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0 Motivations



What’s in your body
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1 body = 10" human cells (and 100x more non-human cells)
1 cell = 6 x 10° ACGT coding for 20,000 genes



Sequencing revolution
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A cancer cell
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@ What is your risk of developing a cancer? (prevention)

@ After diagnosis and treatment, what is the risk of relapse?
(prognosis)

@ What specific treatment will cure your cancer? (personalized
medicine)



Cancer diagnosis

Problem 1

Given the expression levels of 20k genes in a leukemia, is it an acute
lymphocytic or myeloid leukemia (ALL or AML)?




Cancer prognosis

Problem 2

Given the expression levels of 20k genes in a tumour after surgery, is it
likely to relapse later?




Pharmacogenomics / Toxicogenomics

Patients with same condition Pf°ﬁ""8

Py

Good responders

No Responders

Problem 3
Given the genome of a person, which drug should we give?




Protein annotation

Data available

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQONQCQLQONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Problem 4

Given a newly sequenced protein, is it secreted or not?




Drug discovery
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Problem 5
Given a new candidate molecule, is it likely to be active?
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On real data...




Pattern recognition, aka supervised classification

Challenges

@ High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge

Fast and scalable
implementations

Interpretable models




© Linear sVM



Linear classifier



Linear classifier



Linear classifier



Linear classifier



Linear classifier



Linear classifier




Linear classifier




Linear classifier




Which one is better?




The margin of a linear classifier



The margin of a linear classifier




The margin of a linear classifier




The margin of a linear classifier




The margin of a linear classifier




Largest margin classifier (hard-margin SVM)




Support vectors




More formally

@ The training set is a finite set of n data/class pairs:

S= {(}1ay1)a cee (Yn7Yn)} )
where X; € RP and y; € {—1,1}.
@ We assume (for the moment) that the data are linearly separable,
i.e., that there exists (w, b) € RP x R such that:
W.Y/+b>o ifyi=1,
{W.)?,‘—l—b<0 ify,':—1.



How to find the largest separating hyperplane?

For a given linear classifier f(x) = w.X + b consider the "tube" defined
by the values —1 and +1 of the decision function:

W.X+b=\0 \A
\




The marginis 2/|| w ||

Indeed, the points X; and x, satisfy:

W.}1+b:0,

By subtracting we get w.(Xo» — X;) = 1, and therefore:

2
Iwi

y=2|Xe— X || =



All training points should be on the correct side of the

dotted line

For positive examples (y; = 1) this means:
wXi+b>1.
For negative examples (y; = —1) this means:
WX +b< —1.
Both cases are summarized by:

Vi=1,...,n, y,'(VT/.H,'—I—b)Z‘I.



Finding the optimal hyperplane

Find (w, b) which minimize:

under the constraints:

Vi=1,...,n, y,(VT/)?,—l—b)—‘IZO

This is a classical quadratic program on RP+1,



In order to minimize:

under the constraints:
Vi=1,...,n, yi(wX;+b)—1>0,

we introduce one dual variable «; for each constraint, i.e., for each
training point. The Lagrangian is:

DA L L
L(w,b,d) = §\|W||2—Za/ (vi (WX +b) —1) .

i=1



@ L (w,b,a) is convex quadratic in w. It is minimized for:
n n
VWL =w— Z a,-y,-)?,' =0 - W= Z a,-y,-)?,-.
i=1 i=1
oL (vT/, b, &) is affine in b. Its minimum is —oco except if:

n
VbL = Za,-y,- =0.
i=1



Dual function

@ We therefore obtain the Lagrange dual function:

g(@ = _inf L(w,b,ad)
WERP,bER
_ e = 3 X S yivpeiaXi X i 0 iy =0,
—00 otherwise.

@ The dual problem is:
maximize q (&)
subjectto a>0.



Dual problem

Find o* € R" which maximizes

L(a) = Z aj— = Z Z i YiyiXi-X;,
i=1

11/1

under the (simple) constraints «; > 0 (fori=1,...,n), and

n
Zai}/i =0.
i—1

This is a quadratic program on RN, with "box constraints". &* can be
found efficiently using dedicated optimization softwares.



Recovering the optimal hyperplane

Once a* is found, we recover (w*, b*) corresponding to the optimal
hyperplane. w* is given by:

n
W= X,
i=1
and the decision function is therefore:
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Interpretation: support vectors




What if data are not linearly separable?



What if data are not linearly separable?




What if data are not linearly separable?




What if data are not linearly separable?




Soft-margin SVM

@ Find a trade-off between large margin and few errors.
@ Mathematically:

. 1
mfln {mavrgin(f) + C x errors(f)}

@ Cis a parameter




Soft-margin SVM formulation

@ The margin of a labeled point (X, y) is
margin(X,y) = y (W.X + b)

@ The erroris

e 0if margin(X,y) > 1,

e 1 — margin(X, y) otherwise.
@ The soft margin SVM solves:

n
va?{'w"2+ CZmax (0,1 —y,-(vT/.)?,-er))}

i=1




Soft-margin SVM and hinge loss

n
T’Vig {Zghinge (W-Xi + b, yi) + Al w Hg} )
= L=t
for A = 1/C and the hinge loss function:

0 if yu>1,
1 —yu otherwise.

\ 1(f(),y)
° \ yf(x)

1

Chinge(U, y) = max (1 — yu,0) = {




Dual formulation of soft-margin SVM (exercice)

Maximize
n

n
L@) =) ai=5 D> g%,

=1 i=1 j=1
under the constraints:
0<q;<C, fori=1,...,n
Sy =0.



Interpretation: bounded and unbounded support
vectors




Primal (for large n) vs dual (for large p) optimization

@ Find (w, b) € RP*" which solve:
n
TT/il? {thinge (W-Xi + b, }/i) + Al w ||g} .
P Li=1
@ Find o* € R"” which maximizes
n 1 n n
L(a) = Z o — > Z Z a,-ajy,-yj)?,-.)?j ,
i=1 i=1 j=1
under the constraints:

0<q;<C, fori=1,...,n
>obqaiy=0.



e Nonlinear SVM and kernels



Sometimes linear methods are not interesting
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Solution: nonlinear mapping to a feature space

. The decision function is:
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Kernel = inner product in the feature space

Definition
For a given mapping
S X —H

from the space of objects X to some Hilbert space of features #, the
kernel between two objects x and x’ is the inner product of their
images in the features space:

vx,x' e X, K(x,x')=o(x) o(x).




Example

2
Leté‘(:7—L:]R2andforx:<X1 )Iet¢(x):<x12>
Xo X

Then ?
K(x,x') = o(x)To(x') = (x1)2(x1) + (x2)? (%)



The kernel tricks

2 tricks

@ Many linear algorithms (in particular linear SVM) can be
performed in the feature space of ®(x) without explicitly computing
the images ®(x), but instead by computing kernels K(x, x’).

@ It is sometimes possible to easily compute kernels which
correspond to complex large-dimensional feature spaces: K(x, x’)
is often much simpler to compute than ®(x) and ®(x’)




Trick 1 : SVM in the original space

@ Train the SVM by maximizing

n n n
1 T
max ) oi— g ) oy .
¢4 ;

i=1 i=1 j=1

under the constraints:

Sy =0.

@ Predict with the decision function

{Oga,-gc, fori=1,...,n

n
f(X) = Z oz,'y,'X,-TX + b*.
i=1



Trick 1 : SVM in the feature space

@ Train the SVM by maximizing

n

1 n n
Crpez[aR),(lz a5 Z Z ajajyiy;® (Xi)T ® (X/) )
i=1 =1 j=1

under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

f(x)= En: aiyi® (%) (x) + b*.
i=1



Trick 1 : SVM in the feature space with a kernel

@ Train the SVM by maximizing
n 1 n n
max ; ai—3 ; ; aieyyiyiK (%))
under the constraints:

0<a;<C, fori=1,...,n
Sy aiyi=0.

@ Predict with the decision function

f(x) = Za, (x;, x) + b*.



Trick 2 illustration: polynomial kernel
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For x = (x1,Xx2) " € R?, let &(x) = (xZ,V2xqx0, x2) € R:

12

K(x,x') = X2XP2 + 2Xx1 XX} X + X2 X

2
X1X] + X2X3)

(x7x)?



Trick 2 illustration: polynomial kernel

x1 x12
o P o o
o o o© o
o
1) O A
O 0'5Ye) O
o o © O x2 ° o Oo
O e Y Q,
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Re| o o oo © 000 x2?
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More generally, for x, x' € RP,
d
K(x,x') = (xTx’+ 1)

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Combining tricks: learn a polynomial discrimination

rule with SVM

@ Train the SVM by maximizing
;@%&Zm - ;;aw’y/ (575 +1)°.
under the constraints:

0<a;<C, fori=1,....n
Sy aiyi=0.

@ Predict with the decision function

n d
=> aiy; (X,-TX—|—1) + b*.
i—



lllustration: toy nonlinear problem

> plot (x,col=ifelse(y>0,1,2),pch=ifelse(y>0,1,2))

Training data
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[llustration: toy nonlinear problem, linear SVM

> library (kernlab)
> svp <- ksvm(x,y,type="C-svc",kernel="vanilladot’)
> plot (svp,data=x)

SVM classification plot
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lllustration: toy nonlinear problem, polynomial SVM

> svp <- ksvm(x,y,type="C-svc", .
kernel=polydot (degree=2))
> plot (svp,data=x)

SVM classification plot
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Which functions K(x, x") are kernels?

Definition

A function K(x, x") defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) # and a mapping

¢ X —H,

such that, for any x, x" in X




Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set X is a function
K : X x X — R symmetric:
V(x,x) e X%, K (x,x)=K(X,x),

and which satisfies, for all N € N, (x4, Xz, .

., xp) € XN et
(ay,a,...,an) € RN:

Za,a, (x;,%;) > 0.
1 j=1

=




Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.




@ Kernel — p.d. function:

0 (®(X), P (X))ga = (P (X'), P (X)ga) ,

o YN SNy aid (P (%), ® (X)) = | Sy a® (%) [|2,>0 .
@ Pd. function — kernel: more difficult...



Kernel examples

@ Polynomial (on RY):
K(x,x') = (x.x' +1)¢

@ Gaussian radial basis function (RBF) (on RY)

12
o) = oo (25 X1E)
@ Laplace kernel (on R)

K(x,x") = exp (=[x — X'|)
@ Min kernel (on R)

K(x,x") = min(x, x’)

Exercice: for each kernel, find a Hilbert space H and a mapping
& : X — H such that K(x, x") = (®(x), d(x))




Example: SVM with a Gaussian kernel

@ Training:

n
. 1% — %1
min, E aj — E Qi yiyj exp ( 552

i=1 111

n
st.0<q;<C, and Za,-y,- =0.
p

@ Prediction

Za,exp< I¥ - x,u>



Example: SVM with a Gaussian kernel

Za,exp( _X’||2>

SVM classification plot
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Linear vs nonlinear SVM




Regularity vs data fitting trade-off




C controls the trade-off

, 1
min {margin(f) +Cx errors(f)}

e Large C: &
— makes few errors >

e Small C: /_/r,
— ensure a large margin So e

* Intermediate C: “fes s

— finds a trade-off e :



Why it is important to control the trade-off

TEST

ERROR

: TRAIN




How to choose C in practice

@ Split your dataset in two ("train" and "test")

@ Train SVM with different C on the "train" set

@ Compute the accuracy of the SVM on the "test" set

@ Choose the C which minimizes the "test" error

@ (you may repeat this several times = cross-validation)



6 Learning molecular classifiers with network information



Breast cancer prognosis
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Gene selection, molecular signature

The idea

@ We look for a limited set of genes that are sufficient for prediction.
@ Selected genes should inform us about the underlying biology




Lack of stability of signatures

B Single-run
0.2- ©Ensemble-mean||
> Ensemble-exp
eEnsembIe—ss
0.151 X - o
5 ¢ Random @
E o T test
Na) Entropy D]
Z 0. phatt. o
e Wilcoxon
RFE
0.057| « GFs @ ® ]
Lasso X <> ® O] Q
* E-Net ra
LEE | o e G0
0.56 0.58 0.6 0.62 0.64 0.66
AUC

Haury et al. (2011)



Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge




Graph based penalty

fa(x) = B x mﬁin R(f3) + AQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weigths.




Graph based penalty

BO)=8Tx  minA(L)+A0(8)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)
Q(B) =D (8- 8)?,

i~j

min A(fs) +AD_(6i = 5)°.

inf




Graph Laplacian
Definition
The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
0

1 0 -1 0
o 1t -1 0 O

L=D-A=| -1 -1 3 -1 0
o o -1 2 -1
0 0 O

1 1




Spectral penalty as a kernel

The function f(x) = 3T x where 3 is solution of

gg;Rr)J;,Zf (ﬁTx,,y,) +A> (B

INj

is equal to g(x) = 7' ®(x) where 7 is solution of

min —Ze( To(x), y,) + My,

~YERP N

and where
d(x)To(x') = x" Kgx'

for Kg = L*, the pseudo-inverse of the graph Laplacian.

Proof: left as exercice
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Classifiers
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Classifier
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Other penalties with kernels

d(x)To(x') = x" Kgx’
with:
@ Kg=(c+ L) 1leads to

P
QB) =cd F#+> (6i-5)° .
=1 i~j
@ The diffusion kernel:

Kg = expy(—2tL) .

penalizes high frequencies of /5 in the Fourier domain.




e Kernels for strings and graphs



Supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQORQQQOQNQCQLQONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.




String kernels

The idea

@ Map each string x € X to a vector ®(x) € F.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)




Example: substring indexation

The approach

Index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (X)) year
where @, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)




Spectrum kernel (1/2)

Kernel definition

@ The 3-spectrum of

X = CGGSLIAMMWEGV
is:
(CGG, GGS, GSL, SLI,LIA,IAM,AMM, MMW, MWF, WEG, FGV) .

@ Let ¢, (x) denote the number of occurrences of uin x. The
k-spectrum kernel is:

K(xX) =) o, (x)d,(X) .

uc Ak




Spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over | A|¥ terms,
but at most | x| — k + 1 terms are non-zero in ¢ (X) —
Computation in O(| x|+ | x"|) with pre-indexation of the strings.

@ Fast classification of a sequence x in O (| x|):

| x| —k+1

f(X) =w-o (X) = Z Wy Py (X) - Z Wi... Xipk—1-
u i=1

v

@ Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification.
@ Variants allow matching of k-mers up to m mismatches.




Local alignmnent kernel (Saigo et al., 2004)

CGGSLIAMM-——-WE'GV

R R R
C-—-LIVMMNRLMWEGV

ss4(m) = S(C, C) + S(L, L) + S(I, I) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)

SWso(x,y) = x| Ssg(m) is notakernel

KD (x,y) = Y exp(Bssg(x.y.7) isakernel
weN(x,y)



LA kernel is p.d.: proof (1/2)

Definition: Convolution kernel (Haussler, 1999)

Let Ki and K> be two p.d. kernels for strings. The convolution of Kj
and Ko, denoted K x K>, is defined for any x, x’ € X by:

Kix Ka(x,y) = D Ki(X1,¥1)Ka(X2, Y2).

X1Xo=X,y1Y2=Y

V.

If Ky and K, are p.d. then Ky x K> is p.d.. l




LA kernel is p.d.: proof (2/2)

- 8 (n71) S
K =D Kox (K« k)T ok w ko,
n=0

with
@ The constant kernel:
Ko (x,y) :=1.

@ A kernel for letters:

0 if | xX|#1where |y|#1,

(8) —
Kz’ (X,y) = { exp (5S(x,y)) otherwise.

@ A kernel for gaps:

K (x,y) = exp[8(g (|x ) + g (|x]))] -



The choice of kernel matters

v 1 1 1 1

SVM-LA —+—
SVM-pairwise ---x---
SVM-Mismatch ---*---
50 SVM-Fisher --@

a0 [,
30
20

10 -

No. of families with given performance

ROCS50

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).



Virtual screening for drug discovery
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NCI AIDS screen results (from http://cactus.nci.nih.gov).



Image retrieval and classification

From Harchaoui and Bach (2007).



Graph kernels




Graph kernels

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).




Graph kernels

@ Represent each graph x by a vector ®(x) € H, either explicitly or
implicitly through the kernel

K(x,x') = o(x)Td(x)).

@ Use a linear method for classification in .




Indexing by all subgraphs?




Indexing by all subgraphs?
OO
(®(0,...,0,1,0,...,0,1,0,...)
4 1

@®) @
o6

Computing all subgraph occurrences is NP-hard. l




Indexing by all subgraphs?

g,ge ..... O,fl,O ..... 0,1,0 )
(@&®) @
o6

Computing all subgraph occurrences is NP-hard. \

@ The linear graph of size nis a subgraph of a graph X with n
vertices iff X has an Hamiltonian path

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

O

<




Indexing by specific subgraphs

Substructure selection

We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)

@ all path up to length k (Openeye fingerprint, Nicholls 2005)
@ all shortest paths (Borgwardt and Kriegel, 2005)
°

all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)

@ all frequent subgraphs in the database (Helma et al., 2004)




Example : Indexing by all shortest paths

(a—Ba—E—6—0))

@‘Q 5 (o,...,o,2,o,...,ci,1,o,...)
BF—®A ! !

(&>—a] (e—e—6—6)




Example : Indexing by all shortest paths

Properties (Borgwardt and Kriegel, 2005)

@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n*) with the
Floyd-Warshall algorithm.




Example : Indexing by all subgraphs up to k vertices

(® (0, . 010 ,0,1,0,

-




Example : Indexing by all subgraphs up to k vertices

(»)
Gl (®) (0, . 010 0,1,0
E-2)

B

Properties (Shervashidze et al., 2009)

@ Naive enumeration scales as O(n¥).

@ Enumeration of connected graphlets in O(nd*~1) for graphs with
degree < d and k < 5.

@ Randomly sample subgraphs if enumeration is infeasible.




aks

Definition
@ A walk of a graph (V, E) is sequence of vy, ..., vn € V such that
(v,-,v,-+1)eEfori:1 ..... n—1.

@ We note Wn(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2233
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Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w e W(G).

@ Let the feature vector ®(G) = (®s(G))4s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weWw(G)




Walk kernel

@ Let S, denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = U,>1Sp.

@ For any graph X let a weight A\g(w) be associated to each walk
w e W(G).

@ Let the feature vector ®(G) = (®s(G))4s be defined by:

Z Ag(w)1 (s is the label sequence of w) .
weWw(G)

@ A walk kernel is a graph kernel defined by:

Kuaik(G1, G2) = > ©5(Gy)®

ses




Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.



Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with A\g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gi, Gs) = P(label(W;) = label(W,)),

where W, and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).



Walk kernel examples

@ The nth-order walk kernel is the walk kernel with A\g(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their

common walks of length n.
@ The random walk kernel is obtained with A\g(w) = Pg(w), where
Pg is a Markov random walk on G. In that case we have:

K(Gi, Gs) = P(label(W;) = label(W,)),

where W, and W, are two independant random walks on G; and
Go, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Ag(w) = plength(w) for 8 > 0. In that case the feature space is of

infinite dimension (Gértner et al., 2003).



Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.




Product graph

Definition

Let Gy = (W4, E1) and G, = (V», E) be two graphs with labeled
vertices. The product graph G = Gy x Gy is the graph G = (V, E) with:

QV={(vi,v)eVixW
Q E=

{((vi, ), (V{,v})) € Vx V : (vy,v]) € Ey and (v, V) € Eb}.

. vy and v, have the same label} ,

1 a b 1b 2a 1d
o—0O O
2 c 3c 3e
la 2b t 2d :
3 4 d e
4c 4e

Gl (€7 Gl x &



Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wo € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wy(Gy x Go).




Walk kernel and product graph

There is a bijection between:

@ The pairs of walks wy € Wp(Gy) and wo € Wy(Gz) with the same
label sequences,

© The walks on the product graph w € Wy(G; x Gp).

Corollary

Kuak(Gr1, Go) = Y _ ©5(Gr)®s(Gz)

SES

= > e, (W1)Aa, (W) 1(I(wy) = I(wz))

(w1,w2)EW(G1)xW(Gr)

= Z AGx G, (W) .

weW(Gi x Ga)




Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have Ag, «g,(w) = 1 if the length
of wis n, 0 otherwise.

@ Therefore:

Knth—order (G1, G2) = Z 1.
WEWh(GyxGp)

@ Let A be the adjacency matrix of Gy x Go. Then we get:

Knth order G1 GZ Z [An],j = 1TAn1
i

@ Computation in O(n|Gy||Gz|d;dz), where d; is the maximum
degree of G;.




Computation of random and geometric walk kernels

@ In both cases \g(w) for awalk w = v; ... v, can be decomposed
as:

Aa(Vy ... vp) = )\i(v1)H)\’(v;_1, V).

@ Let A, be the vector of \'(v) and A; be the matrix of (v, v/):

n

Kwaik(G1, Gz) Z > Nw) [N (vie1,w)

n=1weWn(G1xGy) i=2
= NAFT

n=0
=N (I—A) 1

@ Computation in O(|G1[3|Gz|?)




Extension: branching walks (Ramon and Gartner,
2003; Mahé and Vert, 2009)

Tv,n+1)= > J] Mv.v)T(V,n),

RCN(v)v'eR
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Screening of inhibitors for 60 cancer cell lines.



G Data integration with kernels



@ Assume we observe M types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).

@ We saw in the previous part how to make kernels Kj, ..., Ky for
each type of data, and learn with each kernel individually

@ Can we combine them to learn jointly from heterogeneous data?



Sum kernel

Let Ki,..., Ky be M kernels on X. The sum kernel Ks is the kernel on
X defined as

M
vx,x' e X, Ks(x,x')= ZK,-(XJ’).

i=1




Sum kernel and vector concatenation

Theorem
Fori=1,...,M,let ®;,: X — H; be a feature map such that

Ki(x, x') = (1 (x),®; (X)),

Then Ks = >V, K; can be written as:

Ks(x,x') = (05 (x), 05 (X)), -

S
where ¢g: X — Hg =H1 @ ... D Hy is the concatenation of the
feature maps ®;:

dg(X) = (O1(X),...,0u(x)" .

Therefore, summing kernels amounts to concatenating their feature
space representations, which is a quite natural way to integrate
different features.




For dg(x) = (®1(x),..., ®u(x))", we easily compute:
M
(®5(x), 05 (X)), =D (®i(x), @ (X)),
i=1

M
= Z KI'(X7 X,)
i=

= Ks(x, x').



Example: data integration with the sum kernel

Vol. 20 Suppl. 12004, pages i363-i370
DO; 10.1098/bioinformatics/bth910

b Protein network inference from multiple

Y. Yamanishi’*, J.-P. Vert? and M. Kanehisa'

mgﬁ genomic data: a supervised approach
3

"Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan and ?Computational Biology group, Ecole des Mines de

Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Kjoc (Localization)

Kphy (Phylogenetic profile)

Kexp + Kppi + Kioc + Kphy
(Integration)

True positive

0z

Expression

&~ Protein interaction

False positive



Learning the kernel

@ If we know how to weight each kernel, then we can learn with the
weighted kernel

M
Kn = Z niKi
i=1

@ However, usually we don’t know...
@ Perhaps we can optimize the weights 7; during learning?




An objective function for K

For any p.d. kernel K on X, let
_ i n 2
J(K) = min {R() + Al B3y} -

The function K — J(K) is convex.

w

This suggests a principled way to "learn" a kernel: define a convex set
of candidate kernels, and minimize J(K) by convex optimization.



@ We can show by strong duality that

o = . T
J(K)_gne?é{ R*(—2\y) — My KV}.

@ For each ~ fixed, this is an affine function of K, hence convex
@ A supremum of convex functions is convex. 0



MKL (Lanckriet et al., 2004)

@ We consider the set of convex combinations

M M
Ky=>_miKi with nGZMz{n/ZO,Zn/=1}

i=1 i=1
@ We optimize both n and f* by solving:

. B . . n 2
min J(k) = min min {A(%) + X513, )

@ The problem is jointly convex in (1, &) and can be solved efficiently

@ The output is both a set of weights 7, and a predictor
corresponding to the kernel method trained with kernel K;,.

@ This method is usually called Multiple Kernel Learning (MKL).



Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

[ A statistical framework for genomic data fusion

o] Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini®,
1 Michael I. Jordan? and William Stafford Noble® *
|

’Depanment of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
SDepartment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, 4Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA

1.0
§o.9 H
0.8 H
0.7
B SW Pfam FFT LI D E all
& 40 g
Kernel Data Similarity measure g0 I
20 H
10 H
Ksw protein sequences Smith-Waterman 0
Kg protein sequences BLAST B SW  Pfam FFT LI
Kpfam protein sequences Pfam HMM S 1
Krrr hydropathy profile FFT =
Kii protein interactions linear kernel ©05
Kp protein interactions diffusion kernel =
Kg gene expression radial basis kernel 0
KrnD random numbers linear kernel

(B) Membrane proteins




Example: Image classification (Harchaoui and Bach,
2007)

COREL14 dataset
@ 1400 natural images in 14 classes

@ Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wWTW), and a combination
by MKL (M).

Performance comparison on Corel14
0.12 :
0.11 T
E
0.09 T -
2 ' -
© 0.08 - H
007 El
e
e

0.06

t error

T

0.05

T™W
Kernels



Sum kernel vs MKL (Bach et al., 2004)

@ Learning with the sum kernel (uniform combination) solves

o { <Zf”) +AZ||5,||HK} .

@ Learning with MKL (best convex combination) solves

M M 2
min {R (Z f,-”) + A (ZWMM,) } :
1oeesIM i=1 i=1

@ Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

o) =, min Z | Gillzg -



Example: ridge vs LASSO regression

@ Take X =R, and for x = (xq,...,Xy)" consider the rank-1
kernels:
Vi=1,...,d, K(x,x)=xx.

@ The sum kernelis Ks (x,x') = Y%, xix/ = x T x
@ Learning with the sum kernel solves a ridge regression problem:

d
; 2
ﬁng]l@{R(XB)JrAE 6,} :

i=1

@ Learning with MKL solves a LASSO regression problem:

2
min {R(Xﬂ)H (Zﬂ l> }



Example: Graph lasso (Jacob et al., 2009)

@ Graph G= (V,E), ¥ =RY
@ For each edge e = (/,j), define the kernel

Ke(x,X') = Xg Xo = Xix} + X;x|

@ MKL (aka latent group lasso) with the set {K, : e € E} leads to a
sparse linear model with connected non-zero components.



Application: breast cancer prognosis

Ratio [1og scsle]

3
Raporer Ganes




Lasso signature (accuracy 0.61)

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40  POLD1 — POLD4

RPLG. \ /
\\EEFIAI
PCSK6 — BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT PDE6B  TGFB2
MYCBP GRP. DLEU2  ALDH3A2 ~ VEGFB  PSMD7  CXCLI3 FLT3 PPAT ULK1
SLC16A3  AKRIC4 ~ BATF PLP2 SYTL2  CCNB2  SLC39A7  HYPK PDHB. UBD
FBXO2 E2F1 LRPS. PIK3CG  ZCCHC8 ~ NLRP2  ANKZF1  PRC1 cTsL2 TKL

PTPN3  CASC3  IGFBPS RTN3  DNAJB2  CDH19  GLRX2



Graph Lasso signature (accuracy 0.64

Cavorf11

MED9.
/ NP2
PRKL
Prke
AbRAZE i ™ GAIKL — PoEGs
)
YR
conez U Graps
wanrs |
sep1
PoNA
.
en
s
Tvms
COCASL — ORCGL  VEGFA — VEGFE  PCSK6 — BTG2  ALDH3A — C6orf3s  AURKS — BIRCS  PSMD2 — ZETEI6  PLP2 — BCAP3L  FADSL — FADS2

SLCI9A7 — PRONS  AREG — MMPO



e Conclusion



SVM summary

@ Large margin classifier

@ Control of the regularization / data fitting trade-off with C
@ Linear or nonlinear (with the kernel trick)

@ Extension to strings, graphs... and many other

@ Data integration
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