ Let k e Nand )\ € Rt fixed. Forallu € A*, let &, : ¥ — R be
defined by:

VX e X, oy (x)= > PN
i€Z(k,|x|): x(i)=u

@ The substring kernel is the p.d. kernel defined by:

V(X,X) € X% Kix(x,X) =D oy(x)
uc Ak




Example 2: Substring kernel (4/11)

u |ca ct at ba bt cr ar br
dyfca) |22 X X2 0 0 0 0 0
dycar) [ A2 0 0 0 0 A A 0
dubat) [0 0 X A X 0 0 0
dybar) [ 0 0 0 X2 0 0 A )\

K (cat,cat) = K (car,car) = 2)\* + \®
K (cat,car) = \*
K (cat,bar) =0




Example 2: Substring kernel (5/11)

Kernel computation

@ We need to compute, for any pair x,x’ € X, the kernel:

X) =" oy (X) by (X)

uc Ak

Y YT e

uc Ak ix(i)=ui’:x'(i")=u

@ Enumerating the substrings is too slow (of order | x |k).




Example 2: Substring kernel (6/11)

Kernel computation (cont.)
@ For u € AX remember that:

by (X) =

@ Let now:
Yy (x) =

Z N1
i:x(i)=u
Z Al XI=i+1

i:x(i)=u




Example 2: Substring kernel (7/11)

Kernel computation (cont.)

Let us note x (1,/) = xq ... X;. A simple rewriting shows that, if we note
a € Athe last letter of u (u = va):

dya(X)= > Wy (x(1,j-1))A,
Jel,|x[]:xj=a

and
Uya(X) = Y Wy (x(1,j— 1) AT+

jelt [ x[ly=a




Example 2: Substring kernel (8/11)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a € A), then:

@ If the last letter of u is not a:

oy (xa) = oy (x),
Yy (xa) = AV, (x).

@ If the last letter of uis a (i.e., u = vawith v e A" ):

byg(xa) = by (X) + AWy (X) ,
Vya(xa) = AWya(X)+ AWy (X) .




Example 2: Substring kernel (9/11)

Kernel computation (cont.)
Let us now show how the function:

B (X, X) = ) Wy (x) Wy (X)

ueAn

and the kernel:

Kn (x,X) == )~ &y (x) dy (X')

ucAn
can be computed recursively. We note that:

By (x,X') = Ko (x,x') =0 forall x,x’
B (x,X') = K (x,X) =0 if min(|x|,|x|) <k




Example 2: Substring kernel (10/11)

Recursive computation of B,
B, (xa,x’)

= > Wy (xa) Wy (X)

ucAn
=AW ()W (X)) + A ) Wy (X) Wya (X)
ueAn veAn—1
= A\B; (x,x) +

A Wy (x) > (X (1, — 1)) A1+

veAN-1 Jje[,|x’ |]:xj’:a

=ABo(x,X) + D Bpg (XX (1,) 1)) AX¥ 12

jelt|x (1=




Example 2: Substring kernel (10/11)

Recursive computation of K,
Kn (xa, x’)

= ) by (xa)dy (X)

ueA"

=) du(X)Pu (X)+ A D Wy (X)Dya(X

ueAn veAn—1
= Kn (x,X') +

AY lliv(x)( > lllv(x’(1,j1))>\)
J

veAn-1 i€[1,] X’ |]:x/=a
j

= \Kj, (X,X/) + A2 Z B (X,X/ (1 = 1))

Jell,|x' []:x/=a




Summary: Substring indexation

@ Implementation in O(|x| + [x’|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

@ Implementation in O(|x| x [x’[) in memory and time for the
substring kernels

@ The feature space has high dimension (|.4|¥), so learning requires
regularized methods (such as SVM)




Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (X) = (S(X,X;))y.cp




Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (X) = (S(X,X;))y.cp

Examples
This includes:
@ Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
@ Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel

designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Py,0 € © C R™} C M7 (X)




Fisher kernel

@ Fix a parameter ¢y € © (e.g., by maximum likelihood over a
training set of sequences)

@ For each sequence x, compute the Fisher score vector:

g, (X) = Vg log Py(x)|o=, -
@ Form the kernel (Jaakkola et al., 1998):

K (x,X) = P4, (%) 1(60) " @, (x) |

where /(6p) = Eg, [®g,(X)Pg,(X) "] is the Fisher information matrix.

W




Fisher kernel properties

@ The Fisher score describes how each parameter contributes to
the process of generating a particular example

@ The Fisher kernel is invariant under change of parametrization of
the model

@ A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).

@ A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).




Fisher kernel in practice

@ ®y (x) can be computed explicitly for many models (e.g., HMMs)
@ /(o) is often replaced by the identity matrix

@ Several different models (i.e., different 6y) can be trained and
combined

@ Feature vectors are explicitly computed




Mutual information kernels

@ Chose a prior w(df) on the measurable set ©
@ Form the kernel (Seeger, 2002):

K(x,x') = - Po(X)Pa(X" Y w(d9) .

@ No explicit computation of a finite-dimensional feature vector
° K(X,X') =< ¢(X),d(X") >1,w) With

¢ (%) = (Po (X))geo -




Example: coin toss

@ Let Py(X =1)=20and Py(X =0) =1 — 6 a model for random
coin toss, with 6 € [0, 1].

@ Let df be the Lebesgue measure on [0, 1]
@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =6(1-0)>
Py(xX') =62(1-0),

ICI
31— .
/ ’ 0 8 280



Context-tree model

A context-tree model is a variable-memory Markov chain:

n
Ppo(X) = Pp g (X1...Xp) H Ppo (Xi | Xi—p ... Xi_1)
i=D+1

@ D is a suffix tree
@ 9 € P is a set of conditional probabilities (multinomials)




Context-tree model: example

P(AABACBACC) = P(AAB)0a5(A)04(C)0c(B)0acs(A)0a(C)oc(A) .



The context-tree kernel

Theorem (Cuturi et al., 2004)

@ For particular choices of priors, the context-tree kernel:

K (x,x') = ;/oezv Pp o(X)Pp.o(X")W(d6| D)7 (D)

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.




Marginalized kernels

@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability
Px (dy).

@ Let Kz be a kernel for the complete data z = (x, y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Kin et al., 2002):

K (% X') := Epy(ay) <Py (ay) Kz (2:2)

= [ [ K= (), (.y) Peev) Pe ()




Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore there exists a Hilbert space # and
¢z : Z — H such that:

KZ(ZZ)—<¢Z d)g( )>’H
@ Marginalizing therefore gives:
Ky (%,X) = Epy(ay)xp, (ay) Kz (2, Z')

= EPx(dy)x (dy <(DZ ¢Z( )>7‘[
= <EPx(dy q)Z( )7EPx(dy’)¢Z ( )>’H ’

therefore Ky isp.d. on . O



Example: HMM for normal/biased coin toss

0.85
0.05
0.5
01 @ ° qumal (N) and biased (B)
0.1 coins (not observed)
05 @ 0.05

@ Observed output are 0/1 with probabilities:
7(0|N) =1 —=(1|N) = 0.5,
7©(0|B) =1 —=(1|B) =0.8.

@ Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011



1-spectrum kernel on complete data

@ If both x € A* and y € §* were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

Kz (Z, Z/) = Z Ng s (2) Na,s (2),

(a,8)eAxS

where ny s (x,y) fora= 0,1 and s = N, B is the number of
occurrences of s in y which emit ain x.

@ Example:

Z2=1001011101111010010111001111011,
Z'=0011010110011111011010111101100101,

Kz (z,2)) =no(z)no (Z') + no (2) no (Z') + ny (2) ny (Z') + ny (2) ny (2
=7x154+9%x12+13 x6+2x1=293.



1-spectrum marginalized kernel on observed data

@ The marginalized kernel for observed data is:

Ke (x,X) = Y Kz((x,y),(xy)P(yx) P (yIX)

y,y'eS*
fry Z ¢a7s (X) (Da7s (X/) 5
(a,s)eAXS
with
Dys (X Z P(y|x) nas(x,y)

yes*



Computation of the 1-spectrum marginalized kernel

Pas (X ZPV’x ) Nas (X, Y)

yes*

=Y P(ylx) {Zé Xj,a) 8 (i, S }
yesS*

=Y d(x.a) { > P(VX)5(yf,S)}
i=1 yes*

=3 5 (x.a) P(y; = six).
i=1

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!



HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand




HMM example (protein)




SCFG for RNA sequences

e S+ SS
@ S— aSa
@ S— as
e S—~a

Marginalized kernel (Kin et al., 2002)

@ Feature: number of occurrences of each (base,state) combination
@ Marginalization using classical inside/outside algorithm




Marginalized kernels in practice

@ Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

@ Kernels for RNA sequences based on SCFG (Kin et al., 2002)

@ Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

@ Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)




Marginalized kernels: example

PC2
A set of 74 human tRNA

T sequences is analyzed using
jﬁ” a kernel for sequences (the
e o + second-order marginalized
* Menn. kernel based on SCFG). This
¢ set of tRNAs contains three
oo classes, called Ala-AGC
© (white circles), Asn-GTT
° (black circles) and Cys-GCA
o 3 (plus symbols) (from Tsuda
° et al., 2003).
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Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWEGV
Xo = CLIVMMNRLMWE' GV

Find a good alignment:

CGGSLIAMM-——-WEGV

R
C-—-LIVMMNRLMWEGV




Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RAxA
@ a gap penalty functiong: N — R

Any alignment is then scored as follows

CGGSLIAMM-———-WEFGV

e R e
C---LIVMMNRLMWEGV

ss4(m) = S(C, C) + S(L, L) + S(I, I) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)




Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ; er}q?}y) Ss,g().

@ It is symmetric, but not positive definite...




Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := ; g?)gy) Ss,g().

@ It is symmetric, but not positive definite...

| \

LA kernel
The local alignment kernel:

KD xy)= > exp(Bssg(x.y,)),
wen(x,y)

is symmetric positive definite.

\




LA kernel is p.d.: proof (1/11)

Lemma

@ If Ky and K, are p.d. kernels, then:

Ki + K,
K Kg, and
cKq, forc > 0,

are also p.d. kernels

@ If (Ki);~¢ is a sequence of p.d. kernels that converges pointwisely
to a function K:

v (x,x') € X%, K(x,X)= lim K; (x,x'),

then K is also a p.d. kernel.




LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n x n positive semidefinite matrices. By diagonalization
of A:

Aij = Z fo(1)fo(f)
p=1

for some vectors fi, ..., f,. Then, for any a € R™:
n n n
Z Oz,'Osz,'ij,',j = Z Z Oz,'fp(l')ajfp(j)B,"j > 0.
ij=1 p=1ij=1

The matrix C;; = A; ;B ; is therefore p.d. Other properties are obvious
from definition. O




LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = Ay x A». Let K; be a p.d. kernel on X4, and K> be a p.d.
kernel on X>. Then the following functions are p.d. kernels on X’:
@ the direct sum,

K ((x1,X2), (Y1,Y2)) = K1 (X1,¥1) + K2 (X2,¥2),

@ The direct product:

K ((X1,%2), (Y1,Y¥2)) = Ki (X1, Y1) K2 (X2, ¥2) -




LA kernel is p.d.: proof (4/11)

Proof of lemma
If K; is a p.d. kernel, let &4 : X; — H be such that:

K1 (X1,¥1) = (1 (X1), D1 (Y1))3 -
Let ® : Xy x Xo> — H be defined by:
® ((x1,X2)) = b1 (x1).
Then for x = (X1,X2) and 'y = (y1,Y2) € X, we get

(D ((x1,%2)), P ((Y1,¥2)) 3 = K1 (X1,X2),

which shows that K (x,y) := Kj (X4,Y1) is p.d. on X x X>. The lemma
follows from the properties of sums and products of p.d. kernels. O

v




LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X, and let P (X') be the set of finite subsets
of X. Then the function Kp on P (X') x P (X) defined by:

VA BEP(X), Kp(AB):=> > K(xy)
XeAyeB

is a p.d. kernel on P (X).




LA kernel is p.d.: proof (6/11)

Proof of lemma

Let  : X — H be such that
K(X,y) = (®(x),®(Y))-

Then, for A,B € P (X), we get:

Ke(AB) = > (®(x),®(Y)y

xcAyeB
~(Teo0.Tom)
XeA yeB U

= (®p(A), ®p(B))y

with ®p(A) :=> ;4 ®(x). O




LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let Ki and K> be two p.d. kernels for strings. The convolution of Kj
and Ko, denoted K x K>, is defined for any x, x’ € X by:

Kix Ka(x,y) = D Ki(X1,¥1)Ka(X2, Y2).

X1Xa=X,Y1Y2=Y

V.

If Ky and K, are p.d. then Ky x K> is p.d.. l




LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x € X, let

R(X)={(X1,X2) e ¥ x X : X =X1Xo} C X X X.
We can then write

KixKe(xy) = > > Ki(xq,¥1)Ka(X2, Y2)
(x1,%2)€R(X) (v1,y2)ER(Y)

which is a p.d. kernel by the previous lemmas. [




LA kernel is p.d.: proof (9/11)

3 basic string kernels

@ The constant kernel:

Ko (x,y) :=1.

@ A kernel for letters:

- (o if |[x|#1where |y|#1,
Ka "’ (x,Y) .—{ exp (BS(x,y)) otherwise.

@ A kernel for gaps:

K (x,y) = exp [8(g (Ix]) + g (| x]))] -




LA kernel is p.d.: proof (10/11)

@ S: A% — Ris the similarity function between letters used in the
alignment score. Kéﬁ) is only p.d. when the matrix:

(exp (Bs(a, b))) a,p)c 42

is positive semidefinite (this is true for all 5 when s is conditionally
p.d..

@ g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

(®)
KQ

(x,y) = exp (Bg (Ix1)) x exp (B9 (Y1) -




LA kernel is p.d.: proof (11/11)

Lemma

The local alignment kernel is a (limit) of convolution kernel:

s (n—1)
KR =3 Kox (K« k)T 7w k)« o
n=0

As such itis p.d..

Proof (sketch)

@ By induction on n (simple but long to write).
@ See details in Vert et al. (2004).




LA kernel computation

@ We assume an affine gap penalty:

9(0) =0,
gn) =d+e(n—1)sin>1,

@ The LA kernel can then be computed by dynamic programming
by:

KD (x,y) = 1+ Xo(|x[, |y]) + Ya(Ix], [y]) + M(|x], y]),

where M(i, ), X(i, ), Y(i,)), Xo(i,]), and Ya(i,j) for 0 < i < |x|,
and 0 < j < |y| are defined recursively.




LA kernel is p.d.: proof (/)

Initialization




LA kernel is p.d.: proof (/)

Recursion

M(i.j) = exp(BS(x y) |1+ X(i =1, = 1)
+Y(i—1,j—1)+M(i—1,j—1)],

X(i,)) = exp(BA)M(i —1.j) + exp(Be)X(i — 1.)),

Y(ij) = exp(Bd) (i, — 1)+ X(i,j = 1)]
+exp(Be)Y(i,j — 1),

Xelirf) =M =1,j) + Xe(i = 1.)),

Yoliof) = M(i,j = 1)+ Xp(i,j = 1) + Ya(i.j = 1).




LA kernel in practice

@ Implementation by a finite-state transducer in O(|x| x |[X'|)
0:0/1

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Remote homology

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison




SCOP database

Fold
Superfamﬂyqj&

Family
Renot e honol ogs Cl ose horml ogs



A benchmark experiment

@ Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.




Difference in performance

v 1 1 1 1

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ------
SVM-Fisher -8 T

No. of families with given performance

ROC50

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).



String kernels: Summary

@ A variety of principles for string kernel design have been
proposed.

@ Good kernel design is important for each data and each task.
Performance is not the only criterion.

@ Still an art, although principled ways have started to emerge.
@ Fast implementation with string algorithms is often possible.
@ Their application goes well beyond computational biology.




ﬂ Introduction
e Learning with kernels
e Kernels for biological sequences

e Kernels for graphs
@ Motivation
@ Explicit computation of features
@ Graph kernels: the challenges
@ Walk-based kernels
@ Applications

e Learning with sparsity

@ Reconstruction of regulatory networks



Kernels for graphs
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Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).



Image retrieval and classification

From Harchaoui and Bach (2007).



Our approach




Our approach

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).




Our approach

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).

@ Use a linear method for classification in .
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The approach

|




The approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.




The approach

@ Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
© Use an algorithm for regression or pattern recognition in RP.




Example

2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

| EENEEEEEEEEE EEEEEEN N

P
Mo 99

@ Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...




Challenge: which descriptors (patterns)?

@ AT //\\ NN N

ﬁ/ﬂ

@ Expressiveness: they should retain as much information as
possible from the graph

@ Computation : they should be fast to compute

@ Large dimension of the vector representation: memory storage,
speed, statistical issues

C

—0

-

K




Indexing by substructures

AN

BT

Xﬂa/

@ Often we believe that the presence substructures are important
predictive patterns

@ Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures

@ However, detecting the presence of particular substructures may
be computationally challenging...




Subgraphs

Definition
A subgraph of a graph (V, E) is a connected graph (V’, E’) with
Vi cVand E' CE.

<] 22392
Lo e fode Lo
S Soedlls




Indexing by all subgraphs?




Indexing by all subgraphs?
OO
(®(0,...,0,1,0,...,0,1,0,...)
4 1

@®) @
o6

Computing all subgraph occurrences is NP-hard. l




Indexing by all subgraphs?

g,ge ..... O,fl,O ..... 0,1,0 )
(@&®) @
o6

Computing all subgraph occurrences is NP-hard. \

@ The linear graph of size nis a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

O

<




Definition

@ A path of a graph (V, E) is sequence of distinct vertices
Vi,...,vp € V(i#j = Vv; # vj) suchthat (v;, vi 1) € E for
i=1,....n—1.

@ Equivalently the paths are the linear subgraphs.
: | NONON




Indexing by all paths?

B—®
(0,...,0,1,0,...,0,1,0,...)

@‘Q ® t t
(—®) (6—6e—06)




Indexing by all paths?

Q‘@ ® (0....0,1,0,...,0,1,0,...)
B—®A t !

Computing all path occurrences is NP-hard. l




Indexing by all paths?

Q‘@ ® (0....0,1,0,...,0,1,0,...)
B—®A t !

Computing all path occurrences is NP-hard. l
Same as for subgraphs. O l




Indexing by what?

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)

@ all path up to length k (Openeye fingerprint, Nicholls 2005)
@ all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

@ all frequent subgraphs in the database (Helma et al., 2004)




Example : Indexing by all shortest paths

(a—Ba—E—6—0))

@‘Q 5 (o,...,o,2,o,...,ci,1,o,...)
BF—®A ! !

(&>—a] (e—e—6—6)




Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.




Example : Indexing by all subgraphs up to k vertices

(® (0, . 010 ,0,1,0,

-




Example : Indexing by all subgraphs up to k vertices

(»)
Gl (®) (0, . 010 0,1,0
E-2)

B

Properties (Shervashidze et al., 2009)

@ Naive enumeration scales as O(n¥).

@ Enumeration of connected graphlets in O(nd*~1) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.




@ Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)

@ Several ideas to reduce the set of substructures considered

@ In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered. )




0 Introduction
9 Learning with kernels
e Kernels for biological sequences

@ Kernels for graphs

@ Graph kernels: the challenges

e Learning with sparsity

@ Reconstruction of regulatory networks






@ Represent implicitly each graph x by a vector ®(x) € #H through
the kernel
K(x,x") = &(x) T o(x').




@ Represent implicitly each graph x by a vector ®(x) € #H through
the kernel
K(x,x") = &(x) T o(x').

@ Use a kernel method for classification in .




Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

VG1,GQ€X, dK(G1,GQ):O — 61262.

Equivalently, ®(Gy) # ®(Gy) if Gy and G, are not isomorphic.




Expressiveness vs Complexity
Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:
VG1,GQ€X, dK(G1,GQ):O:> 61262.

Equivalently, ®(Gy) # ®(Gy) if Gy and G, are not isomorphic.

| A\

Expressiveness vs Complexity trade-off

@ If a graph kernel is not complete, then there is no hope to learn all
possible functions over X': the kernel is not expressive enough.

@ On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.

@ Can we define tractable and expressive graph kernels?




Complexity of complete kernels

Proposition (Géartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.




Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

| A\

Proof

@ For any kernel K the complexity of computing dk is the same as
the complexity of computing K, because:

dk(G1, Go)? = K(G1, Gi) + K(Gz, Go) — 2K(Gy, Go) -

@ If Kis a complete graph kernel, then computing dk solves the
graph isomorphism problem (dx(Gy, Go) = 0iff Gy ~ Gp). O




Subgraph kernel

@ Let (\g)gcr @ set or nonnegative real-valued weights
@ For any graph G € X, let

VHe X, o&u(G)=|{G isasubgraphof G: G'~ H}|.
@ The subgraph kernel between any two graphs G; and G, € X' is
defined by:

Ksubgraph(Git, G2) = Y An®r(Gr)op(Gz)
Hex




Subgraph kernel complexity

Proposition (Gértner et al., 2003)

Computing the subgraph kernel is NP-hard.




Subgraph kernel complexity

Proposition (Gértner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
@ Let P, be the path graph with n vertices.

@ Subgraphs of P, are path graphs:
&(Pp) =nep, +(n—1)ep, +... +€p,.

@ The vectors ®(Py),...,d(Py,) are linearly independent, therefore:
n
ep, = Z a;i®(P),
i=1

where the coefficients «; can be found in polynomial time (solving
a n x ntriangular system).




Subgraph kernel complexity

Proposition (Gértner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)

@ If Gis a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if (G) e, > 0,
i.e.,

q)(G)T <Z oqd)(P,-)) = ZaiKsubgraph(G, P;) > 0.
p

i=1

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete. O




Path kernel

Q‘Q ® (0....,0,1,0,...,0,1,0,...)
BF—®A i i

The path kernel is the subgraph kernel restricted to paths, i.e.,

Koatn(Gr, G2) = > Aq®(Gr)PH(Ge)
Hep

where P C X is the set of path graphs.




Path kernel

Q‘@ ® (0....,0,1,0,...,0,1,0,...)
B—®A t !

The path kernel is the subgraph kernel restricted to paths, i.e.,

Koatn(Gr, G2) = > Aq®(Gr)PH(Ge)
Hep

where P C X is the set of path graphs.

Proposition (Gértner et al., 2003)
Computing the path kernel is NP-hard.




Summary

Expressiveness vs Complexity trade-off

@ ltis intractable to compute complete graph kernels.
@ |t is intractable to compute the subgraph kernels.

@ Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

@ One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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aks

Definition
@ A walk of a graph (V, E) is sequence of vy, ..., vn € V such that
(v,-,v,-+1)eEfori:1 ..... n—1.

@ We note Wn(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
Lo oo e o
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Walks +# paths




Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w e W(G).

@ Let the feature vector ®(G) = (®s(G))4s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weWw(G)




Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w e W(G).

@ Let the feature vector ®(G) = (®s(G))4s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weWw(G)

@ A walk kernel is a graph kernel defined by:

Kuaik(G1, G2) = > ©5(Gy)®

ses




Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.




Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with \g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).




Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with \g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gy, Go) = P(label(W;) = label(Ws)),

where W; and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = pength(w) for 3 > 0. In that case the feature space is of

infinite dimension (Gartner et al., 2003).




Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.




Product graph

Definition

Let Gy = (W4, E1) and G, = (V», E) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

QV={(vi,v)eVixW
Q E=

{((vi, ), (V{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

. vy and v, have the same label} ,

1 a b 1b 2a 1d
o—0O O
2 c 3c 3e
la 2b t 2d :
3 4 d e
4c 4e

Gl (€7 Gl x &



Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wo € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wy(Gy x Go).




Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wo € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wy(G; x Gp).

Corollary

Kuak(Gr1, Go) = Y _ ©5(Gr)®s(Gz)

SES

= > e, (W1)Aa, (W) 1(I(wy) = I(wz))

(w1,w2)EW(G1)xW(Gr)

= Z AGx G, (W) .

weW(Gi x Ga)




Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have Ag, «g,(w) = 1 if the length
of wis n, 0 otherwise.

@ Therefore:

Knth—order (G1, G2) = Z 1.
WEWh(GyxGp)

@ Let A be the adjacency matrix of Gy x Go. Then we get:

Knth order G1 GZ Z [An],j = 1TAn1
i

@ Computation in O(n|Gy||Gz|d;dz), where d; is the maximum
degree of G;.




Computation of random and geometric walk kernels

@ In both cases \g(w) for awalk w = v; ... v, can be decomposed
as:

Aa(Vy ... vp) = )\i(v1)H)\’(v;_1, V).

@ Let A, be the vector of \'(v) and A; be the matrix of (v, v/):

n

Kwaik(G1, Gz) Z > Nw) [N (vie1,w)

n=1weWn(G1xGy) i=2
= NAFT

n=0
=N (I—A) 1

@ Computation in O(|G1[3|Gz|?)




Extensions 1: label enrichment

Atom relabebling with the Morgan index

1 1 2 2 4 5
1 o1l 2 o1l 4 03
No Morgan Indices  O1 Order 1indices o1 Order 2 indices 03

@ Compromise between fingerprints and structural keys features.
@ Other relabeling schemes are possible (graph coloring).

@ Faster computation with more labels (less matches implies a
smaller product graph).




Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is awalk w = vy ... v, with v; = v;, » for some 1.

@ (O —@ VNon-tottering
OO0 @

@ (@ rTottering

@ Tottering walks seem irrelevant for many applications

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).




Computation of the non-tottering walk kernel (Mahé et

al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

@ Normal walk kernel on the augmented graph (which is always a
directed graph).
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Example: Tree-like fragments of molecules




Computation of the subtree kernel

@ Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.

@ Recursion: if 7(v, n) denotes the weighted number of subtrees of
depth n rooted at the vertex v, then:

T(v,n+1)= Y]] Mv.V)T(V,n),

RCN(v)V'eR

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset
@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compouunds: 125 +/ 63 -

10-fold cross-validation accuracy

Method | Accuracy
Progol1 81.4%
2D kernel 91.2%
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Screening of inhibitors for 60 cancer cell lines.



Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

Performance comparison on Corel14

0.12 :
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e
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Kernels



Summary: graph kernels

@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns

@ They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick

@ However: using kernels makes it difficult to come back to patterns
after the learning stage




ﬂ Introduction
e Learning with kernels
e Kernels for biological sequences
e Kernels for graphs
e Learning with sparsity
@ Feature selection
@ Lasso and group lasso

@ Segmentation and classification of genomic profiles
@ Learning molecular classifiers with network information (bis)

G Reconstruction of regulatory networks
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@ In feature selection, we look for a linear function f(x) = x 3,
where only a limited number of coefficients in 5 are non-zero.
@ Motivations
e Accuracy: by imposing a constraint on 3, we increase the bias but

decrease the variance. This should be helpful in particular in high
dimension.

e Interpretation: simpler to understand and communicate a sparse
model.

e Implementation: a device based on a few markers can be cheaper
and faster.

Of course, this is particularly relevant if we believe that there exist good
predictors which are sparse (prior knowledge).

.



Best subset selection

Q(B) = ||1Bllo = number of non-zero coefficients

@ In best subset selection, we must solve the problem:
minR(fs) st ||Bllo <k

fork=1,...,p.
@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ This is usually a NP-hard problem, feasible for p as large as 30 or
40




Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

@ Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

@ Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop

@ Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).




Filter methods

@ Associate a score S(i) to each feature /, then rank the features by
decreasing score.
@ Many scores / criteria can be used

@ Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)

e Other performance criteria of the ERM restricted to a single feature
(AUGC, ...)

e Information theoretical criteria (mutual information...)




Filter methods

@ Associate a score S(i) to each feature /, then rank the features by
decreasing score.
@ Many scores / criteria can be used

@ Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)

e Other performance criteria of the ERM restricted to a single feature
(AUGC, ...)

e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success




Filter methods

@ Associate a score S(i) to each feature /, then rank the features by
decreasing score.
@ Many scores / criteria can be used

@ Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)

e Other performance criteria of the ERM restricted to a single feature
(AUC, ...)

e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success

@ Selection of redundant features

@ Some variables useless alone can become useful together




Measuring dependency: correlation coefficients

@ Assume X and Y take continuous values
@ (X1,Y1),...,(Xn, Yn) the n expression values of both genes

@ Pearson correlation:
_cov(X,Y) _ SU(X = X)(Y; - Y)

XY= X2 (Y- VP

@ Spearman correlation: similar but replace X; by its rank.




lllustration

Spearman correlation=1 Spearman correlation=0.35
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Limit of correlations




Mutual information

X:v)= //pxy)l g(ﬁ?)(()pj(/;)) oxay

@ /(X;Y)>0
@ /(X;Y)=0ifand only if X and Y are independent
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Wrapper methods

@ A greedy approach to

min R(f3) st ||Bllo <k

@ For a given set of seleted features, we know how to minimize R(f)

@ We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)




Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit




Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit




Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features
@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

Other variants

Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move




0 Introduction

9 Learning with kernels

e Kernels for biological sequences
@ Kernels for graphs

e Learning with sparsity

@ Lasso and group lasso

G Reconstruction of regulatory networks



@ The following problem is NP-hard:
min R(fz) st ||Bllo <k

@ As a proxy we can consider the more general problem:
min R(f3) s.t. Q(B) <«

where Q() is a penalty function that leads to sparse solutions
and to computationally efficient algorithms.




LASSO regression (Tibshirani, 1996)

Basis Pursuit (Chen et al., 1998)

p
QB)=18l1=>)_18
i=1

@ LASSO or BP:

n p
min R(fs) =Y (fs(x) —yi)> + 1> | Bl (3)
i=1 i=1
@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all X’s simultaneously (regularization path)



LASSO regression example
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2




Generalization: Atomic Norm (Chandrasekaran et al.,
2012)

Definition
Given a set of atoms A, the associated atomic norm is

|x]|.4a =inf{t >0 | x € tconv(A)}.

NB: This is really a norm if A is centrally symmetric and spans RP

Primal and dual form of the norm

acA acA

Ix[la = inf{ZCaIXZana, ca>0,VaeA}

x4 = sup(a,x)
acA




Examples

@ Vector /1-norm: x € RP — ||x||1
A={+te | 1<k<p}
@ Matrix trace norm: Z € R™*™2 — || Z||,. (sum of singular value)

A={ab" : ac R™ beR™ |al=|bl=1}




Group lasso (Yuan and Lin, 2006)

Forx e R°Pand G = {g1,...,9g} a partition of [1, p]:

Ixll12 =" II%gll2
geg
is the atomic norm associated to the set of atoms

Ag = J{ueRP : supp(u) =g, ul>=1}
geg

g={{1.2},{3}}

Ix 112 = 1031, %2) "2 + I %]l

_f2 2 2
= VXX /X3




Group lasso with overlaps

How to generalize the group lasso when the groups overlap?
@ Set features to zero by groups (Jenatton et al., 2011)

[x 2= Z I Xg |2

geg
@ Select support as a union of groups (Jacob et al., 2009)

X [.4g
see also MKL (Bach et al., 2004)

1 1

g= {{1’2}7{2’3}}




Extension to other loss functions

Of course we can learn sparse or group-sparse linear models with any
different (smoothly convex) loss function:

NEREN
min > e(fs (%), ¥i) + AlIBl1 or 1Bl .2

i=1

B




0 Introduction

9 Learning with kernels

e Kernels for biological sequences
@ Kernels for graphs

e Learning with sparsity
@ Segmentation and classification of genomic profiles

G Reconstruction of regulatory networks



Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio
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Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min || Y~ 8| such that ’;1 (Biv1 # Bi) <k



Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min || Y~ 8| such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the (¥) partitions...



Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min || Y~ 8| such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the (¥) partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory



Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min || Y~ 8| such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the (¥) partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 108 ~ 10°...



Promoting piecewise constant profiles

p—1
QB) = IBllrv =D _ |Bix1 —

i=1

The total variation / variable fusion penalty
If R(5) is convex and "smooth", the solution of

min A(S sz,ﬂ

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = B4 — Bi, Up = 1
@ We obtain a Lasso problem in u € RP—!
@ U sparse means 3 piecewise constant



TV signal approximator

p—1
; - 2 L — (<
min ||Y'— 8| such that ;m,ﬂ Bil < p

Adding additional constraints does not change the change-points:
e > .| Bi| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e P . 32 < v (Mairal et al. 2010)

Sige
2 1 0 1 2 3
=}




Solving TV signal approximator

p—1
in|Y—23]? h that 3ii1 — Bi| <
min | ¥~ 5| suchtha ;I%m Bil <u

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all u with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)



TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

Require: & number of intervals, v(I) gain function to split an interval [ into Iy, (1), [r(])
1: Iy represents the interval [1,n]

: P ={l}

: fori=1tok do

I* + argmaxy (I*)

B owon

P PU{lL(I*), Ir (")}
end for
return P

® N L

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation




TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

Require: & number of intervals, v(I) gain function to split an interval [ into Iy, (1), [r(])
1: Iy represents the interval [1,n]

: P ={l}

: fori=1tok do

I* + argmaxy (I*)

B owon

P PU{lL(I*), Ir (")}
end for
return P

® N L

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!



Speed trial : 2 s. for K = 100, p = 107
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Applications

Vol. 27 no. 2 2011, 268-269
AP P LI CATI ON S N OTE d[:)i:10. :gQS/DIOinfof;gaiis/btqsa’s

Genome analysis Advance Access publication November 15, 2010

Control-free calling of copy nhumber alterations in
deep-sequencing data using GC-content normalization

Valentina Boeva'-2-3-4*, Andrei Zinovyev'-2-3, Kevin Bleakley'-2-3, Jean-Philippe Vert'-2:3,
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Extension 1: finding multiple change points shared by
several profiles
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Extension 1: finding multiple change points shared by
several profiles
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation U € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(U1e # Ud) < k
UGRPX"H | ; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...



Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢2-norm induces sparse solutions at the group level:

QgrOUp Z “ Wg||2

Q(wy, wa, wa) = |[(wy, wa)|l2 + [[wal|2

— 2 2 2
—\/W1—|—W2+\/W3




GFLseg (Bleakley and V., 2011)

Replace

p—1
min | Y—U|? suchthat > 1(Uy1e# Uy) <k

UeRpxn —
by
p—1
min || Y — U2 such that Wil|Ui 1 e — Uil <
UGRPX"H H 121: IH i+1, i, || S

GFLseg = Group Fused Lasso segmentation



GFLseg (Bleakley and V., 2011)

Replace

p—1
i Y - U|J? h that 1 (U4 # Ul) <k
Jmin | I such tha ; (Uit1,0 # Uie) <

by

p—1

i ~U|? h N Uis1e — Uil <
min |V = UJ[ such that ;w,lUm,. Uel <

GFLseg = Group Fused Lasso segmentation

@ Practice: can we solve it efficiently?
@ Theory: does it recover the correct segmentation?




TV approximator implementation

p—1
min | Y —U|? such that Wi|Uis1.e — Ual <
UeRPX"H I ’Z; il Ui, ol < 1

The TV approximator can be solved efficiently:
@ approximately with the group LARS in O(npk) in time and O(np)
in memory
@ exactly with a block coordinate descent + active set method in
O(np) in memory




Speed trial

time (s)

B GFlLars
s — GFlLasso

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k& = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.



Suppose a single change-point:
@ at position u = ap
@ with increments (3;)i—1, .p S.t. 5% = limy_0o 377, 52
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as
p increases?



Consistency of the weighted TV approximator

p—1
min || Y — U]|[? such that Wil|Uit1.e — Uiall <
UERPX,,H H 1221 /H i+1, i, || Y
Theorem

The weighted TV approximator with weights
Vi€[17p_1]7 Wi = M

correctly finds the first change-point with probability tending to 1 as
n — +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty



Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions v = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: « = 50+2 to u = 90+ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.



Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.



Application: detection of frequent abnormalities

Log-ratio
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Extension 2: Supervised classification of genomic
profiles

@ Xi,...,Xn € RP the n profiles of length p
@ Vi,...,¥n €[—1,1] the labels
@ We want to learn a function f : RP — [—1,1]



Prior knowledge

We expect 5 to be
@ sparse : not all positions should be discriminative, and we want to
identify the predictive region (presence of oncogenes or tumor
suppressor genes?)
@ piecewise constant : within a selected region, all probes should
contribute equally

. l Ik
WWWWW Nt ™
) 500 1000 1500 2000 2 h 1




Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
min > (v1.87x) + M Y181+ e Y [Biss — il
i=1 i=1 i=1

where / is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).




Fused lasso for supervised classification (Rapaport et

al., 2008)

n P p—1
mn > ¢(yi,8"x)+ A Y 1 — Bil.
BERP — <y/ 6 I) 1 ; ’/3/‘ 2 ; ‘ﬂl-H ﬁ/‘

where / is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

Implementation

@ When 7 is the hinge loss (fused SVM), this is a linear program ->
up to p=10% ~ 10*

@ When 7 is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ~ 10°




Example: predicting metastasis in melanoma
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0 Introduction

9 Learning with kernels

e Kernels for biological sequences
@ Kernels for graphs

e Learning with sparsity

@ Learning molecular classifiers with network information (bis)

G Reconstruction of regulatory networks



Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge




Graph-based penalty

min R(5) + 2a(5)

Hypothesis

We would like to design penalties Qg(/5) to promote one of the
following hypothesis:

@ Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph

@ Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.




Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths.




Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths

Network kernel (Rapaport et al., 2007)
Qspectral(ﬁ) = Z(B/ - 5/)2 )

inf

m|n R(B)+A> (B

IN]




Other penalties without kernels

@ Gene selection + Piecewise constant on the graph

QB)=>|8- 6,!+ZIB,

IN]

@ Gene selection + smooth on the graph

QB) =D (Bi—B) +Z|,6’,

INj




How to select jointly genes belonging to predefined

pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢2-norm induces sparse solutions at the group level:

QgrOUp Z “ Wg||2

Q(wy, wo, wz) = [|(wq, we)l|2+||wsl|2




What if a gene belongs to several groups?

Issue of using the group-lasso

® Qgroup(W) = > g [Wyl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
G1
Cell 0
cycle
G2 G2
oF Iwg, ll2=wgylla=0 =
o,
A& /”E»ﬁ:'“‘% G3 0
‘<°‘\¢," %0 s,
& s%/)/

Removal of any group
containing a gene = the
weight of the gene is 0.

IGF selection = selection of
unwanted groups



Latent group lasso (Jacob et al., 2009)

Introduce latent variables vg:
LV
m|nL W)+ 2 [vgllz vio 0|
g€eg i
w =[]+ v2 +
W= 2.6V .
supp (vg) C 9. 0 0 v3

Properties
@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.
@ Equivalent to group lasso when there is no overlap




A new norm

Overlap norm

min L(w) + 2> [Ivgll
[e[2Y ) L( ) @ ( )
= min L{w w
w = deg Vg w overlap
supp (vg) € g-
with mvin Z [vgll2
geg
Qoverlap(W) = (%)
W =2 geg Yo
supp (vg) € g.

Property

@ Qoveriap(W) is @ norm of w.

@ Quvenap(.) associates to w a specific (not necessarily unique)
decomposition (vg)geg Which is the argmin of (x).




Overlap and group unity balls

Balls for Qggroup (-) (middle) and Q¢ () (right) for the groups

overlap
G ={{1,2},{2,3}} where w, is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.



Theoretical results

Consistency in group support (Jacob et al., 2009)

@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition vy such that
w = Zg Vg and ngerlap (W) = Z ||Vg||2

@ Consider the regularized empirical risk minimization problem
Lw) + Q9 . (w).

overlap




Theoretical results

Consistency in group support (Jacob et al., 2009)

@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition vy such that

w= ZQ Vg and Qoverlap( ) =2 Vg2
@ Consider the regularized empirical risk minimization problem

L(w) + QY w).
Then
@ under appropriate mutual incoherence conditions on X,
@ as n— oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (Vg)geg such
that

overlap (

{9 €610y #0} = {g € |7y #0}.




Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

I -
- —overlapping|
x lasso
1

RMSE
SIS

80

log ) log () log, ()

Frequency of selection of each variable with the lasso (left) and nger,ap ()

(middle), comparison of the RMSE of both methods (right).




Graph lasso

Two solutions
/ntersectlon Z \/ 52 + 62 )

i~

Qunion(B) = sup a'B.

o 2 2)
a€ERP:Vinj, ||t +a; <1




Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z A/ W,-2 =4 sz .
inj
constrains the sparsity, not the values

@ Graph kernel

Qqraph kernel (W) = Z(Wi - WI)2

i~f

constrains the values (smoothness), not the sparsity




Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 4 QgVERLAF‘ ()
ERROR 0.38+0.04 0.36 +0.03
MEAN f PATH. 130 30

@ Graph on the genes.
METHOD 2 Qgrapn(-)
ERROR 0.39+0.04 0.36 +0.01

Av. SIZE c.C. 1.03 1.30




Lasso signature

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40  POLD1 — POLD4

RPLG. \ /
\\EEFIAI
PCSK6 — BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT PDE6B  TGFB2
MYCBP GRP. DLEU2  ALDH3A2 ~ VEGFB  PSMD7  CXCLI3 FLT3 PPAT ULK1
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Gene expression
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Image adapted from: National Human Genome Research Institute.
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Gene regulatory network of E. coli




Gene expression data
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Reconstruction of gene regulatory network
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Two flavours: de novo or supervised

De novo inference
Given a matrix of expression data, infer regulations

Supervised inference

Given a matrix of expression data and a set of knows regulations, infer
other unknown regulations
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If A regulates B, then we should expect some form of "correlation”
between the expression levels of A and B across different experiments.

We can therefore try to detect these correlations to infer regulation.



Measuring dependency: correlation coefficients

@ (X1,Y1),...,(Xn, Yn) the n expression values of both genes

@ Pearson correlation:
_cov(X,Y) _ SiX—X)(Yi-Y)

XY 06— RS (i - )2

@ Spearman correlation: similar but replace X; by its rank.
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Limit of correlations




Mutual information

X:v)= //pxy)l g(ﬁ?)(()pj(/;)) oxay

@ /(X;Y)>0
@ /(X;Y)=0ifand only if X and Y are independent
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@ The dynamic equation of the mRNA concentration of a gene is of
the form:
aX

—r = fX.R)

where R represent the set of concentrations of transcription
factors that regulate X.

@ At steady state, dX/dt =0 = f(X,R)
@ If we linearize f(X, R) = 0 we get linear relation of the form

X=> BiX
icR

@ This suggests to look for sets of transcription factors whose
concentration is sufficient to explain the level of X across different
experiments.



Predicting regulation by sparse regression

Let Y the expression of a gene, and Xj, ..., X, the expression of all
TFs. We look for a model

p
Y = Z BiX; + noise
i=1

where f is sparse, i.e., only a few 3; are non-zero.

We can estimate the sparse regression model from a matrix of
expression data.

Non-zero (;’s correspond to predicted regulators.



Example: sparse regression with the Lasso

2
n p p

m' . . iA. <

,Be]IRr}s (Y, E X,,/ﬁ,) such that E |Bi| <t

i=1 j=1 i=1

@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all £'s simultaneously (regularization path)

@ When tis not too large, the solution will usually be sparse



LASSO regression example
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2




Improved feature selection with stability selection

@ Fort=1to T do

e Bootstrap a random sample S; from the training set
e Randomly reweight each feature
o Select M features, e.g., with the Lassp

@ The score of a feature is the number of times it was selected
among the T repeats

@ Rank features by decreasing score.
@ See Meinshausen and Bihlmann (2009).



Examples of de novo methods

OPEN a ACCESS Freely available online PLOS BIOLOGY

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete'®, Joshua T. Thaden®>, llaria Mogno™*, Jamey Wierzbowski>>, Guillaume Cottarel*,
Simon Kasit'2, James J. Collins™, Timothy S. Gardner'"

number of known interactions inferred

100 &4 128 183 257 322 386 450
+ CLR operon
90 . Y s - CLR
T, + ARACNE
80 ; - Relevance Networks
70l & J.-_- + linear regression network
random
§ o
@
g 50
= 40
30
20
10
0
0 2 4 6 8 10 12 14



0 Introduction

9 Learning with kernels

e Kernels for biological sequences
@ Kernels for graphs

e Learning with sparsity

G Reconstruction of regulatory networks

@ Supervised reconstruction with one-class methods



i
G N
. 5 Bl
= atof b
MCM 2
o
lcim <
sici
AT
1
gy o
3 aneT
= | = Histones

@ In many cases, we already know quite a few regulations.

@ Can we use them, in addition to expression data, to predict
unknown regulations?




Using expression data for supervised inference

'3

@ If a gene has an expression profile similar to other genes known to
be regulated by a TF, then it is likely to be regulated by the TF itself

@ Underlying hypothesis: genes regulated by the same TF have
similar expression variations

@ Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF

@ This is only possible if we already have a list of known regulations.




@ Foragiven TF, let P C [1, n] be the set of genes known to be
regulated by it




@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar




@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar

@ Then classify the genes not in P by decreasing score




Estimating the scoring function: examples

@ Kernel density estimation
s(X) =Y exp (=] X - X |?)
ieP
@ One-class SVM
S(X) =Y ajexp (=l X = X |]?)

ieP



Estimating the scoring function: examples

@ Kernel density estimation
s(X) =Y exp (=] X - X |?)
ieP
@ One-class SVM
S(X) = Y ajexp (=1 X = X |2)

ieP
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Since we know in advance all genes, can we use them instead of
relying only on genes in P to estimate the scoring function?




Since we know in advance all genes, can we use them instead of
relying only on genes in P to estimate the scoring function?
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From one-class to PU learning

@ One class: given genes in P, estimate the function s(X)



From one-class to PU learning

x

X& X

XX
&

o xg

X x

x¥ o

@ One class: given genes in P, estimate the function s(X)

@ PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(X;) for j € U



PU learning in practice (Mordelet and V., 2014)

@ Train a classifier to discriminate P from U (eg, SVM or random
forest)

© Rank genes in U by decreasing training score



Example: E. coli regulatory network

1 1
CLR
SIRENE
0.8 0.8 SIRENE-Bias
4]
2
7
g 0.6 .g 0.6
[} k2]
=] (=3
= o
G 04 Q04
o)
©
[14
0.2 CLR 0.2
SIRENE
—— SIRENE-Bias
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Ratio of false positives Recall

Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)



Application: predicted regulatory network (E. coli)
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Proteins




Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,

@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. \




@ Gene expression,

@ Protein-protein interactions,
@ Metabolic pathways,
@ Signaling pathways, ...

@ Gene sequence,
@ Protein localization, ...




More precisely

Formalization

e V={1,...,N} vertices (e.g., genes, proteins)
@ D=(xq,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V. We focus on undirected graphs.
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More precisely

Formalization

e V={1,...,N} vertices (e.g., genes, proteins)
@ D=(xq,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V. We focus on undirected graphs.

v
”

“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £

“Supervised” inference
@ Given data about individual genes and proteins D, ...
@ ... and given some known interactions Eyain C &, ...
@ ... infer unknown interactions Eiest = E\Erain




De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)




De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

Pros Cons

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time

v




Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).

o

True positive

Expression

b

Protein interaction
Localization

Phylogenetic profile

Integration

T T T T T
ik 0.z 04 06 0.8

= -

False positive



Supervised methods

In actual applications,
@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

Supervised method

@ Given genomic data and
the currently known
network...

@ Infer missing edges
between current nodes and
additional nodes.




Pattern recognition
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition

@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)




Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xi, X2)




Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (Xi, X2)

Two solutions
@ Consider each pair (Xj, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)
@ From the known subgraph we can exiract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Known graph Genomic data



Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ Depending on the network, we are interested in ordered or
unordered pairs of proteins.

@ We must represent a pair of proteins (u, v) by a vector
¥(u, v) € R9in order to estimate a linear classifier

@ Question: how build ¢ (u, v) from u and v, in the ordered and
unordered cases?



Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u,v):u@v:(5>.



Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u,v):u@v:(5>.

@ Problem: a linear function then becomes additive...

fluv)=w'yu,v)=wju+w'v.



Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
v:

b(u,v)=uev
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
v:

b(u,v)=uev

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:
(i1 @ v1)" (U2 @ vp) = <“1T“2) % (VIVZ) ’
which is good for algorithms that use only inner products (SVM...):

Kp ((U17 V1)7 (U27 Vg)) = 1/J(U17 V14 )T’L/J(Ug, V2) = K(U1 s U2)K(V1, V2)



Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPl network:

{U7 V} = {(U, V): (V, U)}
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPl network:

{U7 V} = {(U, V): (Va U)}

@ This suggest to symmetrize the representation of ordered pairs:

wu({% V}) = '9/}(“7 V) + ¢(V, U)

@ When ¢ (u, v) = u® v, this leads to the symmetric tensor product
pairwise kernel (TPPK) (Ben-Hur and Noble, 2005):

Krppi ({ur, vi}, {uz, va}) = K(uq, up)K(vy, vo)+K(uy, vo)K(vy, Up)



Another idea: metric learning

@ Fortwo vectors u, v € H let the metric:

dy(u,v) = (u—v)"M(u—v).
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each other?



Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v)"M(u —v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?

@ We consider the problem:
min /(Uia V/‘a}’i) +)‘||M|‘%—'robeniusv

M>0 &
1

where [ is a hinge loss to enforce:

<1 -+~ if(u;, vj)is connected,
> 1+~ otherwise.

au(u;, vi) {



Link with metric learning

Theorem (V. et al., 2007)
@ A SVM with the representation

Y({u,v}) = (u—-v)*

trained to discriminate connected from non-connected pairs,
solves this metric learning problem without the constraint M > 0.

@ Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

Kueek ({ur, vi}, {uz, vo}) = ({ur, vi}) "o ({u, v })
= [K(u1, Us) — K(uy, va) — K(v1, Up) + K(Uz, v2)]? .
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.




The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}
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o then A is likely to be connected to C.




@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
o if Cis similar to B,
o then Ais likely to be connected to C.

@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.




@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
o if Cis similar to B,
o then Ais likely to be connected to C.

@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.

@ Caveats:

e each local model may have very few training points
e no sharing of information between different local models
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In the case of unordered pairs {A, B}, pairwise kernels such as the
TPPK and local models look very different:

@ Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori

@ Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?



@ A the set of individual proteins, endowed with a kernel K4

@ X = A? the set of ordered pairs of the form x = (a, b) endowed
with a kernel Ky (usually deduced from K4)

@ P the set of unordered pairs of the form p = {(a, b), (b, a)}

@ We want to learn over P from a set of labeled training pairs

(P1a}’1)a---,(pna}’n) €P x {_171}




Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Ky over P by convolution of Kxy:

p| Z Ky(x, ')

xepx ep’

Kp(p,p') =

@ Train a classifier over P e.g., a SVM, using the kernel Kp




Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky:

,0| Z Ky(x, x')

xepx ep’

Kp(p,p') =

@ Train a classifier over P e.g., a SVM, using the kernel Kp

4

Strategy 2: Inference over X’ with a pair duplication

@ Duplicate each training pair p = {a, b} into 2 ordered paired
@ Train a classifier over X, e.g., a SVM, using the kernel Ky

© The classifier over P is then the a posteriori average:

Il Z fr(x)

Xep




The TPPK kernel

Krppi ({37 b} ) {07 d}) = KA(37 C)KA(b7 d) + KA(av d)KA(b7 C) :

Theorem
Let X = A2 be endowed with the p.d. kernel:

Kx ((a,b),(c,d)) =2Ka(a, c)Ka(b,d). (4)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

v

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).



The local models

Let X = A2 be endowed with the p.d. kernel:

Kx ((a7 b)v (07 d)) - (5(8, C)KA(b7 d) )

where ¢ is the Kronecker kernel (6(a,c) = 1 if a = ¢, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..



Interpolation between local model and TPPK

| Strategy 1: pair kernel | Strategy 2: duplication |
Ky = Kao K4 | TPPK | TPPK |
Ky =00 Ky | new | Local model |




Interpolation between local model and TPPK

| Strategy 1: pair kernel | Strategy 2: duplication |
Ky = Kao K4 | TPPK | TPPK |
Ky =00 Ky | new | Local model |

Interpolation:
Ky = (1 = AN)Ka+ M) @ K4

for A € [0, 1]



0 Introduction

9 Learning with kernels

e Kernels for biological sequences

@ Kernels for graphs

e Learning with sparsity

G Reconstruction of regulatory networks

@ Supervised graph inference



Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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Interpolation kernel

Table : Strategy and kernel realizing the maximum mean AUC for nine

metabolic and protein-protein interaction networks experiments, with the
kernel K* for A € [0, 1].

benchmark best kernel
interaction, exp Duplicate, A = 0.7
interaction, loc Pair kernel, A = 0.6
interaction, phy Duplicate, A = 0.8
interaction, y2h Duplicate / Pair kernel, A =0
interaction, integrated Duplicate / Pair kernel, A = 0
metabolic, exp Pair kernel, A = 0.6
metabolic, loc Pair kernel, A = 1
metabolic, phy Pair kernel, A = 0.6

metabolic, integrated  Duplicate / Pair kernel, A = 0




Interpolation kernel
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Metabolic networks with localization data (left); PPl network with
expression data (right)



Applications: missing enzyme prediction
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

REeseARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto’*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan



Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET>

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
*Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.

alK s 4 | deoB bmpA § sipL
23 glyA §‘§§ gimu mitsA ;:,_s'g yeG |
H
28| whF %E%i murg pyrP gg secA | §
§§ pyrC égg murB yngG |3 § pleD | 2
© 2laws| & 8| mia 2 KkinC
pyk htrA
¥egG ftsA | &
we —— PEPF o | 2
% o fisK | =
° 2| yibC pepM |3
z 3
£ B



Conclusion

@ When the network is known in part, supervised methods are more
adapted than unsupervised ones.
@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).
e work for any network
e work with any data
e can integrate heterogeneous data, which strongly improves
performance

@ Promising topic: infer edges simultaneously with global
constraints on the graph?
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