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What we know how to solve




But real data are often more complicated...




Main goal of this course

Extend well-understood, linear statistical learning techniques to
nonlinear techniques for real-world, complicated, structured,
high-dimensional data (images, texts, time series, graphs, distributions,
permutations...)



a Penalized empirical risk minimization

9 Learning with ¢, regularization

Q Kernel methods

e Positive definite kernels and RKHS

e Kernel examples

G Learning molecular classifiers with network information

a Data integration with kernels



a Penalized empirical risk minimization



General learning framework

@ X the space of patterns or data (typically, X = RP)
@ ) the space of response or labels
o Classification or pattern recognition : Y = {—1,1}
e Regression: Y =R

@ S={(x1,¥1),-..,(Xn, yn)} atraining setin (X x Y)"

@ A function f: X — ) to predict the output associated to any new
pattern x € X by f(x)




Empirical risk minimization (ERM)

@ Define F aclass of functions f: X — Y (or f: X — R)

@ Define /(t,y) € R the loss when we predict t and the true
response is y

@ For a candidate function f € F, its empirical risk is
1 n
Anlf) = 1, 2 LT0). )
1=
@ The ERM estimator is

f € argmin Ry(f)
feFr



Example: ordinary least squares (OLS)

@ XY =RP
@ F is the set of linear functions of the form

p
fo(x) = ZB,-X,- =x'B8 for BERP

i=1

@ ((t,y) = (t — y)? is the squared error
@ The empirical risk is the mean squared error (MSE):

Ra(5) = - 5 (1) — v = 1 (Y~ X5)" (¥ - Xp)
i=1

@ When X' X is non-singular, the ERM estimator is

B= (xTx)f1 XY



The curse of dimensionality

Small dimension Large dimension

(Hastie et al. The elements of statistical learning. Springer, 2001.)

In high dimensions, ERM overfits the data and gives poor estimators,
even for simple linear models.



Solution: penalized ERM (aka shrinkage estimators)

@ Define Q : F — R a penalty function
@ The penalized ERM estimator is

f € argmin Ry(f) suchthat Q(f) < C
feF

or
f € argmin {Rq(f) + AQ(f)}
feF



Why skrinkage classifiers?

mﬁinR(ﬁ) subjectto  Q(B8) < C.
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Why skrinkage classifiers?

mﬁin R(B) subjectto Q(5)<C.

@ "Increase bias but decrease variance"
@ Variance dominates in high dimension



Choice of Q can decrease the bias
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Choice of C or A

High Bias Low Bias
Low Variance High Variance
——------ s -

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

(Hastie et al. The elements of statistical learning. Springer, 2001.)



Cross-validation

A simple and systematic procedure to estimate the risk (and to
optimize the model’s parameters)

@ Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n

@ For each portion, fit the model with different parameters on the
K — 1 other groups and test its performance on the left-out group

© Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.



© Learning with ¢, regularization



General setting

@ XY =NRP
@ F the set of linear functions f5(x) = x' 3

o Penalty Q(8) =876 = 8|
@ A general />-penalized estimator is of the form

min { R(8) + \193} - 1)

where

R(B) = %Zﬁ(fﬁ(xi)d’i)
i

for some general loss functions /.



Loss for regression

@ Square loss : {(u,y) = (u—y)?
@ c-insensitive loss : {(u,y) = (Ju—y|—€),
@ Huber loss : mixed quadratic/linear

4 —square
—e—insensitive
—Huber
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Example: Ridge regression (Hoerl and Kennard, 1970)

For Y = R, take the squared error loss

(ty)=(t—y)?.
Then:

n

R(8) + AQ(8) = lz(fﬁ (x) = x) +)\Zﬂ,
i=1

:%(Y—XB) (Y = XB) +A8T5.

Explicit minimizer:

Aridge . —1
Bioee = arg min {R(8) +AQ(8)} = (XTX+/\n/) XTy.



Limit cases

i —1
B9 = (XTX+anl)  XTY

® As \ — 0, 3799 — BOLS (low bias, high variance).

0 As \ — +oo, 41%° — 0 (high bias, low variance).




Ridge regression example

500
|

o -

beta

-500
L

0.0 041 1.0 10.0

(From Hastie et al., 2001)



Ridge regression with correlated features

Ridge regression is particularly useful in the presence of correlated
features:

> library (MASS) # for the 1lm.ridge command
> x1 <— rnorm(20)
> x2 <— rnorm(20,mean=x1,sd=.01)
> y <— rnorm (20, mean=3+x1+x2)
> Im(y~x1+x2) Scoef
(Intercept) x1 X2
3.070699 25.797872 -23.748019
> Im.ridge (y~x1+x2, lambda=1)
x1 X2
3.066027 1.015862 0.956560



Loss for pattern recognition

Large margin classifiers

@ For pattern recognition ) = {—1,1}

@ Estimate a function f: X — R.

@ The margin of the function f for a pair (x, y) is: yf (x).

@ The loss function is usually a decreasing function of the margin :
C(f(x),y) = o (yf (X)),

5

— 01

4 — hinge
square

—— logistic
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Example: Ridge logistic regression

(Le Cessie and van Houwelingen, 1992)

Logistic (U, y) = In (1 + e—yu)

minJ(5) = Z In (1+e777) + |53



Probabilistic interpretation

min J(5) = Zm( +eP0) 4 A8

Exercice

Show that ridge logistic regression finds the penalized maximum
likelihood estimator:

1 n
mBaxEZIn Ps(Y = yi| X = x;) — || BII3.
i—

for the following model:

Ps(Y = —1|X =x) =

ef ' x
{Pﬁ(vwx) o

1
148" x




Solving ridge logistic regression

minJ(5) = ZIn( + o) 1 |83

No explicit solution, but convex problem with:

n

1 YiXi
Vad(B) = . Z 1L e x +2)3
i=1

1 n
= _E Zy, [1 — P,B(yi | X,')] Xj + 2)\,3

n x T aViBTx
XiX; e
VEJ(B) =Y =+ 2A]
M5 (1 +enfTx)

1 n
= Ezpﬁﬁ | X;) (1 = Ps(1]x7)) xix;" + 2
i—



Solving ridge logistic regression (cont.)

minJ(5) = ZIn( +e7nTH) 1 \|183

@ The solution can then be found by Newton-Raphson iterations:

gnew . BOId . {V%J (50/0’)]_1 Vsd </Bold> '

@ Each step is equivalent to solving a weighted ridge regression
problem (emphleft as exercise)

@ This method is therefore called iteratively reweighted least
squares (IRLS).



Example: hard-margin SVM
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Example: hard-margin SVM




Hard-margin SVM is an />-regularized method

Exercice
Show that hard-margin SVM solve a problem of the form

BERP N

1
min —~ {Z Phard (¥ifs (X)) + All 5 H%} :
i=1




Example: (soft-margin) SVM

@ The hinge loss
1(£(x),y)

yE(x)

o

0 ifu>1,
Phinge(U) = max (1 —u,0) = {

1 —u otherwise.

@ SVM solves:

1 n
min {n > hinge (Vifs (x1)) + All 8 IIS} :
i=1



SVM: graphical interpretation
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SVM: graphical interpretation

Exercice
Show that SVM finds a trade-off between large margin and few errors,
by minimizing a function of the form:

min ;Jr x errors(f)
t | margin(f) v

Explicit v and errors(f).




SVM reformulation as a quadratic program (QP)

1(f(x),y)

yi(x)

@ Note that for any u € R,

. £€>0
i = h that
dninge(U) =min¢  such tha {g o1y

@ Therefore SVM solves the QP

. § >0
BERP, §€R"{ Zgl + )‘H 5 ||2} s. t.Vie [1,/7], {6, > 1 —ijiTB



Dual formulation

Form the Lagrangian:

n

L(B,€. a,7) ZMZ@ NGB ai (yix B +6-1) —+7¢

i=1

Minimize in the primal variables (3, £):

n n
Vel=B-> aiyxi = B=> ayx
i=1 i=
1

Vegl=5~-ai—v = aity=

2n\ 2n\

Dual problem, with C = 5=

n n n
1
T
max Qjf — =< iVicoiX; X
O<“<C{i21: ! QZZW/ 124 /}

i=1 j=1



SVM with affine function (exercice)

fﬁﬁb(X) = ,BTX +b, mm { Z¢h|nge J/lfﬁ b(X/)) + )‘H B HQ}

is equivalent to

max {Za: 3 S i X/}

i=1 j=1
under the constraints:
0<qo;<C, fori=1,....n
{271 ajy;=0.
and the solution is .
X) = Z ajyix' x + b*.

i=1



Interpretation: support vectors (C = 1/2n)\)




Summary: (s-regularized linear methods

4 —square
—e-insensitive
—Huber

— 0-1

— hinge
square

—— logistic

- N w

o 1 2 3 o N—
y-(x) 3 2 - 0 1 2 3 4

1L
fﬁ(X) = IBTxv m/@!n {n Zg(fﬁ(xl)myl) + )‘H/BHg}
i=1

@ Many popular methods for regression and classification are
obtained by changing the loss function: ridge regression, logistic
regression, SVM...

@ Needs to solve numerically a convex optimization problem, well
adapted to large datasets (stochastic gradient...)

@ In practice, very similar performance between the different
variants in general



Q Kernel methods



Sometimes linear methods are not interesting
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Solution: nonlinear mapping to a feature space

. The decision function is:
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Kernel = inner product in the feature space

Definition
For a given mapping
S X —H

from the space of objects X to some Hilbert space of features #, the
kernel between two objects x and x’ is the inner product of their
images in the features space:

vx,x' e X, K(x,x')=o(x) o(x).




Example

2
Leté‘(:7—L:]R2andforx:<X1 )Iet¢(x):<x12>
Xo X

Then ?
K(x,x') = o(x)To(x') = (x1)2(x1) + (x2)? (%)



The kernel tricks

2 tricks

@ Many linear algorithms (in particular /5-regularized methods) can
be performed in the feature space of ®(x) without explicitly
computing the images ®(x), but instead by computing kernels
K(x, x").

© It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K(x, x’)
is often much simpler to compute than ®(x) and ®(x’)




Trick 1 illustration: SVM in the original space

@ Train the SVM by maximizing

n n n
1 T
max > ai— gD ciegyiyx X,

i=1 i=1 j=1

under the constraints:

Sy =0.

@ Predict with the decision function

{Oga,-gc, fori=1,...,n

n
f(X) = Z oz,'y,'X,-TX + b*.
i=1



Trick 1 illustration: SVM in the feature space

@ Train the SVM by maximizing

n

1 n n
Crpez[aR),(lz a5 Z Z ajajyiy;® (Xi)T ® (X/) )
i=1 =1 j=1

under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

f(x)= En: aiyi® (%) (x) + b*.
i=1



Trick 1 illustration: SVM in the feature space with a

kernel

@ Train the SVM by maximizing
216%)(”20{’ - *Zza,a/y,y, X/,Xj> )
i=1 j=1
under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

f(x)= Za, X) + b*.



Trick 2 illustration: polynomial kernel

x1 x12
o P o o
o o0 _o
o o]
(@] 0o @]
o 0 © ¢} X2 ° 0%
(@) R~ L o, )
e ° O °® [ ) O 00 X22
o ¢}
o (@]
o O

For x = (x1,Xx2) " € R?, let &(x) = (xZ,V2xqx0, x2) € R:

12

K(x,x') = X2XP2 + 2Xx1 XX} X + X2 X

2
X1X] + X2X3)

(x7x)?



Trick 2 illustration: polynomial kernel

x1 x12
o P o o
o o o© o
o
1) O A
O 0'5Ye) O
o o © O x2 ° o Oo
O e Y Q,
[ (e]e]
Re| o o oo © 000 x2?
o o
o) O

More generally, for x, x' € RP,
d
K(x,x') = (xTx’+ 1)

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Combining tricks: learn a polynomial discrimination

rule with SVM

@ Train the SVM by maximizing
;@%&Zm - ;;aw’y/ (575 +1)°.
under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

n d
=> aiy; (X,-TX—|—1) + b*.
i—



lllustration: toy nonlinear problem

> plot (x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))

Training data
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[llustration: toy nonlinear problem, linear SVM

> library (kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel="vanilladot’)
> plot (svp,data=x)

SVM classification plot
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lllustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", .
kernel=polydot (degree=2))
> plot (svp,data=x)

SVM classification plot
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More generally: trick 1 for />-regularized estimators

Representer theorem

Let f3(x) = 8T &(x). Then any solution f; of
1 n
il > U(fs(x), i) + A BlI3
i=1
can be expanded as

n
X) =" aiK(x;, X)
pa

where a € R" is a solution of:

— Y4 A K
2o s S (Sremteonn) 1 Stacn

ij=1




Representer theorem: proof

@ For any 8 € RP, decompose 8 = s + 3, where
Bs € span(®(xq),...,P(xn)) and 3, is orthogonal to it.
@ On any point x; of the training set, we have:

f3(x;) = BT (X)) = BL (X)) + B1P(X}) = BEP(X)) = Fz5(X)) -

@ On the other hand, we have || 33 = || 3s 3 + [| 513 > || s |3,
with strict inequality if 5, # 0.

@ Consequently, 8s is always as good as (3 in terms of objective
function, and strictly better if 5, # 0. This implies that at any
minimum, 3, = 0 and therefore 3 = 85 = 27:1 a;®(x;) for some
ac R,

@ We then just replace 3 by this expression in the objective function,
noting that

n
1815 = |l Za/ ()3 = Z ajoy® (x)" d(x) = Z ajoK(Xi, X;) -

ij=1 ij=1



Example: kernel ridge regression

@ Let : X — RRP be a feature mapping from the space of data to a
Euclidean or Hilbert space.

@ Let f3(x) = BT ®(x) and K the corresponding kernel.
@ By the representer theorem, any solution of:

n

n o1
f = argmin _ > (i — 3 () + Al B 13

fs i—1

can be expanded as:

n
/IE = ZO&,‘K(X,‘,X) .
i=1



Example: kernel ridge regression

o LetY ={(y1,... ,y,,)T € R" the vector of response variables.
@ Leta = (vq,...,an)" € R" the unknown coefficients.

@ Let K be the n x n Gram matrix: Kj; = K (x;, X)) .

@ We can then write in matrix form:

(?()(1),...,?()(n))T ~ Ka,

@ Moreover,

n n
18115 =D aiK(x,x) = o' K.

i=1 j=1



Example: kernel ridge regression

@ The problem is therefore equivalent to:

arg min© (Ka—Y) (Ka—Y)+ X a'Ka.
aern N

@ This is a convex and differentiable function of . Its minimum can
therefore be found by setting the gradient in « to zero:

0= %K(Ka— Y)+2\Ka

= K[(K+An)a— Y]



Example: kernel ridge regression

@ K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) L Im(K).

@ In this basis we see that (K + Anl)~" leaves Im(K) and Ker(K)
invariant.

@ The problem is therefore equivalent to:
(K+Anh)a—Y € Ker(K)
sa—(K+An)7'Y e Ker(K)
sa=(K+A)7Y +¢ with Ke=0.



Example: kernel ridge regression

@ However, if o/ = o + € with Ke = 0, then:
1B-B13=(a—a) K(a—a')=0,

therefore g = 3.
@ One solution to the initial problem is therefore:

n
?: ZO&,‘K (X,',X) s
i=1

with
a=(K+ihy.



Comparison with "standard" ridge regression

@ Let X the n x p data matrix, K = XX the kernel Gram matrix.
@ In "standard" ridge regression, we have ?(x) — BT x with

A~ —1
B= (XTX+ n/\l> XTy.
@ In "kernel" ridge regression, we have f(x) = 7, a;x x = 37 x
with .
. 1
F=>ax=XTa=X" (xxT n An/) Y.
i—1

@ Of course 3 = 3! (left as exercise: use the SVD decomposition of
X).

@ Standard RR is better when p < n (big data), kernel RR is better
when n < p (high-dimension).



Generalization

@ We learn the function f(x) = >_7_; ;K (x;, X) by solving in « the
following optimization problem, with adequate loss function /:

— A
g S (St o2 St

@ No explicit solution, but convex optimization problem

@ Note that the dimension of the problem is now n instead of p
(useful when n < p)



The case of SVM

@ Soft-margin SVM with a kernel solves:

n n n
i i K(xi, x7), Yi A o K(Xi, X)) p .
aerﬂQ’!rl])eR {;ghmge (/Z1 Q; (xi, Xj)7 }’/) + Z Qi (X, X/)}

ij=1
@ By Lagrange duality we saw that this is equivalent to

n

LT]G%L Za,—f Za,ajy,yjK(x,,x,)+b
i=1 j=1

under the constraints:
0<a;<C, fori=1,...,n
2?21 a;yi=0.

@ This is not a surprise, both problems are also dual to each other
(exercise).



e Positive definite kernels and RKHS



Remember: polynomial kernel

x1 x12
o P o o
o o o© o
o
o O i
©) 0'5Ye) O
oo °© x2 ° 0%
o ® ° oo
°
o

d
vx,x' e RP, K(x,x’):(xTx’+1)

is an inner product in a feature space of all monomials of degree up to
d



Which functions K(x, x") are kernels?

Definition

A function K(x, x") defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) # and a mapping

¢ X —H,

such that, for any x, x" in X




@ Aninner product on an R-vector space H is a mapping
(f,9) — (f,g), from H2 to R that is bilinear, symmetric and such
that (f,f) > 0 for all f € H\{0}.

@ A vector space endowed with an inner product is called
pre-Hilbert. It is endowed with a norm defined by the inner product

1
as || |l = (£, )2,

@ A Hilbert space is a pre-Hilbert space complete for the norm
defined by the inner product.



Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set X is a function
K : X x X — R symmetric:

V(x,x')ex? K(x,xX)=K(x, x),

and which satisfies, for all N € N, (xq, X, ..., xy) € XN et
(ay,a,...,an) € RN:

Za,a, (xi, x;) > 0.
1 j=1

=




Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.




Proof: kernel — p.d. (easy)

Let
K(x,x") =(®(x),® (x))
be a kernel. It is p.d. because:
® K(x,x') = (®(x),®(x))y, = (®(X), P (x))y = K(X',X) ,
o YN @i (9(xi), @ (x)),, = | XLy a (x) |5, >0 .

H



Proof: p.d. = kernel when X is finite

@ Suppose X = {x1, X2, ..., Xy} is finite of size N.

@ Any p.d. kernel K : X x X — R is entirely defined by the N x N
symmetric positive semidefinite matrix [K]; := K (x;, x;).

@ It can therefore be diagonalized on an orthonormal basis of
eigenvectors (uq, Uo, . . ., Uy), with non-negative eigenvalues
0< A\ <...< A\, e,

VAT ()

VAnun(i)



Proof: p.d. = kernel in the general case

@ Mercer (1909) for X = [a, b] C R (more generally X compact) and
K continuous (the so-called Mercer kernels).

@ Kolmogorov (1941) for X countable.

@ Aronszajn (1944, 1950) for the general case, using the theory of
RKHS.



RKHS

Definition

Let X be a set and %  R* be a class of functions forming a (real)
Hilbert space with inner product (., .),,. The function K : X2 —Ris
called a reproducing kernel (r.k.) of # if

@ 7 contains all functions of the form

Vxe X, Ki:t— K(x,t).

© Forevery x € X and f € H the reproducing property holds:

f(x)=(f,Kx)y -

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).




An equivalent definition of RKHS

Theorem

The Hilbert space # c RY is a RKHS if and only if for any x € X, the
mapping:

F: H —-R
f—f(x)

is continuous.




An equivalent definition of RKHS

Theorem

The Hilbert space # c RY is a RKHS if and only if for any x € X, the
mapping:

F: H —-R
f—f(x)

is continuous.

Corollary

| A

Convergence in a RKHS implies pointwise convergence, i.e., if (fr) ,cn
converges to fin H, then (f, (X)), CONVerges to f(x) for any x € X.

<




Proof

If 4 is a RKHS then f — f(x) is continuous
If a rk. K exists, then for any (x,f) € X x H:

LX) [ = [(F, Kx)y |
< || fll%-|| Kx || (Cauchy-Schwarz)
< || FllaeK (x, 202

because || Kx |13, = (Kx, Kx)3, = K (x,X). Therefore f € 1 — f(x) € R
is a continuous linear mapping. O




Proof (Converse)

If f— f(x) is continuous then # is a RKHS

Conversely, let us assume that for any x € X the linear form

f € H — f(x) is continuous.

Then by Riesz representation theorem there (general property of
Hilbert spaces) there exists a unique gx € H such that:

F(x) = (£, 9x)n

The function K (x,y) = gx (y) isthen ark. for #H. O




Unicity of r.k. and RKHS

@ If # is a RKHS, then it has a unique r.k.
@ Conversely, a function K can be the r.k. of at most one RKHS.




Unicity of r.k. and RKHS

@ If # is a RKHS, then it has a unique r.k.
@ Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of "the" kernel of a RKHS, or "the" RKHS
of a kernel.




Proof

If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #. Then for any x € X:

1K = Ky 115, = (K — K, K = Ky
— K K)yy — (K = Kl KLY

(Kx
= (K«
= K (x) = Ky (%) = Kx (x) + Ky (%)
=0.

This shows that Ky = K}, as functions, i.e., Kx(y) = K;(y) for any
y € X. In other words, K=K'. [




If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #. Then for any x € X:

1K = Ky 115, = (K — K, K = Ky
— K Ky, — (K — K KL

(Kx
(Kx
Kx (x) = K () = K () + K (X)
0.

This shows that Ky = K}, as functions, i.e., Kx(y) = K;(y) for any
y € X. In other words, K=K'. [

The RKHS of a r.k. K is unique
Left as exercice




An important result

A function K : X x X — R is p.d. if and only if it is a r.k.




Proof: rk. — p.d.

@ Ark. is symmetric because, for any (x, y) € X2:
K(va) = <KX7 Ky>H = (Ky7KX>H = K(y7X) .

@ ltis p.d. because for any N € N,(xy, Xo, ..., xy) € XN, and
(ay,ap,...,an) € RV:

N N
Z a,-ajK (Xi,Xj) = Z a;a; <KXI’ KX/’>H
ij=1 ij=1

N

2

=11 aiky 1%
i=1

>0. O



Proof: p.d. = r.k. (1/4)

@ Let H, be the vector subspace of R spanned by the functions
{KX}XEX'
@ Forany f,g € Hop, given by:

m n
f=> aky, g=> bk,
i=1 j=1

let:

Z aibiK (x;, ;) -



Proof: p.d. = r.k. (2/4)

e (f, 9>H0 does not depend on the expansion of f and g because:

(F,9)3, = Y aig (%) =Y _ bf (¥) -
i=1 j=1

@ This also shows that (.,.);, is a symmetric bilinear form.
@ This also shows that for any x € X and f € Hg:

(f, K gy = £ (X) -



Proof: p.d. = rk. (3/4)

@ K is assumed to be p.d., therefore:
1113, = Z agiK (xi, x;) > 0.
ij=1
In particular Cauchy-Schwarz is valid with (., )5, .
@ By Cauchy-Schwarz we deduce that Vx € X’:

FOO 1= [ (£ Ky | < 11 F o K (.22

therefore || 7|/, =0 = f=0.

@ H, is therefore a pre-Hilbert space endowed with the inner
product (., .)4, -



Proof: p.d. = rk. (4/4)

@ For any Cauchy sequence (f)>0 in (7—[0, (., .)HO), we note that:

VOGMN) € X X N2 [ (X) = T (X) | < [ f — o 200K (X, X)2

Therefore for any x the sequence (f,(x)),~, is Cauchy in R and
has therefore a limit. -

@ If we add to H, the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercice). O



Application: back to Aronszajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
‘H and a mapping

S X —H,
such that, for any x, x" in X':




Proof of Aronzsajn’s theorem: p.d. — kernel

o If Kis p.d. over a set X' then it is the r.k. of a Hilbert space
H C RY,
@ Let the mapping ¢ : X — H defined by:

VXGX, ¢(X):Kx.
@ By the reproducing property we have:

V(va)EX27 <¢(X)v¢(y)>7-[:<KX7Ky>H:K(X7y)‘




RKHS of the linear kernel

@ Let ¥ = R%and K (x,y) = (x,y)z« be the linear kernel
@ The corresponding RKHS consists of functions:

x e R f(x Za, {Xis X)pa = (W, X)ga

i

with w = 5", a;x;.
@ The RKHS is therefore the set of linear forms endowed with the
following inner product:

<f’ g>HK = <W7 V>Rd s

when f(x) =w'xand g (x) = v'x.



RKHS of the linear kernel (cont.)

f(x) =w'x,
(Al = [[wllz -

{Klin (x,x) =xTx".

flI=2  |Ifll=1 IIf|[=0.5




¢s>-regularized methods in RKHS

BERP | N

fs(x)=BTo(x), min {1 > UEs(x) i) + AHBHE}

is equivalent to

1 n
. ! f(x: ) f2
rfgl}r[l{ngé( (X1, ¥i) + Al HH}

where # is the RKHS of the kernel K(x, x') = ®(x)Td(x').



Smoothness functional

A simple inequality

@ By Cauchy-Schwarz we have, for any function f € H and any two
points x, x’ € X:

’f(x)*fo(/) ‘ :|<f7Kx—Kx’>7-[|
<[ Fllae x| K — K [l
= || flla x dk (x,x) .

@ The norm of a function in the RKHS controls how fast the function
varies over X’ with respect to the geometry defined by the kernel
(Lipschitz with constant || f ||).

Important message

Small norm = slow variations.




Kernels and RKHS : Summary

@ P.d. kernels can be thought of as inner product after embedding
the data space X in some Hilbert space. As such a p.d. kernel
defines a metric on X'.

@ A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.

@ The RKHS is a space of functions over X. The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the
metric defined by the kernel on X'.

@ />-regularized learning in the feature space can be formulated in
the RKHS .

1
in< = L(f(x),y) + M|f||2
;2'75‘{”2 (F(xi), yi) + Al ||7-L}

i=1



© Kernel examples



Kernel examples

@ Polynomial (on RY):
K(x,x') = (x.x' +1)¢

@ Gaussian radial basis function (RBF) (on RY)

12
o) = oo (25 X1E)
@ Laplace kernel (on R)

K(x,x") = exp (=[x — X'|)
@ Min kernel (on R)

K(x,x") = min(x, x’)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x, x") = (®(x), d(x))




Example: SVM with a Gaussian kernel

@ Training:

n
. 1% — %1
min, E aj — E Qi yiyj exp ( 552

i=1 111

n
st.0<q;<C, and Za,-y,- =0.
p

@ Prediction

Za,exp< I¥ - x,u>



Example: SVM with a Gaussian kernel

Za,exp( _X’||2>

SVM classification plot

1.0

— 0.5

— 0.0

— -05

[
g
o




How to choose or make a kernel?

@ Design features
@ Design a distance or similarity measure
@ Design a regularizer on f



Example: Sobolev norm as regularizer

Theorem
Let & = [0, 1] and the kernel:

V(X,y)€[0,1]2, K(va):min(xvy)'
Then the RKHS is
M= {f . [0,1] = R, absolutely continuous, f € L2 ([0, 1]), f (0) = o} .

and the regularizer is a Sobolev norm

1
Qf) = || FII3, = /0 (WP du = |7 201 -




Proof (1/5)

We need to show that

@ 7 is a Hilbert space
@ Vx e [0,1], Kx S H,
@ V(x,f) €[0,1] x H,(f, Kx)5 = f(x).




Proof (2/5)

‘H is a pre-Hilbert space

@ f absolutely continuous implies differentiable almost everywhere,
and

vx € [0,1], f(x)=f(0)+ /X f'(u)du.
0

@ Forany f € H, f(0) = 0 implies by Cauchy-Schwarz:
1

X 1 2
1001 =| [ fua sﬁ( / f’(u)zdu) — VX I

Therefore, || f||3 =0 = f =0, showing that (., .),, is an inner
product. # is thus a pre-Hilbert space.




Proof (3/5)

‘H is a Hilbert space

To show that # is complete, let (f,)nen @ Cauchy sequence in H
(f))nen is @ Cauchy sequence in L]0, 1], thus converges to

g € L2[0,1]

By the previous inequality, (f,(x))nen is @ Cauchy sequence and
thus converges to a real number f(x), for any x € [0, 1]. Moreover:

f(x) = lim f(x) = lim /X fi(u)du = /X g(u)du,
n n 0 0

showing that f is absolutely continuous and f' = g almost
everywhere; in particular, ' € L2[0, 1].
Finally, f(0) = lim, f,(0) = 0, therefore f € H and

im || £, — fll2e = | £ — gnlli2j0.4) = O-




Proof (4/5)

Vx € [0,1], Ky € H

Let Ky(y) = K(x, y) = min(x, y) sur [0, 1]%:

K(s,t)

1 1 t
S 1

Ky is differentiable except at s, has a square integrable derivative, and
Kx(0) = 0, therefore Ky € H forall x € [0,1]. O




Proof (5/5)

For all x, 1, (f, Ky),, = f(x)
For any x € [0,1] and f € H we have:

1 X
(F,Ky) 5, = /O F(u)K(u)du = /0 F(u)du = £(x),

which shows that K is the r.k. associated to . [




Generalization

Theorem

Let X = RY and D a differential operator on a class of functions
such that, endowed with the inner product:

V(f, g) € Hz? <f7 g)’}-[ = <Df7 Dg>L2(X)’

it is a Hilbert space.
Then # is a RKHS that admits as r.k. the Green function of the
operator D*D, where D* denotes the adjoint operator of D.




In case of...

Green functions

Let the differential equation on #:
f=Dg,

where g is unknown. In order to solve it we can look for g of the form:
00~ [ Kxp )y
for some function k : X2 — R. k must then satisfy, for all x € X,

f (x) = Dg (x) = (Dkx, P2y -

k is called the Green function of the operator D.




Let # be a Hilbert space endowed with the inner product:

(f.9)x = (DF. D) 2y -

and K be the Green function of the operator D*D. For all x € X,
K € H because:

<DKX7 DKX)LZ(X) = <D*DKx, KX>L2(X) = KX (X) < 0.
Moreover, for all f € H and x € X, we have:
f(x) = (D* DKy, f>L2(X) = (DK, Df)Lz(X) = (Kx, f)y »

which shows that H is a RKHS with K asr.k. O




Translation invariant kernels

A kernel K : R x RY — R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

V(x,y) R K(x,y)=r(x—y).

Theorem (Bochner)

A real-valued function x(x — y) on R? is positive definite if and only if it
is the Fourier transform of a symmetric, positive, and finite Borel
measure.




RKHS of translation invariant kernels

Theorem

Let K be a translation invariant p.d. kernel, such that « is integrable on
RY as well as its Fourier transform &. The subset Hy of L, (RY) that
consists of integrable and continuous functions f such that:

.2
, 1 i)
I Fllk == @) /Rd @) dw < 400,

endowed with the inner product:

1 ()9 ()"
9= (2r)? /Rd ?

is a RKHS with K as r.k.




Example: Gaussian RBF kernel

corresponds to:

and
1715 = [ [7w)] e do.

In particular, all functions in ‘H are infinitely differentiable with all
derivatives in L2.



Example: Laplace kernel

1
K(x.y) = ge "
corresponds to:

R(w) = ——

72+w2

’y+w
11 = [ e

The RKHS is the set of functions L2 differentiable with derivatives in L2
(Sobolev space).

and



Example: sinc kernel

corresponds to:
Rlw)=1(-2<w<Q).

The RKHS is the set of functions whose spectrum is included in

[—Q, Q]
~ 2
H—{f:/lUJ'm‘f(w)‘ dw—O},
and

> A 2
1= J] =/
|w|<Q weR

?(w)‘2:(27r)d/ | F(x) |2 dx.

XeR



Supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQORQQQOQNQCQLQONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.




String kernels

The idea

@ Map each string x € X to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)




Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

& (x) = (Pu (X)) yeax

where ¢, (x) can be:
@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)




Example: spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of

X = CGGSLIAMMWEGV
is:
(CGG, GGS, GSL, SLI,LIA,IAM,AMM, MMW, MWF, WEG, FGV) .

@ Let ¢, (x) denote the number of occurrences of uin x. The
k-spectrum kernel is:

K(xX) =) o, (x)d,(X) .

uc Ak




Example: spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over | A|¥ terms,
but at most | x| — k + 1 terms are non-zero in ¢ (X) —
Computation in O(| x|+ | x"|) with pre-indexation of the strings.

@ Fast classification of a sequence x in O (| x|):

| x| —k+1

f(X) =w-o (X) = Z Wy Py (X) - Z Wi... Xipk—1-
u i=1

| A\

Remarks
@ Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification.
@ Variants allow matching of k-mers up to m mismatches.

\




Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM-——-WE'GV

R R R
C-—-LIVMMNRLMWEGV

ss4(m) = S(C, C) + S(L, L) + S(I, I) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)

SWso(x,y) = x| Ssg(m) is notakernel

KD (x,y) = Y exp(Bssg(x.y.7) isakernel
weN(x,y)



LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)

Let Ki and K> be two p.d. kernels for strings. The convolution of Kj
and Ko, denoted K x K>, is defined for any x, x’ € X by:

Kix Ka(x,y) = D Ki(X1,¥1)Ka(X2, Y2).

X1Xo=X,y1Y2=Y

V.

If Ky and K, are p.d. then Ky x K> is p.d.. l




LA kernel is p.d.: proof (2/2)

- 8 (n71) S
K =D Kox (K« k)T ok w ko,
n=0

with
@ The constant kernel:
Ko (x,y) :=1.

@ A kernel for letters:

0 if | xX|#1where |y|#1,

(8) —
Kz’ (X,y) = { exp (5S(x,y)) otherwise.

@ A kernel for gaps:

K (x,y) = exp[8(g (|x ) + g (|x]))] -



The choice of kernel matters

v 1 1 1 1

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ---*---
50 SVM-Fisher --@

a0 [,
30
20

10 -

No. of families with given performance

ROCS50

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).



Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).



Image retrieval and classification

From Harchaoui and Bach (2007).



Graph kernels




Graph kernels

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).




Graph kernels

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).

@ Use a linear method for classification in .




Indexing by all subgraphs?




Indexing by all subgraphs?
OO
(®(0,...,0,1,0,...,0,1,0,...)
4 1

@®) @
o6

Computing all subgraph occurrences is NP-hard. l




Indexing by all subgraphs?

g,ge ..... O,fl,O ..... 0,1,0 )
(@&®) @
o6

Computing all subgraph occurrences is NP-hard. \

@ The linear graph of size nis a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

O

<




Indexing by specific subgraphs

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)

@ all path up to length k (Openeye fingerprint, Nicholls 2005)
@ all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

@ all frequent subgraphs in the database (Helma et al., 2004)




Example : Indexing by all shortest paths

(a—Ba—E—6—0))

@‘Q 5 (o,...,o,2,o,...,ci,1,o,...)
BF—®A ! !

(&>—a] (e—e—6—6)




Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.




Example : Indexing by all subgraphs up to k vertices

(® (0, . 010 ,0,1,0,

-




Example : Indexing by all subgraphs up to k vertices

(»)
Gl (®) (0, . 010 0,1,0
E-2)

B

Properties (Shervashidze et al., 2009)

@ Naive enumeration scales as O(n¥).

@ Enumeration of connected graphlets in O(nd*~1) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.




aks

Definition
@ A walk of a graph (V, E) is sequence of vy, ..., vn € V such that
(v,-,v,-+1)eEfori:1 ..... n—1.

@ We note Wn(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
Lo oo e o

o e 60 fod’o & o i




Walks +# paths




Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w e W(G).

@ Let the feature vector ®(G) = (®s(G))4s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weWw(G)




Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w e W(G).

@ Let the feature vector ®(G) = (®s(G))4s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weWw(G)

@ A walk kernel is a graph kernel defined by:

Kuaik(G1, G2) = > ©5(Gy)®

ses




Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.



Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with A\g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gi, Gs) = P(label(W;) = label(W,)),

where W, and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).



Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with A\g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gi, Gs) = P(label(W;) = label(W,)),

where W, and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = plength(w) for 8 > 0. In that case the feature space is of

infinite dimension (Gértner et al., 2003).



Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.




Product graph

Definition

Let Gy = (W4, E1) and G, = (V», E) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

QV={(vi,v)eVixW
Q E=

{((vi, ), (V{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

. vy and v, have the same label} ,

1 a b 1b 2a 1d
o—0O O
2 c 3c 3e
la 2b t 2d :
3 4 d e
4c 4e

Gl (€7 Gl x &



Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wo € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wy(Gy x Go).




Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wo € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wy(G; x Gp).

Corollary

Kuak(Gr1, Go) = Y _ ©5(Gr)®s(Gz)

SES

= > e, (W1)Aa, (W) 1(I(wy) = I(wz))

(w1,w2)EW(G1)xW(Gr)

= Z AGx G, (W) .

weW(Gi x Ga)




Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have Ag, «g,(w) = 1 if the length
of wis n, 0 otherwise.

@ Therefore:

Knth—order (G1, G2) = Z 1.
WEWh(GyxGp)

@ Let A be the adjacency matrix of Gy x Go. Then we get:

Knth order G1 GZ Z [An],j = 1TAn1
i

@ Computation in O(n|Gy||Gz|d;dz), where d; is the maximum
degree of G;.




Computation of random and geometric walk kernels

@ In both cases \g(w) for awalk w = v; ... v, can be decomposed
as:

Aa(Vy ... vp) = )\i(v1)H)\’(v;_1, V).

@ Let A, be the vector of \'(v) and A; be the matrix of (v, v/):

n

Kwaik(G1, Gz) Z > Nw) [N (vie1,w)

n=1weWn(G1xGy) i=2
= NAFT

n=0
=N (I—A) 1

@ Computation in O(|G1[3|Gz|?)




Extension: branching walks (Ramon and Gartner,
2003; Mahé and Vert, 2009)

Tv,n+1)= > J] Mv.v)T(V,n),

RCN(v)v'eR
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Screening of inhibitors for 60 cancer cell lines.



Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

Performance comparison on Corel14
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G Learning molecular classifiers with network information



Molecular diagnosis / prognosis / theragnosis
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge




Graph based penalty

fa(x) = B x mﬁin R(f3) + AQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weigths.




Graph based penalty

BO)=8Tx  minA(L)+A0(8)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)
Q(B) =D (8- 8)?,

i~j

min A(fs) +AD_(6i = 5)°.

inf




Graph Laplacian
Definition
The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
0

1 0 -1 0
o 1t -1 0 O

L=D-A=| -1 -1 3 -1 0
o o -1 2 -1
0 0 O

1 1




Spectral penalty as a kernel

The function f(x) = BT x where 3 is solution of

5'21'13:7725 (/BTthI> + )\Z

i~f

is equal to g(x) = v ®(x) where ~ is solution of

52%}7325( T(D(X/) YI) +/\'Y Y,

and where
d(x)To(x') = x" Kgx’

for Kg = L*, the pseudo-inverse of the graph Laplacian.
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Classifiers
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Other penalties with kernels

d(x)To(x') = x" Kgx’
with:
@ Kg=(c+ L) 1leads to

P
QB) =cd F#+> (6i-5)° .
=1 i~j
@ The diffusion kernel:

Kg = expy(—2tL) .

penalizes high frequencies of /5 in the Fourier domain.




a Data integration with kernels



@ Assume we observe K types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).

@ We saw in the previous part how to make kernels for each type of
data, and learn with kernels

@ Kernels are also well suited for data integration!



@ For a kernel K with RKHS 7, we learn a function f € H by solving:

min R(f") + \||f||2
min (f") + AlIfl1%

where 7 = (f(x1),...,f(xn)) € R”
@ By the representer theorem, we know that the solution is

f(x) = En: aiK(x, X;),
i=1

where a € R" is the solution of another optimization problem:

. T _ .
min R(Ka) +  a' Ka = min Jk (o).



Sum kernel

Let Ki,..., Ky be M kernels on X. The sum kernel Ks is the kernel on
X defined as

M
vx,x' e X, Ks(x,x')= ZK,-(XJ’).

i=1




Sum kernel and vector concatenation

Theorem
Fori=1,...,M,let ®;,: X — H; be a feature map such that

Ki(x, x') = (1 (x),®; (X)),

Then Ks = >V, K; can be written as:

Ks(x,x') = (05 (x), 05 (X)), -

S
where ¢g: X — Hg =H1 @ ... D Hy is the concatenation of the
feature maps ®;:

dg(X) = (O1(X),...,0u(x)" .

Therefore, summing kernels amounts to concatenating their feature
space representations, which is a quite natural way to integrate
different features.




For dg(x) = (®1(x),..., ®u(x))", we easily compute:
M
(®5(x), 05 (X)), =D (®i(x), @ (X)),
i=1

M
= Z KI'(X7 X,)
i=

= Ks(x, x').



Example: data integration with the sum kernel

Vol. 20 Suppl. 12004, pages i363-i370
DO; 10.1098/bioinformatics/bth910

b Protein network inference from multiple

Y. Yamanishi’*, J.-P. Vert? and M. Kanehisa'

mgﬁ genomic data: a supervised approach
3

"Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan and ?Computational Biology group, Ecole des Mines de

Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Kjoc (Localization)

Kphy (Phylogenetic profile)

Kexp + Kppi + Kioc + Kphy
(Integration)

True positive

0z

Expression

&~ Protein interaction

False positive



The sum kernel: functional point of view

The solution f* € Hk, when we learn with Ks = M. K; is equal to:

M
= Zf[*a
i=1

where (ff,... %) € Hk, X ... x Hg,, is the solution of:
1 M 1 M

M M
min R (Z f) + A > 1113, -

i=1




Generalization: The sum kernel

The solution f* when we learn with K, = ZI’.‘L 1;K;, with
mM,...,nm > 0, is equal to:

M
=>
i=1

where (ff,...,f) € Hk, x ... x Hg,, is the solution of:
1 M 1 M

M| 5|3,
m|n R Zf” i

17 ’M i—1 ni




Proof (1/4)

min R(Zf”) +>\Z | ’””' .

f17 ’M

@ R being convex, the problem is strictly convex and has a unique

solution (ff,...,fi) € Hi, x ... x Hg,,.
@ By the representer theorem, there exists of,. .., ap, € R" such
that

n
£ (x) = Za;;K,-(x,,x).

j=1
@ (af,...,a}) is the solution of

. M M OéTl(,'Ot,'
min_R(> Kaj | +A> ’T .
=1 =1 !

Ay, ERM



Proof (2/4)

@ This is equivalent to

M ol Kia M
min R +AY L= st u=> K.

U,aq,...,apERM 1 nj

@ This is equivalent to the saddle point problem:

M
min __max R (u +>\Z Y2 T( u—>Y Ka).

u,aq,...,apER yeR"

@ By Slater’s condition, strong duality holds, meaning we can invert
min and max:

M
max  min + A Z Py (u— u-> Kiaj).

YER™ U, ,...,aME]R”



Proof (3/4)

@ Minimization in u:
mJn R(u) +2M"u=— max {—2>«yTu — R(u)} = —R*(-2\y),
where R* is the Fenchel dual of R:

YweR" R*(v)=supu'v—RU).
ueR”

@ Minimizationin o fori=1,..., M:

Qi

TKia,
min {)\ i o —2\y Ka,} =iy Ky,
1

where the minimum in «; is reached for o} = 7.



Proof (4/4)

@ The dual problem is therefore

i (£ )

@ Note that if learn from a single kernel K;,, we get the same dual
problem

-1 o T
TE?R)’S{ R*(—2X\y) — \y Kn’y}.

@ If v* is a solution of the dual problem, then o} = 7;v* leading to:
n
VXEX, fF(x)=)_ ajKi(x,X) Zm, (xj, x
=1

@ Therefore, f* = Z,’-‘L f* satisfies

f* (X) ZZUI’Y] Xja Z"}’I Xj7 . g

i=1 j=1



Learning the kernel

@ If we know how to weight each kernel, then we can learn with the
weighted kernel

M
Kn = Znin
i=1

@ However, usually we don’t know...
@ Perhaps we can optimize the weights 7; during learning?




An objective function for K

For any p.d. kernel K on X, let
_ : n 2
J(K) = min {R(f ) + Al fHHK} .

The function K — J(K) is convex.

w

This suggests a principled way to "learn" a kernel: define a convex set
of candidate kernels, and minimize J(K) by convex optimization.



@ We have shown by strong duality that

o = . T
J(K)_gne?é{ R*(—2\y) — My KV}.

@ For each ~ fixed, this is an affine function of K, hence convex
@ A supremum of convex functions is convex. 0



MKL (Lanckriet et al., 2004)

@ We consider the set of convex combinations

M M
Ky=>_miKi with nGZMz{n/ZO,Zn/=1}

i=1 i=1
@ We optimize both n and f* by solving:

. . . . n 2
gz J ) = min_ min (A7) + 1}

@ The problem is jointly convex in (1, &) and can be solved efficiently

@ The output is both a set of weights 7, and a predictor
corresponding to the kernel method trained with kernel K;,.

@ This method is usually called Multiple Kernel Learning (MKL).



Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

[ A statistical framework for genomic data fusion

o] Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini®,
1 Michael I. Jordan? and William Stafford Noble® *
|

’Depanment of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
SDepartment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, 4Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA
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0.7
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Kernel Data Similarity measure g0 I
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Ksw protein sequences Smith-Waterman 0
Kg protein sequences BLAST B SW  Pfam FFT LI
Kpfam protein sequences Pfam HMM S 1
Krrr hydropathy profile FFT =
Kii protein interactions linear kernel ©05
Kp protein interactions diffusion kernel =
Kg gene expression radial basis kernel 0
KrnD random numbers linear kernel

(B) Membrane proteins




Example: Image classification (Harchaoui and Bach,
2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wWTW), and a combination
by MKL (M).

Performance comparison on Corel14
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MKL revisited (Bach et al., 2004)

M M
Ky = niKi with nGZM:{anO,Zn;=1}

i=1 i=1

Theorem
The solution f* of

min min < R(f") + A| f3
min min (AU + 1 1, }

is f* = M, f*, where (ff,...,f) € Hy, x ... x Hg, is the solution of:




Proof (1/2)

min min {F?(f”)+)\||f”§{,<n}

neXy fGHKn
min min < R %f” ~|—>\£“fiH%K’
= mi i :
nETm h ! ni

i=1 i=1

. EMZ"” o EM:HI‘,-H%K.
= min : min :
f ooy £ neTm Ul

j=1 i=1

M M 2
in ¢R(> ]+ f ,
foooofy <§ ') (i_1 I /HHK,.)

I
3
=]



Proof (2/2)

where the last equality results from:

M 2 M2
vae R’\f, (Z ai) :nierg/w 71.’

i=1

which is a direct consequence of the Cauchy-Schwarz inequality:

M M a M 32 % M %
i i
ai=) ——xni< — ni| -



Algorithm: simpleMKL (Rakotomamonjy et al., 2008)

@ We want to minimize inn € X y:

. K _ . - 1 _ T )

min J(Ky) = min max {~R*(~2\) = X7 Ky}

@ For a fixed 1 € X, we can compute f(n) = J (K,) by using a
standard solver for a single kernel to find v*:

J(K;) = —R*(—2)\y") — M TK Y.

@ From ~* we can also compute the gradient of J (K;,) with respect
ton:
0J (Ky)
on;
@ J(K,) can then be minimized on ¥, by a projected gradient or
reduced gradient algorithm.

= -\ TK"




Sum kernel vs MKL

@ Learning with the sum kernel (uniform combination) solves

A { (Zf”>+AZf\HK}.

@ Learning with MKL (best convex combination) solves

M M 2
i A () (i)
T i=1 i=1

@ Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

Q(f) = min ZHfHHK

fi+.. +f*f



Example: ridge vs LASSO regression

@ Take X =R, and for x = (xq,...,Xy)" consider the rank-1
kernels:
Vi=1,...,d, K(x,x)=xx.

@ The sum kernelis Ks (x,x') = Y%, xix/ = x T x
@ Learning with the sum kernel solves a ridge regression problem:

d
; 2
ﬁng]l@{R(XB)JrAE 6,} :

i=1

@ Learning with MKL solves a LASSO regression problem:

2
min {R(Xﬂ)H (Zﬂ l> }



Example: Graph lasso (Jacob et al., 2009)

@ Graph G= (V,E), ¥ =RY
@ For each edge e = (/,j), define the kernel

Ke(x,X') = Xg Xo = Xix} + X;x|

@ MKL (aka latent group lasso) with the set {K, : e € E} leads to a
sparse linear model with connected non-zero components.



Application: breast cancer prognosis

Ratio [1og scsle]
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Lasso signature (accuracy 0.61)
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Graph Lasso signature (accuracy 0.64
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