Large-Scale Machine Learning

Jean-Philippe Vert

jean-philippe.vert@{mines-paristech,curie,ens}.fr

PSL % D 0

RESEARCH UNIVERSITY PARIS InStItUtCU rie MINES
Together, let's beat cancer. P“ T'iSTeCh

1/104

Outline

@ Introduction

© Standard machine learning
@ Dimension reduction: PCA
@ Clustering: k-means
@ Regression: ridge regression
o Classification: kNN, logistic regression and SVM
@ Nonlinear models: kernel methods

© Large-scale machine learning
@ Scalability issues
@ The tradeoffs of large-scale learning
@ Random projections
@ Random features
@ Approximate NN
@ Shingling, hashing, sketching

@ Conclusion

2 /104

Acknowledgement

In the preparation of these slides | got inspiration and copied several
slides from several sources:

@ Sanjiv Kumar's " Large-scale machine learning” course:
http://wuw.sanjivk.com/EECS6898/lectures.html

o Ala Al-Fugaha's "Data mining” course:
https://cs.wmich.edu/alfuqaha/summeri4/cs6530/
lectures/SimilarityAnalysis.pdf

@ Léon Bottou's " Large-scale machine learning revisited” conference
https://bigdata2013.sciencesconf.org/conference/
bigdata2013/pages/bottou.pdf

3/104

http://www.sanjivk.com/EECS6898/lectures.html
https://cs.wmich.edu/alfuqaha/summer14/cs6530/lectures/SimilarityAnalysis.pdf
https://cs.wmich.edu/alfuqaha/summer14/cs6530/lectures/SimilarityAnalysis.pdf
https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf
https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

Outline

@ Introduction
@ Standard machine learning

© Large-scale machine learning

@ Conclusion

4/104

= BUSINESS INSIDER
fian

TECH

2017 is the year of Machine Learning. Here's why

M GAURAVSANGWANI | B0 | JAN13,2017,1251PM

TN T T

Machine learning is maybe the most sweltering thing in Silicon Valley at this
moment. Particularly deep learning. The reason why it is so hot is on the
grounds that it can assume control of numerous repetitive, thoughtless tasks.
It'll improve doctors, and make lawyers better lawyers. What's more, it makes
cars drive themselves.

104

Perception

Communication

< | @ translate.google.fr & th g ¥
Google o0
Traduction Désactiver la traduction instantanée o
Anglais Frangais Arabe Japonais - détecté ~ "..

Frangais Anglais Arabe ~

Méme les singes tombent des
arbres

BHANSEL S *

 SEDINA asoo0 . DO <

Sarumokikaraochiru

A propos de Google Traduction Communauté Mobile G+ B

A propos de Google Confidentialité et conditions d'utilisation Aide

J& Envoyer des commentaires

7 /104

Mobility

8/104

Health

Molecular Profiling \‘ Prognostic Markers <

Markers predictive of drug
sensitivity/resistance

adverse events

https://pct.mdanderson.org

Markers predictive of@.‘ﬂ‘:

9/104

https://pct.mdanderson.org

Reasoning

- 00:01:00

AlphaGo

Google DeepMind

10 /104

A common process: learning from data

Data Algorithm Model

100100011101000000101000110111010110
100100111101110000001111100110100100
100001101101111101010011100001101001
111111010000110111001010111100001011
110011111101111111100100001110110110
010000110100110110000110000100010000
010101110011001111011001110100010111
001000010101100101000001000010011110
011101001111110010111010101010111100
100010000101100010101101010111000101
010010000100101011110011100001010000
010110000010011101010010101110110001
011011111010111100010100010100010000
011010011011011010001000101111001101
000101000001100110001100100010010110

100101010100010011100101010101111101

https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

e Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

@ Statistics 4+ optimization + computer science

@ Gets better with more training examples and bigger computers

11/104

Large-scale ML?

d dimensions

t tasks

X

n samples

Y

Iris dataset: n=150,d =4,t =1

Cancer drug sensitivity: n =1k, d = 1M, t = 100

Imagenet: n=14M,d = 60k+,t = 22k
Shopping, e-marketing n = O(M),d = O(B), t = O(100M)
Astronomy, GAFA, web... n= 0O(B),d = O(B),t = O(B)

12 /104

Today's goals

@ Review a few standard ML techniques

PCA (normaid dota)

@ Introduce a few ideas and techniques to scale them to modern, big
datasets

13 /104

Outline

@ Introduction
@ Standard machine learning

© Large-scale machine learning

@ Conclusion

14 /104

Main ML paradigms

@ Unsupervised learning
e Dimension reduction
o Clustering
o Density estimation
o Feature learning
@ Supervised learning
o Regression
o Classification
o Structured output classification

@ Semi-supervised learning

@ Reinforcement learning

15 /104

Main ML paradigms

@ Unsupervised learning
o Dimension reduction: PCA
o Clustering: k-means
e Density estimation
o Feature learning
@ Supervised learning

o Regression: OLS, ridge regression
o Classification: kNN, logistic regression, SVM
o Structured output classification

@ Semi-supervised learning

@ Reinforcement learning

16 /104

Outline

© Standard machine learning
@ Dimension reduction: PCA

17 /104

Motivation

d k<d

@ Dimension reduction
@ Preprocessing (remove noise, keep signal)
e Visualization (k = 2,3)

@ Discover structure

PCA (normalized data)

18/

104

PCA definition

o Training set S = {x1,...,x,} C R?

@ Fori=1,...,k <d, PC;is the linear projection onto the direction
that captures the largest amount of variance and is orthogonal to
the previous ones:

2
n

n

T 1 T

ui € argmax Xpu—=% xu
|ul|=1,uLl{u,....,ui—1} i—1 n j=1

19 /104

PCA solution

o Let X be the centered n x d data matrix
@ PCA solves, for i =1,...,k < d:

ui € argmax u' X Xu
|ul|=1, uLl{u1,...,ui—1}

@ Solution: wu; is the i-th eigenvector of C = XTX, the empirical
covariance matrix

20 /104

PCA

example

PC2

> data(iris)

v

vV W N

head(iris, 3)
Sepal.Length Sepal.Width

5.1
4.9
4.7

Iris dataset
< % o o setosa
e o versicolor
° © virginica
° o %o
o °
S 7] ° &
° o0 °. 0
L o %°ga30
o
g - $- AR
‘ : ‘60' °
[4 e 9°8
o ® %9 Jee
© e ° °
T 8
K °
= °
o °
! T T T
-2 -1 1

PC1

3.5 1.4
3.0 1.4
3.2 1.3

m <- princomp(log(iris[,1:4]))

Petal.Length Petal.Width Species
0.2 setosa
0.2 setosa
0.2 setosa

21

104

PCA complexity

e Memory: store X and C: O(max(nd, d?))
o Compute C: O(nd?)
o Compute k eigenvectors of C (power method): O(kd?)

Computing C is more expensive than computing its eigenvectors (n > k)!

n=1B,d = 100M

Store C: 40,0007B

Compute C: 2 x 102FLOPS = 20yottaFLOPS (about 300 years of the
most powerful supercomputer in 2016)

22 /104

Outline

© Standard machine learning

o Clustering: k-means

23 /104

Motivation

Iris dataset
<~ 'o °
o
o
L4 o %o
o
S e °,

PC2

0.0

1
o"‘.“‘ o

°

:0 0P o°

o ® %t Jeo
S e °
[l .. ° .
h °
o °
! T T T T

-2 -1 0 1

PC1

@ Unsupervised learning
@ Discover groups

@ Reduce dimension

24 /104

Motivation

Iris k-means, k=5

< % o o Cluster 1
e o Cluster 2
° o Cluster 3
~ o o o Cluster 4
s] e Cluster 5
oo oo
o~ o ° a%gand
£ 2 . ABge
g Ao’ o
00 °0
N ® @ So0
S e °
] .. ° .
h °
o °
! T T T T
-2 -1 0 1
PC1

@ Unsupervised learning
@ Discover groups

@ Reduce dimension

24 /104

k-means definition

o Training set S = {x1,...,x,} C R
e Given k, find C = (Cy,...,C,) € {1,k}" that solves

n

. L 2

min 3" 1%~ |
i=1

where is the barycentre of data in class i.

@ This is an NP-hard problem. k-means finds an approximate solution
by iterating
@ Assignment step: fix u, optimize C

Vi=1,... G+ i -
i=1...,n G+« arg {T,'.?,k}HX’ g ||

@ Update step

1
Vi=1,...,k, ﬂ,(-mZXJ
"jig=i

25 /104

k-means example

Iris dataset
<~ 'o °
o
o
L4 o %o
o
S e °,

PC2
0.0
|
o"‘.“‘ o
o
o
d"”
)

g A’ o
2a8°3
g ® % o00
e
T e .. 8
= °
o °
! T T T T
-2 -1 0 1

PC1

> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46

26 /104

k-means example

Iris k-means, k =2

. % o o Cluster 1
o Cluster 2

0.4

0.2

PC2
0.0
|
f8 o ©
0.'..
°
° .?
° e ©
%

3.’:’00‘.'

~ ®®d 950
S e °
] .. ° .
h °
o °
! T T T T

-2 -1 0 1

PC1

> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46

26 /104

k-means example

PC2
0.0 0.2 0.4

-0.2

-0.4

> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)

Iris k-means, k=3

%

'Yl

o Cluster 1
o Cluster 2
o Cluster 3

PC1

> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48
2 50 0
3 0 2

4
0
46

26 /104

k-means example

Iris k-means, k =4

< % o o Cluster 1
e o Cluster 2
R '~ o Cluster 3
o
~ ° 3 o Cluster 4
IS e

PC2
0.0
|
ol o °
°

g A% o
e 9°8
N P %Y Jdee
S e ° °
T s . 8
= °
o °
! T T T T
-2 -1 0 1

PC1

> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46

26 /104

k-means example

Iris k-means, k=5

< % o o Cluster 1
e o Cluster 2
° o Cluster 3
o o o o Cluster 4
s] e Cluster 5
o0 oo
o o %°3a30
g g- . ABge
g Ao’ o
00 'o °
N ® @ So0
S e °
] .. ° .
h °
o °
! T T T T
-2 -1 0 1
PC1

> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46

26 /104

k-means complexity

e Each update step: O(nd)
e Each assgnment step: O(ndk)

27 /104

Outline

© Standard machine learning

@ Regression: ridge regression

28 /104

Motivation

N
°
o
ER °
3 o,
e 0%, 0 °
- o o
® 270 ¢
wf o o0
. © ° :o ° 0% [
L. e
< A ° 3
° ;'ub ° L]
.',.‘o

oo ot

° g0° g
o - L]

°©
T T T T T T
0 1 2 3 4 5

@ Predict a continuous output from an input

29 /104

Motivation

@ Predict a continuous output from an input

29 /104

Model

Training set S = {(x1,y1),---, (X0, ¥n)} C RI x R
Fit a linear function:

fa(x) = BT x
@ Goodness of fit measured by residual sum of squares:

n

RSS(B) =Y _ (vi — fa(xi))®

i=1

Ridge regression minimizes the regularized RSS:

d
mﬂin RSS(8) + A ; 32

Solution (set gradient to 0):
A -1
B= (XTX + >\I> xTy

30 /104

Ridge regression complexity

o Compute X' X: O(nd?)
o Inverse (XTX +) : O(d®)

Computing X T X is more expensive than inverting it!

31/104

Outline

@ Standard machine learning

o Classification: kNN, logistic regression and SVM

32 /104

Motivation

oo ‘..
O O 4
O O ®

@ Predict the category of a data

@ 2 or more (sometimes many) categories

33 /104

Motivation

© 0 0q4
O O

@ Predict the category of a data

@ 2 or more (sometimes many) categories

33 /104

Motivation

O Wi\
© 0 0q4

O O

@ Predict the category of a data

@ 2 or more (sometimes many) categories

33 /104

Motivation

@ Predict the category of a data

@ 2 or more (sometimes many) categories

33 /104

k-nearest neigbors (kNN)

e
¥
@og @

250

(Hastie et al. The elements of statistical learning. Springer, 2001.)
e Training set S = {(x1,¥1),---,(Xn,¥n)} CR? x {-1,1}
@ No training

@ Given a new point x € RY, predict the majority class among its k
nearest neighbors (take k odd)

34 /104

kNN properties

Uniform Bayes consistency [Stone, 1977]
o Take k = \/n (for example)
@ Let P be any distribution over (X, Y) pairs
@ Assume training data are random pairs sampled i.i.d. according to P
@ Then the k-NN classifier #, satisfies almost surely:

lim P(F(X)#Y)= inf P(f(X)#Y)

n—-+o00 fmeasurable

Complexity:
e Memory: story X is O(nd)
@ Training time: 0
e Prediction: O(nd) for each test point

35 /104

Linear models for classification

o Training set S = {(x1,%1),.-., (Xn, yn)} C RY x {~1,1}
e Fit a linear function

fa(x) = B x
@ The prediction on a new point x € R is:

+1 if fz(x) >0,
—1 otherwise.

36 /104

Large-margin classifiers

© 0 0q
O O

o For any f : R? — R, the margin of f on an (x,y) pair is
yf(x)

@ Large-margin classifiers fit a classifier by maximizing the margins on
the training set:

min ;f(yl'fﬁ(xl')) +A8" B

for a convex, non-increasing loss function £ : R — R+
37 /104

Loss function examples

5
—
4 — hinge
square
3 logistic
2
1 —
BN
3 =2 -1 0o 1 =2 3 4
Loss Method l(u)
0-1 none 1(u<0)
Hinge | Support vector machine (SVM) | max (1 — u,0)
Logistic Logistic regression log (14 e™")
Square Ridge regression (1- u)2

38 /104

Ridge logistic regression [Le Cessie and van Houwelingen,
1992]

n

min J(B) = Z In (1 + e_y’ﬂTX’) +ABT8

RP
pe i=1

@ Can be interpreted as a regularized conditional maximum likelihood
estimator

@ No explicit solution, but smooth convex optimization problem that
can be solved numerically by Newton-Raphson iterations:

grew _ gold _ [V%J (Bo/d>}_1v5./ (Bold> '

o Each iteration amounts to solving a weighted ridge regression
problem, hence the name iteratively reweighted least squares (IRLS).

o Complexity O(iterations * (nd® + d*))

39 /104

SVM [Boser et al., 1992]

min z”: max (0, 1-— y,ﬂTXi) + 2878
i=1

BERP

@ A non-smooth convex optimization problem (convex quadratic
program)
@ Equivalent to the dual problem

1
max2a'Y —a' XXTa st. 0<yjo; < —fori=1,...,n
a€cR" 2\
@ The solution 8* of the primal is obtained from the solution a* of
the dual:

B =XTa" . (x) = (59 x = (0) T Xx

Training complexity: O(n?) to store XX, O(n?) to find a*
Prediction: O(d) for (8*)"x, O(nd) for (a*)" Xx

40 /104

Outline

© Standard machine learning

@ Nonlinear models: kernel methods

41 /104

Motivation o

@)
o o)
o ©)
O
o © © o}
o) [J
[] P @)
O O
0] O
O @)
O o ©
@)
L
N o
o ° .o
o o %°° o
- — o o © a:.“ o o
> : Dﬂﬂun o °° e ° e
° 1‘, °® :: ° %0 °u°e o ° o o
. 0© . o°° ° n°° q,nu,s o o
[:o °e °° o
o o o
T < T T T < T
0 2 4 6 10

X 42 /104

Model

@ Learn a function f : R? — R of the form

f(

x) = Z a;iK(x;, x)
i=1

e For a positive definite (p.d.) kernel K : R? x RY — R, such as

Linear

Polynomial

Gaussian

Min/max

U2
K(x,x") = exp <HX alll)

43 /104

Feature space

o A function K : R? x RY — R is a p.d. kernel if and only if there
existe a mapping ® : RY — RP, for some D € NU {+00}, such that

Vx,x € RY,

@ f is then a linear function in RD'

= Zn: a;K(X;,
i=1

for ,8 = 27:1 Oz,'(D(X,').
X

) = o(x)Td(xX)

= BT o(x)
12
o
le) @]
%00 %o
° o
° Coo
°
o0 000 x22

44 /104

Learning

x1 x12
5 P o o
o o© _o
o | o
(@] O A
O [e'sYe) @]
{. x (@] X2 ° OOO
O e °
Rel e o oo ©® 000 y22
o) o)
o) - O

e We can learn f(x) = > ; a;K(x;, x) by fitting a linear model
BT®(x) in the feature space
e Example: ridge regression / logistic regression / SVM

min Zf(y,,ﬂ d(x;)) + PYeRNG

BERD ©

@ But D can be very large, even infinite...

45

104

Kernel tricks

o K(x,x") = d(x)Td(x') can be quick to compute even if D is large
(even infinite)

o For a set of training samples {xi,...,x,} C RY let K, the n x n
Gram matrix:
[Knl; = K(xi, X))

o For 3 =57, a;j®(x;) we have
BTd(x) =[Ka], and B'B=a'Ka

@ We can therefore solve the equivalent problem in o € R”

.) . T
ch;{gﬂéﬂ(y,, [Ka];) + Ao’ Ka

46

104

Example: kernel ridge regression (KRR)
. d 2
min 3 (3= 7o)+ 357

@ Solve in RP:

B = (e(x)To(x) + A/)*l o(X)"Y

DYD
@ Solve in R":
a=(K+A)ly
——

nxn

47 /104

KRR with Gaussian RBF kernel

n

min (YI - 5T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

°
] °
°
o ° °
° o%,o °
= o © ° o
° S e .
°
” o % oo d’oe
ocoo0 ° ° .
< ® o o: ° o ¢
° o 00° o o ° o
° ° °
° o o, %0 . s
o
- _| o o .
| % e oo
0% o, 5.
°
- °
I T ; : |
" ’ ! 6 8 10

48 /104

KRR with Gaussian RBF kernel

RN T 2 T / HX—XIH2
min yi— B ®(x;))] +A8' 05 Kx,x')=exp| —55—
BERT 4 20

i=1
lambda = 1000
o
N °
o
o ° 0%
- o © A °°
o ° o o0° °
> ° % oo Ll e
o 000 ° o o Q
% °o 0o ° :00 °o o ° o ° °
(-] o o
—_ T e, e o oo o o
1 °°o°°°° °o° °
(-]
o o
T T T T T
0 2 4 6 8 10

KRR with Gaussian RBF kernel

RN T 2 T / | x —x' H2
min yi— B ®(x;))] +A8' 05 Kx,x')=exp| —55—
BeRM “ 20

i=1
lambda = 100
o
N °
o
o ° 0%
{-]
- — ° o © o © °° oo
o o o o0° °
> ° % oo Ll e
o — g o0 °+° n’ T —
%o 0® ° ° :oo °© o o ° ° °
(-] o o
—_ T e, e o oo o o
1 ogoooo o °o° °
(-]
o o
T T T T T
0 2 4 6 8 10

KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 10

KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda =1

KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 0.1

KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 0.01

KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 0.001

KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 0.0001

KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 0.00001

KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

' 202
BER?

lambda = 0.000001

KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

d 202
BERT

lambda = 0.0000001

Complexity

lambda = 1

o Compute K: O(dn?)
o Store K: O(n?)

e Solve a: O(n*™3)

e Compute f(x) for one x: O(nd)
@ Unpractical for n > 10 ~ 100k

49 /104

Outline

@ Introduction
@ Standard machine learning

© Large-scale machine learning

@ Conclusion

50 /104

Outline

© Large-scale machine learning
@ Scalability issues

51 /104

What is "large-scale” ?

e Data cannot fit in RAM

@ Algorithm cannot run on a single machine in reasonable time
(algorithm-dependent)

@ Sometimes even O(n) is too large! (e.g., nearest neighbor in a
database of O(B+) items)

e Many tasks / parameters (e.g., image categorization in O(10M)
classes)

@ Streams of data

@‘Q %/“‘\'

52 /104

Things to worry about

Training time (usually offline)

°
@ Memory requirements
@ Test time

°

Complexities so far

Method Memory | Training time | Test time
PCA 0(d?) O(nd?) O(d)
k-means O(nd) O(ndk) O(kd)
Ridge regression 0(d?) O(nd?) O(d)
kNN O(nd) 0 O(nd)
Logistic regression O(nd) O(nd?) O(d)
SVM, kernel methods | O(n?) O(n%) O(nd)

53 /104

Techniques for large-scale machine learning

@ Good baselines:

e Subsample data and run standard method
e Split and run on several machines (depends on algorithm)

@ Need to revisit standard algorithms and implementation, taking into
account scalability

on>)!

n

@ Trade exactness for scalability
@ Compress, sketch, hash data in a smart way

54 /104

Outline

© Large-scale machine learning

@ The tradeoffs of large-scale learning

55 /104

Motivation

o Classical learning theory analyzes the trade-off between:
e approximation error (how well we approximate the true function)
e estimation errors (how well we estimate the parameters)

Approximation error

@ But reaching the best trade-off for a given n may be impossible with
limited computational resources

@ We should include in the trade-off the computational budget, and
see which optimization algorithm gives the best trade-off!

o Seminal paper of Bottou and Bousquet [2008]

56 /104

Classical ERM setting

Goal: learn a function f : R? = Y (¥ =R or {~1,1})
P unknown distribution over RY x)

Training set: S = {(X1, Y1), ..., (Xn, Ya)} C RY x Y i.i.d. following
P

Fix a class of functions F C {f -RY — R}
Choose a loss £(y, f(x))

Learning by empirical risk minimization

(]

. 1 ¢
fo € arg min Ralf] = — > e(YL (X))
i=1

Hope that f, has a small risk:

R[fa] = EC(Y, fa(X))

57 /104

Classical ERM setting

@ The best possible risk is

R*= min RI[f]
FRISY

@ The best achievable risk over F is
R% = min R[f
F=mn []
@ We then have the decomposition
R[f)] — R* = R[f)] — R + R — R,
—_— ~—_—

estimation error €est approximation errror €zpp

Approximation error

58 /104

Optimization error

@ Solving the ERM problem may be hard (when n and d are large)

o Instead we usually find an approximate solution #, that satisfies
Ralfal < Ralfal + p
@ The excess risk of f,, is then

e=Rlf] —R* = Rlfa] — R[fa] + €est + €app
—_—————

optimization error eopt

59 /104

A new trade-off

€ = €app + €est + Eopt
Problem
@ Choose F, n, p to make € as small as possible
@ Subject to a limit on n and on the computation time T

Table 1: Typical variations when F, n, and p increase.

F n p
Eapp (approximation error) Y\
Eost (estimation error) PARRN
Eopt (optimization error) e A
T (computation time) S 0N

Large-scale or small-scale?
@ Small-scale when constraint on n is active
o Large-scale when constraint on T is active

60 /104

Comparing optimization methods

n
in Ralfsl =S £(yi, fa(x;
semin_ | Ralfs] ; (i fa(xi))

o Gradient descent (GD):

ORn(f5,)
1

Bry1 < Bt

@ Second-order gradient descent (2GD), assuming Hessian H known

_10Rn(f3,)
—H 1 n\'B:
Be+1 < Bt 785
@ Stochastic gradient descent (SGD):
n 0y, 15, (xt))

Be1 < Bt — " 93

61 /104

Results [Bottou and Bousquet, 2008]

Algorithm Cost of one Iterations Time to reach Time to reach
iteration to reach p accuracy p E < c(Eapp +€)
. %k 2
GD O(nd) @] (K log %) (@] (ndn log %) (@] (gl/(, log %)
2GD O(d* + nd) (@] (log log %) (9(((12 + nd) log log %) @] (Ef% log é log log %)
vi? 1 dvr? dvk?

@ « € [1/2,1] comes from the bound on £.5; and depends on the data
@ In the last column, n and p are optimized to reach ¢ for each method
@ 2GD optimizes much faster than GD, but limited gain on the final
performance limited by ¢ 1/® coming from the estimation error
e SGD:
o Optimization speed is catastrophic
o Learning speed is the best, and independent of «
@ This suggests that SGD is very competitive (and has become the de
facto standard in large-scale ML)

62 /104

[[lustration

e Results: Linear SVM
0y, y) =max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy, y) =log(1+exp(—yy)) A= 0.00001

Training Time Primal cost Test Error

TRON(LibLinear, ¢ = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, £ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

63 /104

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

Outline

© Large-scale machine learning

@ Random projections

64 /104

Motivation

o Affects scalability of algorithms, e.g., O(nd) for kNN or O(d®) for
ridge regression
@ Hard to visualize

@ (Sometimes) counterintuitive phenomena in high dimension, e.g.,
concentration of measure for Gaussian data

d=1 d=10 d=100

300
150

Frequency
200
Frequency

100
Frequency

50

100
50 100 150 200 250

IIxlifsart(k) lixll/sart(k) lixll/sart(k)

o Statistical inference degrades when d increases (curse of dimension)

65 /104

Dimension reduction with PCA

Projects data onto k < d dimensions that captures the largest
amount of variance

Also minimizes total reconstruction errors:

mmZHx, Ms, (x) 2

But computational expensive: O(nd?)

No theoretical garantee on distance preservation

66 /104

Linear dimension reduction

X = X x R
R S
nxk nxd dxk

o Can we find R efficiently?
@ Can we preserve distances?

Vij=1...on [[f(x) = FOg) = 1% = x|l

@ Note: when d > n, we can take k = n and preserve all distances
exactly (kernel trick)

67 /104

Random projections

Simply take a random projection matrix:

f(x) = \}ERTX with R; ~N(0,1)

Theorem [Johnson and Lindenstrauss, 1984]
For any ¢ > 0 and n € N, take
k>4(E/2- 63/3)_1 log(n) ~ e 2 log(n).
Then the following holds with probabiliy at least 1 — 1/n:
Vij=1,....n (L=e)llxi—x > <l f(x) =) > < (Q+e)]x—x |2

@ k does not depend on d!
on=1IM, e=01 — k=~5K
on=1B,¢=0.1 — k=38K

68 /104

Proof (1/3)

@ For a single dimension, g; = rou:

E(q)) = E() u =
E(q)* =u E(rr] Ju=|lu]?

o For the k-dimensional projection f(u) = 1/vVkR u:

| F(u)]? = qu RS0

Ell f(u)]* = kZEq,—IIUII2

o Need to show that || f(u) ||? is concentrated around its mean

69 /104

Proof (2/3)

PIUFIP>@+e)ul?]
= P [X*(k) > (1 + €)k]
—p [e,\f(k) > e>\(1+e)k}

{ Ax2 (k)} e M1+o)k

3

—A(1+€)k

=(1-2)\)"z2e

e)k/

N

((1+e)e
e —(e?/2—€%/3)k/2

= n -2

IN

Similarly we get

PIIFI? <

(1

(Markov)

(MGF of x?(k) for 0 < X < 1/2)
(take A = €/2(1 +¢€))

(use log(1 + x) < x — x*/2 + x3/3)
(take k = 4 (¢2/2 — €2 /3) log(n))

—e)llul’] <n7?

70 /104

Proof (3/3)

@ Apply with u = x; — x; and use linearity of f to show that for an
(xi, ;) pair, the probability of large distortion is < 2n~2
@ Union bound: for all n(n — 1)/2 pairs, the probability that at least
one has large distortion is smaller than
n(n—1) 2 1

o1 0
2 ><n2 n

71 /104

Scalability

n=0(1B); d = O(1M) = k= 0O(10K)
Memory: need to store R, O(dk) ~ 40GB
Computation: X x R in O(ndk)
Other random matrices R have similar properties but better
scalability, e.g.:
e "add or subtract” [Achlioptas, 2003], 1 bit/entry, sizexx 1,25GB

R — +1 with probability 1/2
Y7 1=1 with probability 1/2

o Fast Johnson-Lindenstrauss transform [Ailon and Chazelle, 2009]
where R = PHD, compute f(x) in O(d logd)

+1

Sparse Walsh— +1
JL
Hadamard

kxd dxd dxd

72/104

Outline

© Large-scale machine learning

@ Random features

73/104

Motivation

Kernel Phi JL random projection

R“./\R“.. R\“..

g Y
0 R 0 O\ 00\ |
x

o
o

Random features?

74 /104

Fourier feature space

Example: Gaussian kernel

x—x' 2 . , w 2
e_ll . I _ 1 ; / e'wT(X_X)e_ I 2H duw
(2m)2 Jre

= E, cos (wT(x — x'))

=E.p {2 cos (wa + b) cos <wa’ - bﬂ

with
1 _llwl?

(2m)?
This is of the form K(x,x") = CD(X)TCD(x’) with D = 4-00:

w ~ p(dw) =

Q

¢RI L, ((Rd,p(dw)) % ([0, 27r],Z/I)>

e 2 dw, b ~U([0,2n]) .

75 /104

Random Fourier features [Rahimi and Recht, 2008]

@ Fori=1,..., k, sample randomly:
(wi, bi) ~ p(dw) x U ([0, 27])

@ Create random features:

2
Vx e R, fi(x) = \/; cos (w,-Tx + b;)

' /] \ / \ coJT x+b

76 /104

Random Fourier features [Rahimi and Recht, 2008]
For any x, x’ € R, it holds

E [f(x)Tf(x')] = Ek: E [fi(x)f(x)]
i=1
- % é E [2 cos (wTX + b) cos <wTX' + b)}
= K(x,x")

and by Hoeffding's inequality,

ke?

P H F)TF(X) — K(x, x)] > e] <2e7 5

This allows to approximate learning with the Gaussian kernel with a
simple linear model in k dimensions!

77 /104

Generalization

A translation-invariant (t.i.) kernel is of the form

K(x,x") = ¢(x — xX)

Bochner's theorem

For a continuous function ¢ : R — R, K is p.d. if and only if ¢ is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure ;1 € M (R?):

O I ®

Just sample w; ~ Z(ﬂ({:; and b; ~ U ([0, 27]) to approximate any t.i.
kernel K with random features

\/zcos (w,-Tx + b,-)

78 /104

Examples

K(X,X/) — QD(X _ X/) _ / e—in(x—X/)dN(w)

Rd
Kernel o(x) (dw)
Gaussian | exp (— I ’(2”2) (27) 9% exp — <|| w2||2
k
Laplace | exp(—| x|1) [T, m
Cauchy | T[22 ellwlh

79 /104

Performance [Rahimi and Recht, 2008]

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P =30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 svmlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P =50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) <1s
4,900,000 instances 127 dims D =50 P =10 SVM+sampling

80 /104

Outline

© Large-scale machine learning

o Approximate NN

81/104

Motivation

Database

Documents, Images, Videos,

o Database S = {x1,...,x,} C RY, query g € R?

e Naively: O(nd) to compute distances || g — x; || and find the
smallest one

@ For n=1B, d = 10k, it takes 15 hours

@ Projections RY — R¥ with k < d is not good enough if n is large, ..,

ANN

Given € > 0, the approximate nearest neighbor (ANN) problem is:

Find y € S such that Hq—y||§(1—|—e)mig||q—x||
x€

Two popular ANN approaches

© Tree approaches

Recursively partition the data: Divide and Conquer

Expected query time: O(log(n))

Many variants: KDtree, Balltree, PCA-tree, Vantage Point tree
Shown to perform very well in relatively low-dim data

@ Hashing approaches

Each image in database represented as a code
Significant reduction in storage

Expected query time: O(1) or O(n)

Compact codes preferred

83 /104

KD tree

o’:’;’ |
s "'o o S5
sgt Q

@ Axis-parallel splits
@ Along the direction of largest variance
@ Split along the median = balanced partitioning

@ Split recursively until each node has a single data point

84 /104

Search in a KD tree

o Finds the leaf of the query in O(log(n))

@ But backtracking is needed to visit other leaves surrounding the cell
@ As d increases, the number of leaves to visit grows exponentially
*]

Complexity: O(nd log(n)) to build the tree, O(nd) to store the
original data

Works fine up to d = 10 ~ 100

85 /104

Variants

VP-Tree

86 /104

Variants

Ball tree

PCA tree

Random-
Projection tree

top eigenvector

87

104

Binary code using multiple hashing

hz h1 X X1 X2 X3 Xa X5
)8 2 0 1 1 0 il
oX; Y2 1 0 1 0 1
X4 ™Y
o ® °
[) [) o © Yoo
e o o {]
° X, Xs 010 100 111 001 110

No recursive partitioning, unlike trees

ANN with codes:
@ Choose a set of binary hashing functions to design a binary code

@ Index the database = compute codes for all points
© Querying: compute the code of the query, and retrieve the points

with similar codes

88 /104

Hashing
A hash function is a function h: X — Z where

o X is the set of data (R for us)
e Z={1,...,N} is a finite set of codes

hash
keys function hashes
00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05
Sandra Dee .
15

https://en.wikipedia.org/wiki/Hash_function

There is a collision when h(x) = h(x’) for two different entries x # x’

89 /104

https://en.wikipedia.org/wiki/Hash_function

Locality sensitive hashing (LSH)

@ Let a random hash function h: X — Z

o It is a LSH with respect to a similarity function sim(x,x’) on X if
there exists a monotonically increasing function f : R — [0, 1] such
that:

vx,x'e X, P [h(x) = h(x')] = f(sim(x, x"))

@ "Probability of collision increases with similarity”

Likely Unlikely
{ o
h 1 L]
—
o ® e 2 oe
Y 3

90 /104

Example: simHash

* Tx < O

1 ifrix>
reRI~N(O 1) h(x)=dt Trx=0
0 otherwise.

LSH with respect to the cosine similarity sim(x, x") = cos(f) [Goemans
and Williamson, 1995].

91 /104

ANN with LSH

h,4 | h> | Buckets
h (pointers only)
o /1\ 00 00 o & @---
-
0O 01l | » @O ...
- - .p =
10 [E t
- RD s [e 0] mpty
=3
hy, h,: RP - {0,1,2,3} 11 |11 | & -

e hi(q) = hi(x) implies high similarity (locality sensitive)

92 /104

ANN with LSH

Table 1
h}|... |hk |Buckets
00 ... |00 @w ...
00 ... |01 (w0o ..
00 ... |10 Empty
11 ... |11

e 6 o o

Choice of K and L:

Querying: report union of K buckets

n% |
00 | ...
0o | ...
00 | ...

11 ...

Table L

hi
00
o1
10

11

Buckets

Empty

hi(q) = hi(x) implies high similarity (locality sensitive)

Use K contenations, repeated in L tables

o Large m increases precision but decreases recall

o Large L increases recall but also storage

o Optimization is possible to minimize run-time for a given application

92 /104

LSH for || x — x"[|s?

T b d .
hk(x):v”kxt“J wi ~ T P(wi), be ~uU([o, 8]
i=1
h(x) o 1 2 3 4
w,{x+bk

t

@ P a s-stable distribution, i.e., for any x € R, and any w i.i.d. with
wi~ P, xTw ~ || x||sw?.
@ s-stable distributions exist for p € (0, 2]:
o Gaussian N(0,1) is 2-stable
o Cauchy dx/ (m(1 + x?)) is 1-stable
@ Then P[hk(x) = hi(x")] increases as || x — x"||s decreases

93 /104

Outline

© Large-scale machine learning

@ Shingling, hashing, sketching

94 /104

Motivation

@ The hashing / LSH trick is a fast random projection to compact
binary codes

o Initially proposed for ANN problems, it can also be used for more
general learning problems

o It is particularly effective when data are first converted to huge
binary vectors, using a specific similarity measure (the resemblance).

@ Applications: texts, time series, images...

95 /104

Shingling and resemblance

e Given some input space X (e.g., texts, times series...), a shingling is
a representation as large binary vector

x e {0,1}°

e Equivalently, represent x as a subset of S, € Q ={0,...,D — 1}
o Example: represent a text by the set of w-shingles it contains, i.e.,
sequences of w words. Typically, w =5, 10° words, D = 10°5, but
very sparse.
@ A common measure of similarity between two such vectors is the
resemblance (a.k.a. Jaccart or Tanimoto similarity):
‘51 N 52‘
R(x1,x) = —————
(x1,x2) S US|
@ But computing R(x1,x2) is expensive, and not scalable for NN
search or machine learning

96 /104

Minwise hashing

o Let m € Sp be a random permutation of Q
o Let hy - {0,1}P — Q assign to S C Q the smallest index of 7(S):

hz(x) = min{m(i) : i € S5}

Theorem [Broder, 1997]

Minwise hashing is a LSH with respect to the resemblance:

P lhr(x1) = hr(x2)] = R(x1,x2)
Proof:

@ The smallest index min(h(x1), hz(x2)) correspond a random
element of 51 U S,

o h(x1) = he(xp) if itisin SN S,
@ This happens with probability R(x1, x2)

97 /104

Applications of minwise hashing

o If we pick k random permutations, we can represent x by
(h1(x),. .., hi(x)) € {0,1}P*
@ Used for ANN, using the general LSH technique discussed earlier
@ Learning linear models as an approximation to learning a nonlinear
function with the resemblance kernel!
@ Various tricks to improve scalability
e b-bit minwise hashing [Li and Konig, 2010]: only keep the last b bits
oz hx(x), which reduces the dimensionality of the hashed matrix to
2%k
o One-permutation hashing [Li et al., 2012]: use a single permutation,

keep the smallest index in each consecutive block of size k
i, 2 , 3 , 4

1 1 1
0 1 2 3,45 6 7:8 9 10 11,1213 14 15
T T T

1 1 1
™S;) 00 10!11001:0000!0100

1 1 1
uS): 1 001'0010!0000!0100
1 1 1

S): 1100,0000,0010,1000

1This shows in particular that the resemblance is positive definite
98 /104

Hash kernel [Shi et al., 2009]

@ Goal: improve the scalability of random projections or minwise
hashing, both in memory (sparsity) and processing time

@ Simple idea:

Let h: [1,d] — [1, k] a hash function

For x € RY (or {0,1}7) let ®(x) € R with

Vi=1,...,k o(x)= > X

Jjel,d]: h(j)=i

" Accumulate coordinates i of x for which h(i) is the same
Repeat L times and concatenate if needed, to limit the effect of
collisions

o Advantages

o No memory needed for projections (vs. LSH)
o No need for dictionnary (just a hash function that can hash anything)
o Sparsity preserving

99 /104

Outline

@ Introduction
@ Standard machine learning

© Large-scale machine learning

@ Conclusion

100/ 104

What we saw

@ Most standard ML algorithms do not scale to modern, large-scale
problems

@ They are being revisited with scalability as new constraint, both in
theory and in practice

@ Generally, trading accuracy for fast approximations can be beneficial:

o Optimization by SGD

e Random projections, sketching

@ Need to understand mathematics, statistics, algorithms, hardware

101 /104

What we did not see

A lot!
e Hardware (distributed computing and storage, GPU, ...)
o Data streams
@ Other models like deep learning or graphical models
@ Other learning paradigms like reinforcement learning

@ A lot of recent results (this is a very active research field!)

MERCI!

102 /104

References |

D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.
J. Comput. Syst. Sci., 66(4):671-687, 2003. doi: 10.1016/S0022-0000(03)00025-4. URL
http://dx.doi.org/10.1016/50022-0000(03)00025-4.

N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302-322, 2009. doi: 10.1137/060673096. URL
http://dx.doi.org/10.1137/060673096.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th annual ACM workshop on Computational Learning
Theory, pages 144-152, New York, NY, USA, 1992. ACM Press. URL
http://www.clopinet.com/isabelle/Papers/colt92.ps.Z.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20, pages
161-168. Curran Associates, Inc., 2008. URL
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf.

A. Z. Broder. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences, pages 21-29, 1997. doi:
10.1109/SEQUEN.1997.666900. URL
http://dx.doi.org/10.1109/SEQUEN. 1997 . 666900.

M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM J. Comput., 24(2):296-317, apr 1995. doi:
10.1137/50097539793242618. URL http://dx.doi.org/10.1137/50097539793242618.

103 /104

http://dx.doi.org/10.1016/S0022-0000(03)00025-4
http://dx.doi.org/10.1137/060673096
http://www.clopinet.com/isabelle/Papers/colt92.ps.Z
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning.pdf
http://dx.doi.org/10.1109/SEQUEN.1997.666900
http://dx.doi.org/10.1137/S0097539793242618

References |l

W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemp. Math., 26:189-206, 1984. doi: 10.1090/conm/026/737400. URL
http://dx.doi.org/10.1090/conm/026/737400.

S. Le Cessie and J. C. van Houwelingen. Ridge estimators in logistic regression. Appl. Statist.,
41(1):191-201, 1992. URL http://www.jstor.org/stable/2347628.

P. Li and A. C. Kénig. b-bit minwise hashing. In WWW, pages 671-680, Raleigh, NC, 2010.

P. Li, A. O., and C. hui Z. One permutation hashing. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 3113-3121. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Adv. Neural. Inform. Process Syst., volume 20,
pages 1177-1184. Curran Associates, Inc., 2008. URL http://papers.nips.cc/paper/
3182-random-features-for-large-scale-kernel-machines.pdf.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan. Hash kernels for
structured data. Journal of Machine Learning Research, 10:2615-2637, 2009.

C. Stone. Consistent nonparametric regression. Ann. Stat., 8:1348-1360, 1977. URL
http://links. jstor.org/sici?sici=0090-5364%28197707%295%3A4%3C595%3ACNR),3E2.
0.C0%3B2-0.

104 /104

http://dx.doi.org/10.1090/conm/026/737400
http://www.jstor.org/stable/2347628
http://papers.nips.cc/paper/4778-one-permutation-hashing.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://papers.nips.cc/paper/3182-random-features-for-large-scale-kernel-machines.pdf
http://links.jstor.org/sici?sici=0090-5364%28197707%295%3A4%3C595%3ACNR%3E2.0.CO%3B2-O
http://links.jstor.org/sici?sici=0090-5364%28197707%295%3A4%3C595%3ACNR%3E2.0.CO%3B2-O

	Introduction
	Standard machine learning
	Dimension reduction: PCA
	Clustering: k-means
	Regression: ridge regression
	Classification: kNN, logistic regression and SVM
	Nonlinear models: kernel methods

	Large-scale machine learning
	Scalability issues
	The tradeoffs of large-scale learning
	Random projections
	Random features
	Approximate NN
	Shingling, hashing, sketching

	Conclusion

