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Outline

@ Introduction

© Standard machine learning
@ Dimension reduction: PCA
@ Clustering: k-means
@ Regression: ridge regression
o Classification: kNN, logistic regression and SVM
@ Nonlinear models: kernel methods

© Large-scale machine learning
@ Scalability issues
@ The tradeoffs of large-scale learning
@ Random projections
@ Random features
@ Approximate NN
@ Shingling, hashing, sketching

@ Conclusion
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2017 is the year of Machine Learning. Here's why
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Machine learning is maybe the most sweltering thing in Silicon Valley at this
moment. Particularly deep learning. The reason why it is so hot is on the
grounds that it can assume control of numerous repetitive, thoughtless tasks.
It'll improve doctors, and make lawyers better lawyers. What's more, it makes
cars drive themselves.
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Mobility
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Health

Molecular Profiling \‘ Prognostic Markers <

Markers predictive of drug
sensitivity/resistance

adverse events

https://pct.mdanderson.org

Markers predictive of@.‘ﬂ‘:
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A common process: learning from data

Data Algorithm Model
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https://www.linkedin.com/pulse/supervised-machine-learning-pega-decisioning-solution-nizam-muhammad

e Given examples (training data), make a machine learn how to
predict on new samples, or discover patterns in data

@ Statistics 4+ optimization + computer science

@ Gets better with more training examples and bigger computers
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Large-scale ML?

d dimensions

t tasks

X

n samples

Y

Iris dataset: n=150,d =4,t =1

Cancer drug sensitivity: n =1k, d = 1M, t = 100

Imagenet: n=14M,d = 60k+,t = 22k
Shopping, e-marketing n = O(M),d = O(B), t = O(100M)
Astronomy, GAFA, web... n= 0O(B),d = O(B),t = O(B)
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Today's goals

@ Review a few standard ML techniques

PCA (normaid dota)

@ Introduce a few ideas and techniques to scale them to modern, big
datasets
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Main ML paradigms

@ Unsupervised learning
e Dimension reduction
o Clustering
o Density estimation
o Feature learning
@ Supervised learning
o Regression
o Classification
o Structured output classification

@ Semi-supervised learning

@ Reinforcement learning
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Main ML paradigms

@ Unsupervised learning
o Dimension reduction: PCA
o Clustering: k-means
e Density estimation
o Feature learning
@ Supervised learning

o Regression: OLS, ridge regression
o Classification: kNN, logistic regression, SVM
o Structured output classification

@ Semi-supervised learning

@ Reinforcement learning
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Outline

© Standard machine learning
@ Dimension reduction: PCA
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Motivation

d k<d

@ Dimension reduction
@ Preprocessing (remove noise, keep signal)
e Visualization (k = 2,3)

@ Discover structure

PCA (normalized data)

18/
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PCA definition

o Training set S = {x1,...,x,} C R?

@ Fori=1,...,k <d, PC;is the linear projection onto the direction
that captures the largest amount of variance and is orthogonal to
the previous ones:

2
n

n

T 1 T

ui € argmax Xpu—=% xu
|ul|=1,uLl{u,....,ui—1} i—1 n j=1
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PCA solution

o Let X be the centered n x d data matrix
@ PCA solves, for i =1,...,k < d:

ui € argmax u' X Xu
|ul|=1, uLl{u1,...,ui—1}

@ Solution: wu; is the i-th eigenvector of C = XTX, the empirical
covariance matrix
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PCA

example

PC2

> data(iris)

v

vV W N

head(iris, 3)
Sepal.Length Sepal.Width

5.1
4.9
4.7

Iris dataset
< % o o setosa
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° © virginica
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PC1

3.5 1.4
3.0 1.4
3.2 1.3

m <- princomp(log(iris[,1:4]))

Petal.Length Petal.Width Species
0.2 setosa
0.2 setosa
0.2 setosa
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PCA complexity

e Memory: store X and C: O(max(nd, d?))
o Compute C: O(nd?)
o Compute k eigenvectors of C (power method): O(kd?)

Computing C is more expensive than computing its eigenvectors (n > k)!

n=1B,d = 100M

Store C: 40,0007B

Compute C: 2 x 102FLOPS = 20yottaFLOPS (about 300 years of the
most powerful supercomputer in 2016)
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Outline

© Standard machine learning

o Clustering: k-means
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Motivation

Iris dataset
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@ Unsupervised learning
@ Discover groups

@ Reduce dimension
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Motivation

Iris k-means, k=5

< % o o Cluster 1
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@ Unsupervised learning
@ Discover groups

@ Reduce dimension
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k-means definition

o Training set S = {x1,...,x,} C R
e Given k, find C = (Cy,...,C,) € {1,k}" that solves

n

. L 2

min 3" 1%~ |
i=1

where is the barycentre of data in class i.

@ This is an NP-hard problem. k-means finds an approximate solution
by iterating
@ Assignment step: fix u, optimize C

Vi=1,... G+ i -
i=1...,n G+« arg {T,'.?,k}HX’ g ||

@ Update step

1
Vi=1,...,k, ﬂ,(-mZXJ
"jig=i
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k-means example

Iris dataset
<~ 'o °
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> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46
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k-means example

Iris k-means, k =2

. % o o Cluster 1
o Cluster 2

0.4
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> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46
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k-means example

PC2
0.0 0.2 0.4

-0.2

-0.4

> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)

Iris k-means, k=3

%

'Yl

o Cluster 1
o Cluster 2
o Cluster 3

PC1

> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48
2 50 0
3 0 2

4
0
46
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k-means example

Iris k-means, k =4

< % o o Cluster 1
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> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46
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k-means example

Iris k-means, k=5
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> irisCluster <- kmeans(log(iris[, 1:4]1), 3, nstart = 20)
> table(irisCluster$cluster, iris$Species)

setosa versicolor virginica

1 0 48 4
2 50 0 0
3 0 2 46

26 /104



k-means complexity

e Each update step: O(nd)
e Each assgnment step: O(ndk)
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Outline

© Standard machine learning

@ Regression: ridge regression
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Motivation
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@ Predict a continuous output from an input
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Motivation

@ Predict a continuous output from an input
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Model

Training set S = {(x1,y1),---, (X0, ¥n)} C RI x R
Fit a linear function:

fa(x) = BT x
@ Goodness of fit measured by residual sum of squares:

n

RSS(B) =Y _ (vi — fa(xi))®

i=1

Ridge regression minimizes the regularized RSS:

d
mﬂin RSS(8) + A ; 32

Solution (set gradient to 0):
A -1
B= (XTX + >\I> xTy
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Ridge regression complexity

o Compute X' X: O(nd?)
o Inverse (XTX + ) : O(d®)

Computing X T X is more expensive than inverting it!
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Outline

@ Standard machine learning

o Classification: kNN, logistic regression and SVM
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Motivation

oo ‘..
O O 4
O O ®

@ Predict the category of a data

@ 2 or more (sometimes many) categories
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Motivation

@ Predict the category of a data

@ 2 or more (sometimes many) categories
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k-nearest neigbors (kNN)

e
¥
@og @

250

(Hastie et al. The elements of statistical learning. Springer, 2001.)
e Training set S = {(x1,¥1),---,(Xn,¥n)} CR? x {-1,1}
@ No training

@ Given a new point x € RY, predict the majority class among its k
nearest neighbors (take k odd)
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kNN properties

Uniform Bayes consistency [Stone, 1977]
o Take k = \/n (for example)
@ Let P be any distribution over (X, Y) pairs
@ Assume training data are random pairs sampled i.i.d. according to P
@ Then the k-NN classifier #, satisfies almost surely:

lim P(F(X)#Y)= inf P(f(X)#Y)

n—-+o00 fmeasurable

Complexity:
e Memory: story X is O(nd)
@ Training time: 0
e Prediction: O(nd) for each test point
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Linear models for classification

o Training set S = {(x1,%1),.-., (Xn, yn)} C RY x {~1,1}
e Fit a linear function

fa(x) = B x
@ The prediction on a new point x € R is:

+1 if fz(x) >0,
—1 otherwise.
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Large-margin classifiers

© 0 0q
O O

o For any f : R? — R, the margin of f on an (x,y) pair is
yf(x)

@ Large-margin classifiers fit a classifier by maximizing the margins on
the training set:

min ;f(yl'fﬁ(xl')) +A8" B

for a convex, non-increasing loss function £ : R — R+
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Loss function examples

5
—
4 — hinge
square
3 logistic
2
1 —
BN
3 =2 -1 0o 1 =2 3 4
Loss Method l(u)
0-1 none 1(u<0)
Hinge | Support vector machine (SVM) | max (1 — u,0)
Logistic Logistic regression log (14 e™")
Square Ridge regression (1- u)2
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Ridge logistic regression [Le Cessie and van Houwelingen,
1992]

n

min J(B) = Z In (1 + e_y’ﬂTX’) +ABT8

RP
pe i=1

@ Can be interpreted as a regularized conditional maximum likelihood
estimator

@ No explicit solution, but smooth convex optimization problem that
can be solved numerically by Newton-Raphson iterations:

grew _ gold _ [V%J (Bo/d>}_1v5./ (Bold> '

o Each iteration amounts to solving a weighted ridge regression
problem, hence the name iteratively reweighted least squares (IRLS).

o Complexity O(iterations * (nd® + d*))
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SVM [Boser et al., 1992]

min z”: max (0, 1-— y,ﬂTXi) + 2878
i=1

BERP

@ A non-smooth convex optimization problem (convex quadratic
program)
@ Equivalent to the dual problem

1
max2a'Y —a' XXTa st. 0<yjo; < —fori=1,...,n
a€cR" 2\
@ The solution 8* of the primal is obtained from the solution a* of
the dual:

B =XTa" . (x) = (59 x = (0) T Xx

Training complexity: O(n?) to store XX, O(n?) to find a*
Prediction: O(d) for (8*)"x, O(nd) for (a*)" Xx
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Outline

© Standard machine learning

@ Nonlinear models: kernel methods
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Motivation o
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Model

@ Learn a function f : R? — R of the form

f(

x) = Z a;iK(x;, x)
i=1

e For a positive definite (p.d.) kernel K : R? x RY — R, such as

Linear

Polynomial

Gaussian

Min/max

U2
K(x,x") = exp <HX alll )
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Feature space

o A function K : R? x RY — R is a p.d. kernel if and only if there
existe a mapping ® : RY — RP, for some D € NU {+00}, such that

Vx,x € RY,

@ f is then a linear function in RD'

= Zn: a;K(X;,
i=1

for ,8 = 27:1 Oz,'(D(X,').
X

) = o(x)Td(xX)

= BT o(x)
12
o
le) @]
%00 %o
° o
° Coo
°
o0 000 x22
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Learning

x1 x12
5 P o o
o o© _o
o | o
(@] O A
O [e'sYe) @]
{. x (@] X2 ° OOO
O e °
Rel e o oo ©® 000 y22
o) o)
o) - O

e We can learn f(x) = > ; a;K(x;, x) by fitting a linear model
BT®(x) in the feature space
e Example: ridge regression / logistic regression / SVM

min Zf(y,,ﬂ d(x;)) + PYeRNG

BERD ©

@ But D can be very large, even infinite...
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Kernel tricks

o K(x,x") = d(x)Td(x') can be quick to compute even if D is large
(even infinite)

o For a set of training samples {xi,...,x,} C RY let K, the n x n
Gram matrix:
[Knl; = K(xi, X))

o For 3 =57, a;j®(x;) we have
BTd(x) =[Ka], and B'B=a'Ka

@ We can therefore solve the equivalent problem in o € R”

. ) . T
ch;{gﬂéﬂ(y,, [Ka];) + Ao’ Ka

46
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Example: kernel ridge regression (KRR)
. d 2
min 3 (3= 7o)+ 357

@ Solve in RP:

B = (e(x)To(x) + A/)*l o(X)"Y

DYD
@ Solve in R":
a=(K+A)ly
——

nxn
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KRR with Gaussian RBF kernel

n

min (YI - 5T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel
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KRR with Gaussian RBF kernel

RN T 2 T / | x —x' H2
min yi— B ®(x;))] +A8' 05 Kx,x')=exp| —55—
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KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,BTd>(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>
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KRR with Gaussian RBF kernel

n

min (YI - ,8T¢(Xi))2 +2378 K(x,x') = exp <HX_XIH2>

d 202
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Complexity

lambda = 1

o Compute K: O(dn?)
o Store K: O(n?)

e Solve a: O(n*™3)

e Compute f(x) for one x: O(nd)
@ Unpractical for n > 10 ~ 100k
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Outline

© Large-scale machine learning
@ Scalability issues
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What is "large-scale” ?

e Data cannot fit in RAM

@ Algorithm cannot run on a single machine in reasonable time
(algorithm-dependent)

@ Sometimes even O(n) is too large! (e.g., nearest neighbor in a
database of O(B+) items)

e Many tasks / parameters (e.g., image categorization in O(10M)
classes)

@ Streams of data

@‘Q %/“‘\'
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Things to worry about

Training time (usually offline)

°
@ Memory requirements
@ Test time

°

Complexities so far

Method Memory | Training time | Test time
PCA 0(d?) O(nd?) O(d)
k-means O(nd) O(ndk) O(kd)
Ridge regression 0(d?) O(nd?) O(d)
kNN O(nd) 0 O(nd)
Logistic regression O(nd) O(nd?) O(d)
SVM, kernel methods | O(n?) O(n%) O(nd)
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Techniques for large-scale machine learning

@ Good baselines:

e Subsample data and run standard method
e Split and run on several machines (depends on algorithm)

@ Need to revisit standard algorithms and implementation, taking into
account scalability

on>)!

n

@ Trade exactness for scalability
@ Compress, sketch, hash data in a smart way
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Outline

© Large-scale machine learning

@ The tradeoffs of large-scale learning
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Motivation

o Classical learning theory analyzes the trade-off between:
e approximation error (how well we approximate the true function)
e estimation errors (how well we estimate the parameters)

Approximation error

@ But reaching the best trade-off for a given n may be impossible with
limited computational resources

@ We should include in the trade-off the computational budget, and
see which optimization algorithm gives the best trade-off!

o Seminal paper of Bottou and Bousquet [2008]
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Classical ERM setting

Goal: learn a function f : R? = Y (¥ =R or {~1,1})
P unknown distribution over RY x )

Training set: S = {(X1, Y1), ..., (Xn, Ya)} C RY x Y i.i.d. following
P

Fix a class of functions F C {f -RY — R}
Choose a loss £(y, f(x))

Learning by empirical risk minimization

(]

. 1 ¢
fo € arg min Ralf] = — > e(YL (X))
i=1

Hope that f, has a small risk:

R[fa] = EC(Y, fa(X))
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Classical ERM setting

@ The best possible risk is

R*= min RI[f]
FRISY

@ The best achievable risk over F is
R% = min R[f
F=mn []
@ We then have the decomposition
R[f)] — R* = R[f)] — R + R — R,
—_— ~—_—

estimation error €est approximation errror €zpp

Approximation error
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Optimization error

@ Solving the ERM problem may be hard (when n and d are large)

o Instead we usually find an approximate solution #, that satisfies
Ralfal < Ralfal + p
@ The excess risk of f,, is then

e=Rlf] —R* = Rlfa] — R[fa] + €est + €app
—_—————

optimization error eopt
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A new trade-off

€ = €app + €est + Eopt
Problem
@ Choose F, n, p to make € as small as possible
@ Subject to a limit on n and on the computation time T

Table 1: Typical variations when F, n, and p increase.

F n p
Eapp  (approximation error) Y\
Eost  (estimation error) PARRN
Eopt  (optimization error) e A
T (computation time) S 0N

Large-scale or small-scale?
@ Small-scale when constraint on n is active
o Large-scale when constraint on T is active
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Comparing optimization methods

n
in Ralfsl =S £(yi, fa(x;
semin_ | Ralfs] ; (i fa(xi))

o Gradient descent (GD):

ORn(f5,)
1

Bry1 < Bt

@ Second-order gradient descent (2GD), assuming Hessian H known

_10Rn(f3,)
—H 1 n\'B:
Be+1 < Bt 785
@ Stochastic gradient descent (SGD):
n 0y, 15, (xt))

Be1 < Bt — " 93
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Results [Bottou and Bousquet, 2008]

Algorithm  Cost of one Iterations Time to reach Time to reach
iteration to reach p accuracy p E < c(Eapp +€)
. %k 2
GD O(nd) @] (K log %) (@] (ndn log %) (@] ( gl/(, log %)
2GD O(d* + nd) (@] (log log %) (9(((12 + nd) log log %) @] (Ef% log é log log %)
vi? 1 dvr? dvk?

@ « € [1/2,1] comes from the bound on £.5; and depends on the data
@ In the last column, n and p are optimized to reach ¢ for each method
@ 2GD optimizes much faster than GD, but limited gain on the final
performance limited by ¢ 1/® coming from the estimation error
e SGD:
o Optimization speed is catastrophic
o Learning speed is the best, and independent of «
@ This suggests that SGD is very competitive (and has become the de
facto standard in large-scale ML)
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[[lustration

e Results: Linear SVM
0y, y) =max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy, y) =log(1+exp(—yy)) A= 0.00001

Training Time Primal cost Test Error

TRON(LibLinear, ¢ = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, £ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

63 /104


https://bigdata2013.sciencesconf.org/conference/bigdata2013/pages/bottou.pdf

Outline

© Large-scale machine learning

@ Random projections
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Motivation

o Affects scalability of algorithms, e.g., O(nd) for kNN or O(d®) for
ridge regression
@ Hard to visualize

@ (Sometimes) counterintuitive phenomena in high dimension, e.g.,
concentration of measure for Gaussian data

d=1 d=10 d=100

300
150

Frequency
200
Frequency

100
Frequency

50

100
50 100 150 200 250

IIxlifsart(k) lixll/sart(k) lixll/sart(k)

o Statistical inference degrades when d increases (curse of dimension)
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Dimension reduction with PCA

Projects data onto k < d dimensions that captures the largest
amount of variance

Also minimizes total reconstruction errors:

mmZHx, Ms, (x) 2

But computational expensive: O(nd?)

No theoretical garantee on distance preservation
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Linear dimension reduction

X = X x R
R S
nxk nxd dxk

o Can we find R efficiently?
@ Can we preserve distances?

Vij=1...on [[f(x) = FOg) = 1% = x|l

@ Note: when d > n, we can take k = n and preserve all distances
exactly (kernel trick)
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Random projections

Simply take a random projection matrix:

f(x) = \}ERTX with  R; ~N(0,1)

Theorem [Johnson and Lindenstrauss, 1984]
For any ¢ > 0 and n € N, take
k>4(E/2- 63/3)_1 log(n) ~ e 2 log(n).
Then the following holds with probabiliy at least 1 — 1/n:
Vij=1,....n (L=e)llxi—x > <l f(x) =) > < (Q+e)]x—x |2

@ k does not depend on d!
on=1IM, e=01 — k=~5K
on=1B,¢=0.1 — k=38K
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Proof (1/3)

@ For a single dimension, g; = rou:

E(q)) = E() u =
E(q)* =u E(rr] Ju=|lu]?

o For the k-dimensional projection f(u) = 1/vVkR u:

| F(u)]? = qu RS0

Ell f(u)]* = kZEq,—IIUII2

o Need to show that || f(u) ||? is concentrated around its mean
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Proof (2/3)

PIUFIP>@+e)ul?]
= P [X*(k) > (1 + €)k]
—p [e,\f(k) > e>\(1+e)k}

{ Ax2 (k)} e M1+o)k

3

—A(1+€)k

=(1-2)\)"z2e

e)k/

N

( (1+e)e
e —(e?/2—€%/3)k/2

= n -2

IN

Similarly we get

PIIFI? <

(1

(Markov)

(MGF of x?(k) for 0 < X < 1/2)
(take A = €/2(1 +¢€))

(use log(1 + x) < x — x*/2 + x3/3)
(take k = 4 (¢2/2 — €2 /3) log(n))

—e)llul’] <n7?
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Proof (3/3)

@ Apply with u = x; — x; and use linearity of f to show that for an
(xi, ;) pair, the probability of large distortion is < 2n~2
@ Union bound: for all n(n — 1)/2 pairs, the probability that at least
one has large distortion is smaller than
n(n—1) 2 1

o1 0
2 ><n2 n
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Scalability

n=0(1B); d = O(1M) = k= 0O(10K)
Memory: need to store R, O(dk) ~ 40GB
Computation: X x R in O(ndk)
Other random matrices R have similar properties but better
scalability, e.g.:
e "add or subtract” [Achlioptas, 2003], 1 bit/entry, sizexx 1,25GB

R — +1  with probability 1/2
Y7 1=1 with probability 1/2

o Fast Johnson-Lindenstrauss transform [Ailon and Chazelle, 2009]
where R = PHD, compute f(x) in O(d logd)

+1

Sparse Walsh— +1
JL
Hadamard

kxd dxd dxd
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Outline

© Large-scale machine learning

@ Random features
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Motivation

Kernel Phi JL random projection

R“./\R“.. R\“..

g Y
0 R 0 O\ 00\ |
x

o
o

Random features?
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Fourier feature space

Example: Gaussian kernel

x—x' 2 . , w 2
e_ll . I _ 1 ; / e'wT(X_X )e_ I 2H duw
(2m)2 Jre

= E, cos (wT(x — x'))

=E.p {2 cos (wa + b) cos <wa’ - bﬂ

with
1 _llwl?

(2m)?
This is of the form K(x,x") = CD(X)TCD(x’) with D = 4-00:

w ~ p(dw) =

Q

¢RI L, ((Rd,p(dw)) % ([0, 27r],Z/I)>

e 2 dw, b ~U([0,2n]) .
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Random Fourier features [Rahimi and Recht, 2008]

@ Fori=1,..., k, sample randomly:
(wi, bi) ~ p(dw) x U ([0, 27])

@ Create random features:

2
Vx e R, fi(x) = \/; cos (w,-Tx + b;)

' /] \ / \ coJT x+b
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Random Fourier features [Rahimi and Recht, 2008]
For any x, x’ € R, it holds

E [f(x)Tf(x')] = Ek: E [fi(x)f(x)]
i=1
- % é E [2 cos (wTX + b) cos <wTX' + b)}
= K(x,x")

and by Hoeffding's inequality,

ke?

P H F)TF(X) — K(x, x) ] > e] <2e7 5

This allows to approximate learning with the Gaussian kernel with a
simple linear model in k dimensions!
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Generalization

A translation-invariant (t.i.) kernel is of the form

K(x,x") = ¢(x — xX)

Bochner's theorem

For a continuous function ¢ : R — R, K is p.d. if and only if ¢ is the
Fourier-Stieltjes transform of a symmetric and positive finite Borel
measure ;1 € M (R?):

O I ®

Just sample w; ~ Z(ﬂ({:; and b; ~ U ([0, 27]) to approximate any t.i.
kernel K with random features

\/zcos (w,-Tx + b,-)
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Examples

K(X,X/) — QD(X _ X/) _ / e—in(x—X/)dN(w)

Rd
Kernel o(x) (dw)
Gaussian | exp (— I ’(2”2) (27) 9% exp — <|| w2||2
k
Laplace | exp(—| x|1) [T, m
Cauchy | T[22 ellwlh
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Performance [Rahimi and Recht, 2008]

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P =30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 svmlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P =50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) <1s
4,900,000 instances 127 dims D =50 P =10 SVM+sampling
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Outline

© Large-scale machine learning

o Approximate NN
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Motivation

Database

Documents, Images, Videos,

o Database S = {x1,...,x,} C RY, query g € R?

e Naively: O(nd) to compute distances || g — x; || and find the
smallest one

@ For n=1B, d = 10k, it takes 15 hours

@ Projections RY — R¥ with k < d is not good enough if n is large, ..,



ANN

Given € > 0, the approximate nearest neighbor (ANN) problem is:

Find y € S such that Hq—y||§(1—|—e)mig||q—x||
x€

Two popular ANN approaches

© Tree approaches

Recursively partition the data: Divide and Conquer

Expected query time: O(log(n))

Many variants: KDtree, Balltree, PCA-tree, Vantage Point tree
Shown to perform very well in relatively low-dim data

@ Hashing approaches

Each image in database represented as a code
Significant reduction in storage

Expected query time: O(1) or O(n)

Compact codes preferred
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KD tree

o’:’;’ |
s "'o o S5
sgt Q

@ Axis-parallel splits
@ Along the direction of largest variance
@ Split along the median = balanced partitioning

@ Split recursively until each node has a single data point
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Search in a KD tree

o Finds the leaf of the query in O(log(n))

@ But backtracking is needed to visit other leaves surrounding the cell
@ As d increases, the number of leaves to visit grows exponentially
*]

Complexity: O(nd log(n)) to build the tree, O(nd) to store the
original data

Works fine up to d = 10 ~ 100
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Variants

VP-Tree
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Variants

Ball tree

PCA tree

Random-
Projection tree

top eigenvector
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Binary code using multiple hashing

hz h1 X X1 X2 X3 Xa X5
)8 2 0 1 1 0 il
oX; Y2 1 0 1 0 1
X4 ™Y
o ® °
[ ) [ ) o © Yoo
e o o { ]
° X, Xs 010 100 111 001 110

No recursive partitioning, unlike trees

ANN with codes:
@ Choose a set of binary hashing functions to design a binary code

@ Index the database = compute codes for all points
© Querying: compute the code of the query, and retrieve the points

with similar codes
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Hashing
A hash function is a function h: X — Z where

o X is the set of data (R for us)
e Z={1,...,N} is a finite set of codes

hash
keys function hashes
00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05
Sandra Dee .
15

https://en.wikipedia.org/wiki/Hash_function

There is a collision when h(x) = h(x’) for two different entries x # x’
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Locality sensitive hashing (LSH)

@ Let a random hash function h: X — Z

o It is a LSH with respect to a similarity function sim(x,x’) on X if
there exists a monotonically increasing function f : R — [0, 1] such
that:

vx,x'e X, P [h(x) = h(x')] = f(sim(x, x"))

@ "Probability of collision increases with similarity”

Likely Unlikely
{ o
h 1 L]
—
o ® e 2 oe
Y 3
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Example: simHash

* Tx < O

1 ifrix>
reRI~N(O 1) h(x)=dt Trx=0
0 otherwise.

LSH with respect to the cosine similarity sim(x, x") = cos(f) [Goemans
and Williamson, 1995].

91 /104



ANN with LSH

h,4 | h> | Buckets
h (pointers only)
o /1\ 00 00 o & @---
-
0O 01l | » @O ...
- - .p =
10 [ E t
- RD s [e 0] mpty
=3
hy, h,: RP - {0,1,2,3} 11 |11 | & -

e hi(q) = hi(x) implies high similarity (locality sensitive)
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ANN with LSH

Table 1
h}|... |hk |Buckets
00 ... |00 @w ...
00 ... |01 (w0o ..
00 ... |10  Empty
11 ... |11

e 6 o o

Choice of K and L:

Querying: report union of K buckets

n% |
00 | ...
0o | ...
00 | ...

11 ...

Table L

hi
00
o1
10

11

Buckets

Empty

hi(q) = hi(x) implies high similarity (locality sensitive)

Use K contenations, repeated in L tables

o Large m increases precision but decreases recall

o Large L increases recall but also storage

o Optimization is possible to minimize run-time for a given application
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LSH for || x — x"[|s?

T b d .
hk(x):v”kxt“J wi ~ T P(wi),  be ~uU([o, 8]
i=1
h(x) o 1 2 3 4
w,{x+bk

t

@ P a s-stable distribution, i.e., for any x € R, and any w i.i.d. with
wi~ P, xTw ~ || x||sw?.
@ s-stable distributions exist for p € (0, 2]:
o Gaussian N(0,1) is 2-stable
o Cauchy dx/ (m(1 + x?)) is 1-stable
@ Then P[hk(x) = hi(x")] increases as || x — x"||s decreases
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Outline

© Large-scale machine learning

@ Shingling, hashing, sketching
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Motivation

@ The hashing / LSH trick is a fast random projection to compact
binary codes

o Initially proposed for ANN problems, it can also be used for more
general learning problems

o It is particularly effective when data are first converted to huge
binary vectors, using a specific similarity measure (the resemblance).

@ Applications: texts, time series, images...
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Shingling and resemblance

e Given some input space X (e.g., texts, times series...), a shingling is
a representation as large binary vector

x e {0,1}°

e Equivalently, represent x as a subset of S, € Q ={0,...,D — 1}
o Example: represent a text by the set of w-shingles it contains, i.e.,
sequences of w words. Typically, w =5, 10° words, D = 10°5, but
very sparse.
@ A common measure of similarity between two such vectors is the
resemblance (a.k.a. Jaccart or Tanimoto similarity):
‘51 N 52‘
R(x1,x) = —————
(x1,x2) S US|
@ But computing R(x1,x2) is expensive, and not scalable for NN
search or machine learning
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Minwise hashing

o Let m € Sp be a random permutation of Q
o Let hy - {0,1}P — Q assign to S C Q the smallest index of 7(S):

hz(x) = min{m(i) : i € S5}

Theorem [Broder, 1997]

Minwise hashing is a LSH with respect to the resemblance:

P lhr(x1) = hr(x2)] = R(x1,x2)
Proof:

@ The smallest index min(h(x1), hz(x2)) correspond a random
element of 51 U S,

o h(x1) = he(xp) if itisin SN S,
@ This happens with probability R(x1, x2)
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Applications of minwise hashing

o If we pick k random permutations, we can represent x by
(h1(x),. .., hi(x)) € {0,1}P*
@ Used for ANN, using the general LSH technique discussed earlier
@ Learning linear models as an approximation to learning a nonlinear
function with the resemblance kernel!
@ Various tricks to improve scalability
e b-bit minwise hashing [Li and Konig, 2010]: only keep the last b bits
oz hx(x), which reduces the dimensionality of the hashed matrix to
2%k
o One-permutation hashing [Li et al., 2012]: use a single permutation,

keep the smallest index in each consecutive block of size k
i, 2 , 3 , 4

1 1 1
0 1 2 3,45 6 7:8 9 10 11,1213 14 15
T T T

1 1 1
™S;) 00 10!11001:0000!0100

1 1 1
uS): 1 001'0010!0000!0100
1 1 1

S): 1100,0000,0010,1000

1This shows in particular that the resemblance is positive definite
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Hash kernel [Shi et al., 2009]

@ Goal: improve the scalability of random projections or minwise
hashing, both in memory (sparsity) and processing time

@ Simple idea:

Let h: [1,d] — [1, k] a hash function

For x € RY (or {0,1}7) let ®(x) € R with

Vi=1,...,k o(x)= > X

Jjel,d]: h(j)=i

" Accumulate coordinates i of x for which h(i) is the same
Repeat L times and concatenate if needed, to limit the effect of
collisions

o Advantages

o No memory needed for projections (vs. LSH)
o No need for dictionnary (just a hash function that can hash anything)
o Sparsity preserving
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@ Conclusion
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What we saw

@ Most standard ML algorithms do not scale to modern, large-scale
problems

@ They are being revisited with scalability as new constraint, both in
theory and in practice

@ Generally, trading accuracy for fast approximations can be beneficial:

o Optimization by SGD

e Random projections, sketching

@ Need to understand mathematics, statistics, algorithms, hardware
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What we did not see

A lot!
e Hardware (distributed computing and storage, GPU, ...)
o Data streams
@ Other models like deep learning or graphical models
@ Other learning paradigms like reinforcement learning

@ A lot of recent results (this is a very active research field!)

MERCI!
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